
Pattern Based Procedural Textures

Sylvain Lefebvre Fabrice Neyret

iMAGIS∗/ GRAVIR-IMAG

Abstract

Numerous real-time applications such computer games or flight
simulators require non-repetitive high-resolution texturing on large
landscapes. We propose an algorithm which procedurally deter-
mines the texture value at any surface location by aperiodically
combining provided patterns according to user-defined controls
such as a probability distribution (possibly non stationary). Our
algorithm can be implemented on programmable hardware by tak-
ing advantage of the texture indirection ability of recent graphics
boards. We use explicit and virtual indirection tables to determine
the pattern to apply at each pixel as well as its attributes (displace-
ment, scaling, time...). This provides the programmer with a very
high resolution virtual texture with nice properties: Low mem-
ory consumption, no periodicity, control of the statistics, numerous
control parameters (which can be edited on the fly)... Our represen-
tation consists of building blocks that we combine in order to illus-
trate various convenient texture modalities such as aperiodic tiling,
sparse convolution, domain transitions and animated textures.

Keywords: textures, proceduralism, landscape, graphics hardware

1 Introduction
Textures are an efficient representation to enhance large scenes with
details. Texturing works especially well for landscapes since they
can easily be parameterized. However, texturing landscapes is still
a demanding problem. A user can see at the same time a detailed
foreground and a wide background, pattern similarities but no reg-
ularity, some dense and some sparse areas,. . . . Games and flight
simulators rely on various techniques to encode specified features
(e.g. forests, paths, flowers) and to avoid repetitiveness while keep-
ing the memory consumption low. Yet, these applications do not to-
tally succeed in these tasks, thus showing visual artifacts like alias-
ing and regularity while still consuming a large amount of texture
memory. Additionally, they often add edges to the mesh to be able
to tile alternate patterns, which unnecessarily increases the mesh
complexity.

We propose a procedural algorithm able to simulate a large high-
resolution texture: The required memory is mainly determined
by the reference patterns; the procedural algorithm is in charge
of breaking the regularity without introducing constraints on the
mesh since all problems are solved in texture space (i.e. a single

∗iMAGIS is a joint project of CNRS, INRIA, Institut National Poly-
technique de Grenoble and Université Joseph Fourier.
E-mail: [Sylvain.Lefebvre|Fabrice.Neyret]@imag.fr
WWW: http://www-imagis.imag.fr/Membres/Sylvain.Lefebvre/pattern

quad could be used). This method applies to textures in its most
generic meaning, comprising color, transparency (billboards, vol-
umes), normals, etc. We show that we can also deal with animated
textures. Our method is designed for programmable graphics hard-
ware and real-time applications but can also be implemented in a
software renderer.

Our paper is structured as follows: In section 2 we review the
previous texturing approaches and we discuss their properties and
limitations. In section 3 we describe the principle of our representa-
tion as well as its basic building blocks. Then we show in section 4
how to combine them to deal with various textures modalities. We
discuss results in section 6 and future work in section 7.

2 Previous work

We give an overview of different texturing mechanisms that are re-
lated to our work. At the rendering stage there are three kinds of
textures suitable for large landscapes: Pattern based textures, large
unique explicit textures and procedural textures.
• Pattern based texturing relies on a library of several different
smaller texture patches defining a pattern. These patterns (usually
square) can offer a high local resolution. The problem is to tile
these patterns while avoiding the periodicity and repetitiveness of
the naive tiling. Several approaches have been proposed:
- Aperiodic tiling [Stam 1997] determines the pattern to be used

in each grid cell so that no periodicity occurs while insuring con-
tinuity across tile boundaries. Games usually follow a simpler
way, letting the designer encode which pattern to use at all loca-
tions of the mesh, and relying on universally matchable patterns
(left-right and bottom-up edges of all patterns match).

- Triangular patterns [Neyret and Cani 1999] help breaking the
periodicity, and also cope well with mapping distortions and
poles. They avoid the use of any global parameterization.

- Virtual atlases [Soler et al. 2002] cover a surface by letting each
face pick an area in texture space so that the global result looks
continuous.

- Sparse convolution [Lewis 1989; Ebert et al. 1994] distributes
the pattern locations on a random basis.

Note that all of these methods introduce constraints on the mesh:
Tiling works only on quads; an atlas needs a dense mesh to sample
texture coordinates correctly. Moreover, these methods do not all
allow the control of local variations (either explicitly or through
statistical properties).
• A large unique explicit texture avoids most of the aforementioned
problems since it can be painted in order to incorporate all the de-
sired properties. Additionally, it can be pre-distorted in order to
cancel out the mapping distortions. Unfortunately, it requires a
huge amount of texture memory even by today’s standards. There-
fore, this method cannot be used to provide a high resolution texture
for a large landscape. Some hardware extensions have been intro-
duced to reduce the memory consumption:
- Clipmaps [Tanner et al. 1998], especially thought for land-

scapes, offer a virtual memory management for textures allow-
ing the usage of a texture that does not completely fit into texture
memory. Still, this texture has to be designed and stored.

- Lossy texture compression is supported in almost all graphics
cards [SGI n. d.]. However, the compression rate is too low to
really allow for very large textures, and the quality loss is not
always acceptable.

Published in the proceedings of ACM SIGGRAPH 2003 Symposium on Interactive 3D Graphics

- Recently, empty space compression and variable resolution
methods [Kraus and Ertl 2002; Cool 2002] have been intro-
duced. They take advantage of the new texture indirection fea-
tures of recent graphics hardware. The idea is to pack the non-
blank data in a first texture, and to index it through a second
texture considered as a grid, the cells of which point on the pat-
tern to be used. This basic idea is inspiring, but a lot more can
be done: in these papers the grid texture is explicit and therefore
still requires a lot of memory in the case of landscapes. More-
over, quantization of the data is required to keep a low number
of patterns to be stored in the reference texture. The instanti-
ation mechanism is merely used to factor the blank tiles, and
texture filtering is an issue.

• Procedural textures [Perlin 1985; Worley 1996; Ebert et al. 1994]
is a very convenient mechanism to generate details at arbitrary res-
olution with no periodicity and very low memory. The advanced
programmability of recent graphics boards promises that procedu-
ral textures implemented in hardware will soon offer almost the
same flexibility than software shaders. Moreover, interesting mech-
anisms have been introduced to generate large virtual grids of ran-
dom values with arbitrary dimensions. Still, not all kinds of mate-
rial aspects can be generated using these techniques, and the calcu-
lation cost is non-negligible.
From the previous methods we wish to keep the idea of having ref-
erence pattern, the no-constraint-on-mesh property of large unique
textures, the hashing mechanism of procedural textures, and the
compact representation of the hardware-enhanced indirection tex-
tures proposed by [Kraus and Ertl 2002] and [Cool 2002].

3 Our representation

In our system a user can compose a very large texture by placing in-
stances of reference patterns either explicitly or procedurally. Thus
the user provides the reference patterns, determines the size of the
virtual texture to be generated, describes the combination of actions
he wishes, and provides the various maps and parameters needed to
control and tune these actions.

The principle of our algorithm is to choose a pattern for given
texture coordinates u,v on the fly. We subdivide the complete tex-
ture space into a virtual grid. For given u,v texture coordinates we
find the corresponding cell in the virtual grid. Then we choose a
pattern for this grid cell using various parameters (see Figure 1).
Given the pattern and the u,v coordinates we can compute the cor-
responding color. Patterns do not necessarily have to be aligned on
the grid: By transforming the u,v coordinates within a cell it is pos-
sible to translate, scale and rotate patterns. All these computations
can be done on graphics hardware using a fragment program which
computes the final color of a pixel from texture coordinates, texture
data and other per-pixel input information.

Depending on the application, numerous parameters will influ-
ence the choice and the positioning of a pattern: Material type,
probability distribution, time, distance from a point, As a result
the (very large) resulting texture never has to be explicitly gener-
ated and is only evaluated at runtime for rendered pixels. Moreover,
there are no constraints on the mesh as all computations are done in
texture space by the fragment program.

(u,v)

Virtual grid

N cells

choose a pattern

T patterns

Figure 1: Pattern based procedural textures: For the cell containing the u,v
coordinates a pattern is chosen on the fly.

The features required to create a wide variety of pattern based tex-
tures can be classified into three categories:
- Choice and positioning of patterns (section 3.2): The choice of

patterns should be done either explicitly or procedurally, with-
out showing periodicity. A local control on the probability dis-
tribution of patterns is required in order to create textures with
a rich aspect from a limited number of patterns. Another im-
portant feature is the ability to translate, rotate or scale patterns
within their virtual grid cell in order to cancel out the regularity
introduced by the grid.

- Transitions (section 3.3): Tiling of square patterns (i.e. tiles)
is typically used in video games to texture large areas with dif-
ferent types of material (grass, sand, ...). As some areas have
different material, it requires a transition at pixel level in order
to not see the border of the grid cells.

- Animation (section 3.4): Patterns can be used for the creation of
animated textures: Each pattern is replaced by a set of patterns
representing its animation. As there can be a large number of
patterns displayed at the same time, this requires the ability of
animating multiple patterns in an asynchronous way.

In order to not restrict the user to very specific texture operations,
we propose a framework based on a set of basic blocks. Each block
is a small independent algorithm that is in charge of a specific func-
tionality. Designing a procedural pattern based texture consists of
plugging these blocks together in order to determine a color from
the u,v texture coordinates.

Using these blocks, we will show in section 4 how to create frag-
ment programs able to compute procedural aperiodic grids of tiles
(widely used in video games to create landscape textures) and ran-
dom positioning of patterns on a texture (sparse convolution), while
allowing a strong user control.

The following sections detail all our blocks. Next to each ba-
sic block name a diagram illustrates the block inputs and outputs.
We also introduce some utility blocks composed of several basic
blocks.

3.1 Inputs and outputs of blocks

In the following we explain our model in the 1D case. We will
describe in section 3.5 how to deal with 2D or 3D.

To better differentiate between different types of textures we call
textures that store color values textures and textures that encode
of spatial distribution of parameters maps. For clarity we assume
that a map of size N is a function from [0,N[to [0,M[where M is
the maximum value that can be stored in the map (implementation
details are given in section 3.6). The choice of M is determined by
the purpose of the map. We also assume that the domain wraps, i.e.
for a map of size N, map(x + N) = map(x). We call a texture or
map explicit if it stored in memory and virtual (or procedural) if it
is evaluated on the fly.

Our blocks can be easily combined: Any input parameter can use
the output of another block and any parameter can be replaced by a
virtual or an explicit map if extra controls are needed.

3.2 Choice and positioning of patterns

Reference Texture

Texture
Reference��� � � �

���
	 �����	 ����� ���

�
The goal of this block is to simplify the management of patterns.
Instead of having each pattern in one separate texture, the user pro-
vides a single texture where he packed the T patterns he wants to
use. We assume that all the patterns have the same size (in pixels).
Given a pattern index p and a texture coordinate utile ∈ [0,1] rela-
tive to the corner of the pattern this block retrieves the color of the
pattern p pixel at utile.

Published in the proceedings of ACM SIGGRAPH 2003 Symposium on Interactive 3D Graphics

Virtual Tile Map (see Figure 2.1)

Virtual Tile Map ��� � � �
����� "!�#$�

%'&)(�* * +
�-,�� .0/

A virtual tile map of size N is a virtual grid of N cells (N2 cells
in 2D) that covers the entire texture space. uglob is the texture co-
ordinate that directly comes from the graphics hardware pipeline.
This block computes in which cell of the virtual grid the uglob coor-
dinate lies. It also computes the coordinate utile of the pixel that is
under the global uglob coordinate within the cell (its relative coordi-
nate). If the virtual tile map has a size of N, then the pixel is in the
cell g = buglobNc and its relative coordinate is utile = f rac(uglobN)
(where f rac(x) extracts the fractional part of x).

1
2�3�4 46587:9 ;-<�= >0?0@BA
;�C D = E

; <�= >0?

2.1: The Virtual Tile Map block
computes the position of uglob
within the virtual grid of size N.

12

9

 2 1 1 2 1 1 2 1 1

2.2: With n=12 and n′=9
aliasing occurs yielding
bias in the distribution.

Explicit Indirection Map

Explicit

indirection
map I

Indirection Map

F
G�HJI KL)M$I N$H�I K"L�OPI

This block allows the user to explicitly choose which pattern
should appear in each cell of the virtual tile map. Let I be a user
defined (i.e. explicit) indirection map of size N: a value in I en-
codes the pattern number p to be used in the corresponding cell.
The pattern chosen at the grid location g is thus simply I(g).

g

reference texture R(I(g))

explicit indirect map I(NxN)

uglob

utile

reference texture R(p)
utile

p

virtual indirect map I(NxN)

uglob

permutation table σ

Figure 3: Left: Explicit Indirection Map indexing the reference patterns.
Right: Virtual Indirection Map the values are computed by hashing the tile
index using the permutation σ .

Virtual Indirection Map

Indirection map
Virtual

QSRUT�V�W X�YZ�[\Z�] ^�_Z�[�`ba Vdc

e�fJg hi\j�g k�f
g hi)lPg

In order to create large textures from patterns without showing
repetitiveness, we have to be able to choose patterns in an aperiodic
manner. This is done using this block: An aperiodic random num-
ber p is generated using grid index g as a seed value. This number
is used as a pattern index. Therefore, a pattern is associated with
each cell of the virtual tile map without showing periodicity in the
pattern choice (see Figure 10).

The size of the virtual tile map N and the maximum value T of p
are given. To determine the value of p (which is constant within a
cell) we rely on a pseudo-random number obtained from a hashing
function σ of the tile location g. We provide a table σ of size T
which gives a permutation of the indices between 0 and T −1. The
new index of i is given by σ(i).

To account for numbers greater than T without showing period-
icity, we hash g in the same way as 2D coordinates x,y are hashed
by using σ(x+σ(y)) in [Perlin 1985] to avoid correlation:
we evaluate the series s0 = σ(g) , si = σ(g

T i +si−1) up to the rank
such that T i+1 ≥ N. In practice we can unroll 2 or 3 steps, using for

instance σ
(g

T 2 +σ
(g

T +σ (g)
))

. This provides an aperiodic tiling
of patterns 0 to T −1 within the virtual grid of size N.

Virtual Random Map
The random number generated by the Virtual Indirection Map

block can also be used to control any parameter like translation or
scaling.

For floating point parameters (e.g. rotation, scaling, ...), we con-
sider the result of σ as a random number in [0,1[by computing r

T .
Note that this provides quantized values since there are only T en-
tries in σ . If a better resolution is required, then a larger σ map has
to be used which size replaces T in the formula.

If such a floating point value is used to generate an integer pa-
rameter (e.g. an index within another table of size T ′) it is better
to use a permutation table σ adapted to the T ′ range: Otherwise
aliasing could occur because the floating point number would have
a quantization of 1

T and would be used as an index in [0,T ′[. It
would result in non-uniform random distributions. (see Figure 2.2).
Note that if T is a multiple of T ′ then no problem occurs.

Uncorrelated random parameters can be obtained by using dif-
ferent permutation tables σ or by adding a large offset to g (since
distant locations in the aperiodic tiling are uncorrelated). Note that
since the hardware achieves vector operations (up to size 4), several
permutations can be computed in parallel using a vectorial σ map.

Tile Transform

scaling

translation discardTile Transform

m6no p q rtsJu vw\x�um o p q r s
u vw0x0u

This block allows to scale, rotate or translate a pattern within its
virtual tile map cell. It is not designed to create continuous textures
but to create textures showing objects on a transparent background.
It is used to approximate a Poisson distribution of patterns in a vir-
tual texture (see Figure 14). The transformation of each pattern can
be either explicit or procedural.

The block can apply scaling, translation and rotation (in 2D and
3D) on the coordinates utile. If the transformed coordinates u′tile no
longer lies inside the pattern the fragment is discarded (no pixel is
drawn on screen).

Given a translation d and a scaling factor s for a cell, the new
coordinates could be evaluated as u′tile = (utile

s +d). But proceeding
this way, the pattern could go partly outside the cell and be clipped.
There are two ways of avoiding this (see Figure 4):
• Shrinking the pattern to a given scale s and allowing only trans-

formations for which it remains strictly inside the cell:
u′tile = 1

s (utile +(1− s)d).
• Managing the overflow through multipass, by combining the

overflows from the neighborhood. The idea is to render the two
parts of the pattern (four parts in 2D) by rendering the grid two
times (four times in 2D). The first pass is done as usual. The
second pass shifts the virtual grid one cell to the right and uses
d−1 as translation (see Figure 5). The final color is then the sum
of the contributions of each pass. (a blend equation can also be
used to make possibly colliding patterns hiding each others).

s

dd
d

Figure 4: Left: A translation d can make the pattern clipped. Middle: Scal-
ing s and constrained translation. Right: Overflow management of neigh-
boring cells.

pass 0 pass 1 result

shifted grid

d−1d

cell g cell g

Figure 5: Managing the overflow using multipass (1D case)

Published in the proceedings of ACM SIGGRAPH 2003 Symposium on Interactive 3D Graphics

Explicit Positioning
The explicit positioning of patterns relies on a user defined po-

sitioning map to place patterns at arbitrary positions in the virtual
texture. This should not be confused with simple indirection maps
where patterns are grid-aligned. In the case of explicit positioning
patterns can be at arbitrary positions.

The idea is to encode a pattern position into an indirection grid
and to add a local translation to the pattern. We rely on an explicit
indirection map to access the reference pattern texture. The explicit
position map encodes in each grid:
- the pattern index
- the offset to be applied to the pattern

If no pattern is present a special index is used (−1). If a pixel of
the virtual texture does not lie in a pattern it is discarded, result-
ing in a transparent pixel (note that pixel in a pattern can also be
transparent).

To position the top left corner of a pattern at given u,v coordi-
nates, we need to update four cells of the explicit positioning map
(see Figure 6). Allowing n patterns to be present in a same cell
would require the use if n grids. Once the pattern position is set, it
can still be scaled, translated and rotated by plugging the tile trans-
form block after the explicit positioning block.

Note that explicit positioning yields the concept of texture sprites
[Neyret et al. 2002] — i.e. sprites inside the texture space — since
it allows to instantiate and move patterns within a texture: The posi-
tioning map can be modified dynamically by the user (see Figure 21
right), or the patterns position can be modified at each time step by
software. Texture sprites are an important feature because numer-
ous applications (3D painting on surfaces, video games, ...) need to
add local details to a surface. In video games the classical approach
is to rely on small transparent textured quads that are drawn on top
of the geometry. Such geometrical elements are often called decals.
They are also used to simulate various dynamic effects (footprints,
signs, bullet impacts, ...) that actually are 2D sprites on surfaces.
Decals require a precise positioning in space in order to appear on
the surfaces. They introduce additional geometry for non geomet-
rical reasons. Using our explicit positioning block no additional
geometry is needed as patterns will be added in a layer on top of
the uniform surface texture.

[i+1,j+1][i,j+1]

[i,j] [i+1,j]

(u,v−1) (u−1,v−1)

(u−1,v)(u,v)
v

u

Figure 6: Four cells need to be updated to arbitrary position a pattern.

0 21 3 4 5 6 7

y�z"{b| }b~ �0�b���b| � | � �
}b�\� ��y�~ ��| ��by)����� �"����| ��by)����� ��)��

��� �"� � ������8�b����y�}~ ���b��� | ��| y��d�\�B���������6��J����'���~ y�� }�y��)��| ��y�� �

~ ���b�b�0��}�0� ��y�~ �

Figure 7: A probability map containing a given distribution of T patterns
is indexed by a random pattern number in [0,P[.

Probability Map

Probability
Map block

map

 ¢¡
£ ¤¥�¦�£§ ¡�£ ¤¥)¨©£

Using a virtual indirection map all the patterns have the same
probability of occurrence since our random generator σ generates
numbers with uniform probability. The purpose of this block is to
control the probability of occurrence of each pattern. The idea is to
replace the reference texture by another one in which the patterns
are virtually duplicated in respect to the desired proportion. This is
implemented using an explicit indirection map: A probability map
simply contains the indices of the patterns to be used (see Figure 7).
The size P of this map is arbitrary and has to be tuned in order to
balance the memory size against the quantization of probabilities

(the smallest not null probability is 1
P). As mentioned above, such

a probability map can be plugged in at any place.

Materials Map maps

Materials
Mapmaterial index

ª¢«J¬ ®�¯P¬° «J¬ ®�±©¬

We can consider a probability map as a material (e.g. ’grass
with some flowers’). We want to allow the user to manipulate these
materials like he does with patterns: Considering a set of materials
(equivalent to the set of T patterns), a material map allows the user
to access a material using an index.

Areas Map

1

0

1

1

0

0

1

1

0 0 0

1

0

0

001

1 0 1

map
N

Areas Map
material index²6³�´ µ0¶

An areas map specifies which material to use in different areas.
Areas maps can be either explicit or virtual. An area map is differ-
ent to an indirection map in that its resolution can be quite rougher:
each cells covers an area of several tiles. If the areas map has a size
of A, then the size N of the virtual tile map should be a multiple of A.

Dithered Areas Map
Areas maps are likely to be at rough resolution. If one wants to

avoid sharp transitions and steps, we have to define how to interpo-
late the materials between the cells of the map.

v1

v2

b
v

Dithering 1D

b > random then v1
else v2

·

Dither 1D

Dither 1D

Dither 1D

v1

v2

v3

v4

v

bu

bv

Dithering 2D

Figure 8: The dithering operators.

Which kind of interpolation to use ?
- Linear interpolation is not valid in this case as we are working

with pattern indices.
- Blending of the resulting patterns can be done instead, but this

often yields poor results.
For discontinuous parameters such as a pattern index, a convenient
way is to rely on a dithering operator. The 1D Dithering operator
(see Figure 8) takes two values and an interpolation parameter b. It
relies on probabilities to achieve dithering: It computes a random
number using σ and compares it to b. If b is smaller than the ran-
dom number, the first value is taken, the second otherwise. Using
this technique we extend the previous Areas Map block to obtain a
Dithered Areas Map.

1

1 0 1

0 0

1 0

1 b

material indexDithering 1D

areas map

b

M(g’+1)

M(g’)¸-¹�º »0¼

½�¾�¿ ¿-ÀÁ ½�¾�¿ ¿-ÀÁ Â©Ã

¸-¹�º »0¼

Figure 9: Low resolution areas map can be interpolated using a dithering
operator which selects one of the closest values with a probability depending
on the location.

To control the interpolation between the adjacent materials we
compute we compute b as the barycentric coordinate of the pixel
location within the neighborhood g’,g’+1 (see Figure 9). Then we
use the dithering operator in order to choose between the neighbor-
ing values (two in 1D, four in 2D).

Figure 10d shows the intermediate probability distributions pro-
duced by the dithering operator in the transition areas.

Published in the proceedings of ACM SIGGRAPH 2003 Symposium on Interactive 3D Graphics

Figure 10: From left to right: a: Aperiodic tiling of 16 patterns on a terrain. Since everything is done in texture space, it is independent of the mesh.
b: Non-uniform distribution using a probability map. c: Non-stationary distribution using an 8×8 areas map (shown on bottom right). d: Same with dithering
interpolation of the areas map (the resulting virtual texture is 4096×4096, and could be far greater).

3.3 Transitions

In order to create a continuous texture when using a random tiling,
all tiles should be ’compatible’ (left-right and bottom-up edges of
all patterns should correspond to each other). But this supposes
that the texture is quite homogeneous, while landscapes are gener-
ally composed of several different areas of homogeneous material
(e.g. forest, lawn, beach, lake): The constraint of compatible tile
edges makes sense within a area, but not on the area boundary. We
introduce the notion of material family corresponding to a set of
compatible tiles which can form a homogeneous material area. For
landscapes we consider a set of material families. The purpose of
the following blocks is to deal with the transition at the interface
between two families.

Two different blocks can be used: The first one relies on a very
high resolution pixel map which texels indicate the material family
to use (it is a mask with a sharp transition). The second is based on
extra tiles called transition tiles specifying the transition between
given material families. It is inspired from a technique used in video
games.

Pixel Map

Map

map

materials
Pixel

Ä6Å�Æ Ç0È

These maps are used as masks to delimit precisely the shape
of the areas corresponding to a material family. They are of very
high resolution, possibly the same than the virtual texture. How-
ever, they compress strongly using the indirection texture mecha-
nism of [Kraus and Ertl 2002; Cool 2002]: Only the boundary of
the areas needs to be stored. Pixels Maps differ to Area Maps in
that they apply sharp transitions at the pixel level while Area Maps
apply transitions between materials at the tile level or rougher.

Transition Tiles
Tiles

material [i,j]
material [i+1,j]
material [i,j+1]
material [i+1,j+1]

material

Transition É¢Ê
Ë Ì Í)Î Ë
Ï Ê
Ë Ì Í)Î Ë

To use this mechanism, the user provides a set of tiles that ex-
plicitly describe the transition between material families (see Fig-
ure 11). These new tiles are treated as usual: A new material is
defined to access these transition tiles. The transition tiles block
checks if a transition is needed and then chooses the right transition
tile.

To achieve this task, we rely on an idea used in games: The
transition tile is chosen by looking at the material of the neighbor-
ing cells. A transition texture dealing with m families of materials
therefore contains m4 transition tiles in 2D (including the m plain
tiles). (there are 16 combinations for a 2× 2 neighborhood in 2D,
including the 2 ones corresponding to ‘material family one only’
and ‘material family two only’). The transition tile index is built
by combining the material families indices on a logical basis (see
Figure 11). If plain tiles are selected (the four neighbors are equal)

then no transition is needed and the block is a pass-through.
In practice it is often sufficient to describe the border of the mate-

rial family with a transparent background and to use it as a transition
with all other material families. If the pixel is on the background
it takes the value of the material of the other family at this loca-
tion. Figure 15a top right shows an example of transition tiles that
describes the border of a material family with a black background.

material [i,j]

material [i+1,j]

material [i+1,j+1]

material [i,j+1]

10 2 3

12 13 14 15

4 5 6 7

8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

transition material

0000 0001 0010 0011

0100 0101 0110 0111

1000 1001 1010 1011

1100 1101 1110 1111

no

ye
s n > 0

and
n < 15 ?

material

transition tile index

m
at

er
ia

l f
am

ily
 fr

om
 m

at
er

ia
l

transition material
index

Ð�ÑJÒ ÓÔ�Õ\Ö\×

Ø�ÑJÒ Ó"Ô)ÙPÒ

Ú ÑJÒ ÓÔ)ÙPÒ

Figure 11: The transition tile index is computed from the neighborhood. If
all neighbors have the same material family, the block copies its inputs on
its outputs (pass-through).

3.4 Animation

Animation sequence (see Figure 12 and 21)
We can deal with patterns whose appearance depends on extra

parameters (e.g. time, view direction, distance to a target...). This
is done by replacing each pattern by a texture which encodes the
sequence of appearances of the pattern when the parameter varies
within a quantized range. The first pattern of the sequence is con-
sidered as the pattern at rest (e.g. motionless object, or background
color).

The same idea as probability maps can be used to change the
original time line of the animation: In particular, it is possible to
change the time during which a pattern of the animation is dis-
played.

In order to control the animation sequence provided by the user,
we introduce two parameters: The phase parameter φ adds an offset
to the animation sequence time line and the Z parameter represents
the amount of rest states to add at the beginning of the animation
cycle (see Figure 12). Both parameters can be defined using either
an explicit map or a random number.

.....

0

tile 0 tile 0 tile 1 tile 2tile 0 tile ntile 3

time

Û�Ü�Ý Þ�ßbÜ0à á�âäã Ý�Ü0åæçÜ0è�é\Ü
êçë�á"Ý�ÜBì

Figure 12: Animation sequence with φ = 3 and Z = 2.

Published in the proceedings of ACM SIGGRAPH 2003 Symposium on Interactive 3D Graphics

Animation Map
animation
sequence

Map

time

Z

a

Z’

a’

Animation íïîJð ñò)óPð
ô

í õ

When using animation sequences, the user would often prefer
to avoid the synchronization of the animation of all patterns. More-
over he probably wants to control the triggering of animation cycles
instead of having everything animated everywhere simultaneously.
To obtain asynchronous animations a different φ parameter is used
at each location. This is done by using a random map. The Z pa-
rameter is also varying at each location to obtain different triggering
times. To ease the global control we multiply Z by a global param-
eter a that can be tuned by the program on the fly to control how
often the animated sequences are triggered (density of animation).

The pattern number to be used at time t is thus
p = MAX(0, (t +φ)mod(n+aZ)−aZ) where mod is the
modulo operator and n is the length of the sequence without the
leading aZ blanks.

Temporal Transitions: At this stage we have an animation with
a constant pace. For an interesting animation the user probably
wants to animate the various parameters (a,Z...) over the running
time of the program. The main problem is to achieve this without
introducing discontinuities (popping) when switching from a cy-
cling animation to another in a given place and time. I.e. we have
to define temporal transitions. The point is that we cannot have
state variables2 associated with patterns so we cannot store the lat-
est step of an animation used at a given location: We have to avoid
discontinuities by choosing at any time between the old and the new
animation cycle (see Figure 13).

Let a′ and Z′ be the old parameters and a and Z the new ones after
the transition at time t0. The pattern to be used according to the old
cycling is p′(t) = MAX(0, (t +φ)mod(n+a′Z′)−a′Z′) while the
new one is p(t) = MAX(0, (t +φ)mod(n+aZ)−aZ). Due to the
worst case the transition lies between t0 and t0 + 2n, during which
we have to choose, at each time step and for each location, either p
or p′, or possibly nothing. Let t f be the time when the old cycling
finishes: t f = t0 + n− p′(t0). If p′(t0) = 0 we take t f = t0 − 1 in
order to stop even before the old cycle starts. As long as t ≤ t f , we
stick to the old cycling. If p(t f) = 0, we can switch directly to the
new cycling as soon as t > t f . Otherwise a collision occurs between
the two cycles so we cannot switch immediately to the new one. In
such a case we display nothing (i.e. rest state) up to the theoretical
end of the newly started cycling, i.e. up to tend = t f +n− p(t f).

Each time the user wants to change the Z map (the pattern of an-
imation) or a (the global rate of animation), he has to keep the old
values a′ and Z′ and the transition time t0, and then he should pro-
vide these together with the new a and Z when drawing the virtual
texture. Since dealing with double collisions would require extra
tests, the user should keep a given set of parameters during at least
2n time steps.

2Such a feature could be implemented with off-screen rendering, which
is not in the spirit of procedural textures. Moreover it would be resource
consuming due to the cost of the extra rendering pass and to the potentially
large explicit map that would be generated.

new

result

old

switchcollision !

waitingold sequence new sequence

time

time

time

ö ÷ ö ø ö ù ú�û

Figure 13: Transition between the old and the new cycling when requested
while avoiding popping.

3.5 From 1D to 2D

For clarity we explained our representation in 1D. In the 2D case
some tables corresponding to lists (e.g. probability maps) would
remain 1D while maps and grids would be 2D. Yet, we chose to en-
code every structures in 2D. Apart from symmetry reasons (easing
the plugging ability as well as the extension to higher dimensions),
this optimizes the dynamics of the texture indices. In fact this also
optimizes the computation cost since the graphics hardware allows
for vectorial operations (which requires that identical operations be
done on each component).

For instance, the reference texture R is a list of T patterns. We
encode it as a Tx ×Ty 2D packing of the patterns. For convenience,
we then define a pattern by its coordinates (px, py) in R rather than
its rank p in the list. One can think of these 2D coordinates as a
vectorial pattern index −→p . We do the same for each kind of table:
for instance, indirect maps I encode a pattern index. Since this
index is a vector, this implies that I is a function from [0,Nx[×[0,Ny[
to [0,Tx[×[0,Ty[(where Nx ×Ny is the size of the virtual tile map
and Tx×Ty the number of patterns). Similarly, permutation tables σ
used for virtual maps are now vectorial: the first component σx is a
permutation of the horizontal indices (between 0 and Tx −1) while
the second (σy) is a permutation of the vertical indices (between 0
and Ty −1), so that −→σ (−→p) = (σx(−→p),σy(−→p)).

Let us extend scalar 1D functions such as +,/,bc, f rac to vectors
by considering that they apply to each component separately. We
use the following notation: −→a −→b for the component by component
product of vectors −→a and −→b ; −→u = (u,v); −→n = (nx,ny) and −→N =
(Nx,Ny). With these notations the entire formalism explained in 1D
now applies to 2D. The extension to higher dimensions is similar.

Since the formulas are identical independent of the dimension
we will no longer use arrows on vectors: a or uN rely to scalars for
1D textures and to vectors for 2D textures. ax and ay denote the
components of a, and a+(1,1) means (ax +1,ay +1).

3.6 Encoding maps as textures

For simplicity we described a map of size N as a function from
[0,N[to [0,M[where M is the maximum value that can be stored
in the map. Actually all maps are encoded in textures and are func-
tions from [0,1] to [0,1]. The conversion is straightforward: if a
map of size N and maximum value M is accessed by an index i,
then i

N should be used to access the corresponding texture. The in-
teger corresponding to the floating point value r ∈ [0,1] read in the
texture is simply brMc.

Published in the proceedings of ACM SIGGRAPH 2003 Symposium on Interactive 3D Graphics

Figure 14: From left to right: a: Sparse convolution of a leaf pattern (plus random rotations). b: Sparse convolution of random leaf patterns using a
probability texture. c: Non-stationary sparse convolution using a 8×8 probability map (shown on top left) with dithering interpolation. d: Sparse convolution
of volumetric textures (the tree pattern is 2563. The terrain is rendered using 256 slices, i.e. 256 quads).

4 Combining blocks: Cases studies

In the previous section we have defined a set a pluggable blocks.
Using the CG fragment programs language [Nvidia 2002a] these
blocks correspond to CG functions. We illustrate now how to com-
bine them by implementing two major texture types: Aperiodic
tiling and sparse convolution in 2D. For both we propose a simple
version (respectively random tiling and Poisson distribution) and an
extended version allowing various user controls. We also describe
how to create animated textures from animated patterns.

Basic aperiodic tiling: (see Figure 3 right, 10a)
The user provides a reference texture which contains T ×T packed
patterns. He wants to tile them along a virtual grid of size N ×N
aperiodically with a uniform distribution. The needed blocks are:
- one Virtual Tile Map block used to compute the cell coordinate

g and the relative coordinate utile from the uglob coordinate.
- one Virtual Indirection Map block used to compute a random

tile index p from the cell coordinate g.
- one Reference Texture block used to compute the final color

from the tile index and the relative coordinate utile.
The diagram of this fragment program is given in Figure 16. This
scheme is also figured on Figure 3 right.

Virtual Tile Map

Indirection Map
Virtual Texture

Reference
g

ü

ýïþçÿ ���
ý���� ÿ �

�
	�� ������ �

�

����� ���

� ü����

Figure 16: Basic aperiodic tiling

The fragment program can be written from the diagram:
void fragment_program(float2 u_glob,out:float4 color) {

float2 g,u_tile,p;

virtual_tile_map(u_glob,out:g,out:u_tile);

virtual_indirection_map(T,N,sigma,g,out:p);

reference_texture(T,p,u_tile,out:color);

}

Extended aperiodic tiling: (see Figure 15)
The user defines 2 material families and 24 transition tiles. He
also defines materials (probability maps) inside each material fam-
ily (see Figure 15a left). He provides a rough areas map M (to be
interpolated) in which he painted the areas of each material (see
Figure 15a bottom-right).

The purpose of this fragment program is to tile randomly grass
tiles within dark areas of the areas map and sand tiles within light
areas, using appropriate transition tiles at the boundary between the
2 areas (see Figure 15 b and c). To achieve this the idea is to check
at first whether a transition is needed or not. This is done by the
Transition Tiles block. Its inputs are a random index computed by
the Virtual Indirection Map block and the materials of the cell g and

its three neighbors. These materials are computed by four copies
of a Dithered Areas Map. If a transition is needed, the Transition
Tiles block returns the transition material index and the transition
tile index. If not, the material of cell g is returned together with the
random number generated by the Virtual Indirection Map block.
The final color is computed by a Reference Texture block from the
tile index generated by the Materials Map block.

The diagram of this fragment program is given in Figure 17.

Texture
Reference

Tiles

1

0

1

1

0

0

1

1

0 0 0

1

0

0

001

1 0 1

Dithered
Areas Map

Virtual Tile Map

Nmap maps

Materials
Map

Indirection Map
Virtual

material

Dithered
Areas MapDithered

Areas MapDithered
Areas Map

+(0,1)
+(1,0)

+(1,1)

g

Transition

�

 "!�# !%$

&

')(+* ,�-/.�* 0
1�2 3 4 5

6 (+* ,�- � * 0

1�7%4 8�9

')(+* ,�-/.�* 0
:;&=<�>

Figure 17: Extended aperiodic tiling

Basic sparse convolution: (see Figure 14a)
The reference texture contains one pattern (T = 1). The user wants
to distribute the pattern on the surface according to a Poisson disk
distribution of radius p. The Poisson disk distribution is approxi-
mated by choosing a random location in each cell of a grid of size
N ×N with N = 1

p (as classically done in the scope of stochastic
sampling [Cook 1985]). The diagram of this fragment program is
given in Figure 18.

The Virtual Random Map block is used for computing a vector of
floating point random numbers (using vectorial arithmetic four per-
mutations can be computed simultaneously). These numbers are
used to specify a translation (two numbers) a scaling and a rotation
(one number each). In practice we use a permutation σ with a size
of 256. It allows a resolution of 1

256 for the generated random num-
bers. The Tile Transform block transforms the tile within its cell g.
It returns updated relative coordinates u′tile or discrads the fragment.

256

tile 0
Texture

Reference

Virtual Tile Map

rotation

translation
scaling

Random Map
Virtual

Tile Transform

discard

?A@CB%D%E

F�G H I JLKNM OQPSRSM B

T�USV USW

XZY R

?

FC[G H I J K\M O]P^R^M
B

FC_ I `^a
bcK\M O]P/d�M B

Figure 18: Basic sparse convolution

Extended sparse convolution: (see Figure 14c)
The user wants to control the density of the distribution along the
virtual texture. For this he defines some materials corresponding
to typical proportions of the various patterns and empty space (i.e.
blank pattern). He also paints an areas map M at rough resolution to

Published in the proceedings of ACM SIGGRAPH 2003 Symposium on Interactive 3D Graphics

Textures from Warcraft R© III: Reign of ChaosT M .
c© 2002 Blizzard Entertainment R©. All rights reserved.

Figure 15: From left to right: a: Regular and transition patterns (extracted from the game Warcraft 3) and the 8×8 probability map. b: Zoom on a detail of
the virtual texture (the geometry is a single quad). c: Dithering interpolation of the map. d: Mapping of the virtual texture (4096×4096) on a terrain.

specify the areas of various materials. The corresponding algorithm
is built upon the basic sparse convolution. The interpolation of M
produces a continuous interpolation of the probabilities.
The added blocks are:
- a Virtual Indirection Map block used to produce a random index

in each cell g.
- one Dithered Areas Map block used to choose the local material.

The diagram of this fragment program is given in Figure 19.

256

rotation
scaling

translation

Texture
Reference

Virtual Tile Map

material index

Indirection Map
Virtual

map N

Virtual
Random Map

Tile Transform

discard

Areas Map
Dithered

Map
Materials

maps

eAfCg�h%i

jCk l m nLoqp r]s^tSp g

u�v^w vSx

y

e

j{z m |%}

~�oNp rQs%��p g

��eAf{�

j��k l m n oNp rQsStSp
g

�+oqp r]s���p g

� oqp r]s y p g

Figure 19: Extended sparse convolution

Animation:
Two major kinds of animation can be handled:
- Long range explicit displacement of a pattern (see Figure 21d).
- Stationary animation of patterns (see Figure 21a-c).
• The first case corresponds to the dynamic use of the explicit posi-
tioning block. As explained in section 3.2, no extra geometry is re-
quired to display the moving texture sprites (contrary to games) and
very few parameters need to be sent by the program to update the
virtual texture (contrary to [Neyret et al. 2002]). The motion is ob-
tained simply by updating the concerned cells in the low-resolution
positioning map (four cells for a single pattern, which corresponds
to very little data).
• The second case corresponds to the idea of textural motion: Any
parameters such as scale, rotation or location can be explicitly de-
fined as a function of time. The Animation Sequences defined in
section 3.4 can also be used. We focus here on time cyclical pattern
animation, relying on Animation Maps.

The complete diagram of the fragment program is given in Fig-
ure 20. The parameters time, Z, Z ′, a, a′ and t0 are handled by the
software (they can be animated, see section 3.4).

5 Texture filtering

Hardware texture filtering does not work well when using indirec-
tions. Therefore, all techniques relying on this functionality suffer

Virtual Tile Map

Virtual

a a’
anim. seq.

time

Z

Z’

Texture
Reference

Map

256

Random Map Animation

�

��� � � �

����� ���%��� �

�"� �^��� ���

�

���Q� ��

¡
�£¢ �S¤^¥

¦ �Z� ���%§N� �

Figure 20: Aperiodic animation of a grid of tiles

from filtering issues because indirections introduce discontinuities
in the u,v.

The problem comes from the wrong neighborhood information.
If we use standard filtering, the color used by the hardware is not
taken from the right location: It uses the pixel which is the neighbor
in the reference texture instead of the pixel which is the neighbor in
the virtual texture. This implies that both linear interpolation and
MIP-mapping are incorrect.

The problem of filtering with indirection was previously encoun-
tered in [Kraus and Ertl 2002]. The authors propose to duplicate
the boundary of tiles to ensure correct linear interpolation. Nev-
ertheless some aliasing artifacts are still visible. MIP-mapping is
not addressed in this paper. Note that octree textures [Benson and
Davis 2002; DeBry et al. 2002] could also be implemented using
hardware indirection but here again the filtering would be an issue.

5.1 Filtering our procedural textures

In the following we call texel one pixel of a texture. The filtering
scale depends on the number of texels that are projected on each
pixel of the screen. The ideal case is when one texel is projected on
one pixel so that no aliasing occur.

Note that the classical solution for aperiodic tiling in games re-
lies on quads on which different patterns are applied (by using ap-
propriate texture coordinates). Pixels adjacent to borders are not
correctly filtered either: the only current solution is to oversam-
ple the pixels. MIP-mapping also has the same limitations when a
pattern reduces to a pixel: Textural aliasing turns into geometrical
aliasing as multiple quads are projected into the same pixel. This
implies that our method cannot be worse than the currently avail-
able methods in terms of filtering.
• less than one texel per pixel: To correctly handle the interpo-
lation between texels a first approach would be to rely one the ddx
and ddy operators (on GeForceFX) to replace the hardware interpo-
lation in the fragment program. Nevertheless it would require four
evaluations of the entire fragment program in order to evaluate the
color of neighboring pixels.

In practice we often use tiles with compatible edges: the pixels in
a margin have similar colors through patterns. Patterns prepared for
random positioning have a similar property since their margin has
a transparent or background color. In this case linear interpolation

Published in the proceedings of ACM SIGGRAPH 2003 Symposium on Interactive 3D Graphics

Figure 21: From left to right: a: The sequence textures are triggered by the distance to the two balls. b: The sequence patterns used for images a and c.
c: A LED message board with blinking LEDs (the virtual texture is 12288×1536). d: Interactive positioning of patterns.

works correctly at the firsts MIP-mapping scales: A wrong texture
pixel is used but it has the correct color. However even in this case
there exists a scale from which the continuity margin vanishes (as
mipmap levels converge to a unique pixel of average color).

We discuss in section 5.2 how an extension of the hardware could
allow a general solution for interpolation with indirection.
• several texels per pixels: Tiles are packed in a unique texture.
This implies that there exists a MIP-mapping level for which each
texel corresponds to the average color of the underlying tile (we
assume that all tiles have the same size which is a power of two).
All MIP-mapping levels coarser than this one are wrong as they
no longer correspond to the filtering of tiles: Their texels con-
tain mixed colors from several tiles. It is thus important to pre-
vent the hardware from using this MIP-mapping levels (using the
GL TEXTURE MAX LOD feature of glTexParameter).
• several patterns per pixels: When the viewpoint is far from the
textured object, more than one pattern is projected onto each pixel.
As stated above the MIP-mapped pattern texture cannot be used
above the scale for which one tile is represented by a single texel
t: the indirection map also has to be filtered. At this level we can
forget the individual patterns and the indirection map can be con-
sidered as a regular map based on texels t. We thought of three
solutions to sum the colors on the projected pixel area:
- Oversampling these texels. This makes sense if only a few are

needed.
- Precalculating an explicit MIP-mapped map using these texels

in the spirit of clips-maps [Tanner et al. 1998] (its resolution
should be reasonable).

- In the case of areas maps, taking advantage of the law of large
numbers (which is valid if numerous patterns project on a sin-
gle pixel): The color tends towards the average color of each
material. Thus the areas map can directly be used assuming the
average materials colors have been precalculated.

5.2 Discussion on texel interpolation

To deal correctly with the interpolation we have to explicitly ac-
cess and combine the texel values, bypassing the automatic LINEAR
interpolation mode. This could have been simpler without the lim-
itations of the current hardware: the idea would have been to add
a black margin to the patterns, then to superimpose the margin of
adjacent tiles (this implies that some pixels would have to sum two
or four contributions). This should be done at any MIP-mapping
level.

The hardware limitation disqualifying this solution is that the
notion of sub-texture does not exist: The BORDER COLOR feature
allows to simulate a black border without using extra memory but it
only applies to the border of the global texture in which the patterns
are packed. We cannot add such a border explicitly to each tile (the
texture size will no longer be a power of two) and we cannot put
each tile in one texture because there is a limited number of texture
usable at the same time.

Actually we think that in order to correctly handle filtering with
indirections whatever the application ([Kraus and Ertl 2002; Ben-

son and Davis 2002; DeBry et al. 2002], ours), there is a need for a
new texture format that would introduce the notion of sub-textures.
Using this it would be possible to describe a texture as a set of in-
dependent sub-textures. It would therefore be possible to work on
each pattern independently without having the color of neighboring
tiles mixed.

6 Results

We implemented all the basic blocks and the various test applica-
tions with OpenGL and CG for Nvidia NV30 relying on a software
driver emulating the future graphics board [Nvidia 2002b].

A few days before the camera ready version we received from
Nvidia a prototype GeForceFX board allowing us to do some per-
formance measurements. Note that this prototype is about 50% un-
derclocked, and that the first version of the CG compiler does not
produce optimized fragment codes. Moreover we can not imple-
ment discarding of empty fragments since this feature is not recog-
nized by the current compiler (on sparse convolutions 40% to 70%
of tiles should be discard). Thus all the timings we provide should
be accelerated by a factor of 2 to 16 on the final GeForceFX and CG
compiler. Times are given for images with every pixels covered by
texture. These measures remain constant whatever the number of
tiles is. We used floats (32 bits precision) in the fragment programs.
Using halves (16 bits precision) gains approximatively 50%, but the
limited precision might be visible in some cases. The following ta-
ble shows that the performance are 0.4 to 0.8 Giga intructions per
seconds. The cost is proportional to the number of rendered pixels.

Basic Areas Map Dithered
Areas Map

Dithered
Areas Map &
Transitions

code length 56 instr. 65 instr. 117 instr. 512 instr.
tex. lookups 5 7 10 39
320x200 113 fps 73 fps 36 fps 5 fps
640x480 24.5 fps 15.5 fps 8.5 fps 1.1 fps

All the map and texture sizes are based on powers of two to avoid
precision problems with divisions. This also allows to limit the
number of permutation tables σ required since a table of n indices
can also be used without bias for sub-multiples of this size. The
patterns we used have a square shape and are of the same resolution.
Concerning the filtering, we only implemented a simple solution for
the MIP-mapping (locking the deepest filtering to the level where
patterns are the size of a pixel), and we did nothing special for the
linear interpolation through tile borders. However, the patterns we
use for landscapes (e.g. grass) have a similar margin to ease the
continuity and generally have the same average color. The fact that
patterns share color properties avoids most of the artifacts.

The images on Figure 10 present the aperiodic tiling of 16 pat-
terns 64 × 64 with increasing amount of user control. Even in
the more complex case very little memory is needed to obtain the
4096× 4096 virtual map. As shown in Figure 10a the mesh is to-
tally independent of the texture features.

Published in the proceedings of ACM SIGGRAPH 2003 Symposium on Interactive 3D Graphics

The images on Figure 14 illustrate sparse convolution: random
location and rotation of leaves provide another kind of non repeti-
tive texture, which can be enhanced by controlling the spatial dis-
tribution of leaves spots. On the right we used a 2563 volumetric
texture [Meyer and Neyret 1998].

The images on Figure 15 show the use of transition patterns. Two
families of 16 patterns 64×64 are used for the ground and the grass,
and 16 patterns are defined for the transition. Since the resulting
texture is not stored and is only evaluated where it is visible, very
large game fields can be specified and explored with high resolution
details. Here again the map controlling the material distribution
(the areas map) is interpolated, and could have been procedurally
computed as well.

The images on Figure 21 correspond to the movies available on
our website. The first animation (see Figure 21a) presents a se-
quence texture, the parameter of which is connected to the distance
to a target: The flowers open when the small balls are close to them.
The second and the third animations illustrate the animation maps:
The animation texture contains the various states of a blinking red
LED. In the first (see Figure 21c) we rely on a large animation map
containing the sentence to be displayed. The scrolling motion is
simply obtained by increasing the u value depending on time in
software. Note that only the visible part of the 12288× 1536 tex-
ture is calculated. The noise on the panel is simulated by tuning the
rest time of the LEDs: It is not null in the letters, and not infinite in
the background. The other animation (not illustrated in the figure)
relies on temporal transitions: 3 maps are used (2 messages plus
a blank panel), and the density of animation (see Section 3.4) is
smoothly increased or decreased. The geometry consists of a single
quad. The fourth animation (see Figure 21d) shows the interactive
positioning of patterns using an explicit map: The virtual texture
can be dynamically updated easily (NB: This interactive session
was captured on a limited implementation on a GeForce3). Note
that the long range displacement of patterns illustrated here also
corresponds to a modality of animation.

7 Conclusion and future work

We proposed a way to make very high resolution texture spaces
available by defining a representation and hardware based render-
ing algorithms able to procedurally combine patterns. In particular
this allows to implement classical features such as aperiodic tilings
and sparse convolutions. As we have shown we can also offer var-
ious low level to high level controls to the user, like specifying
probability distributions, maps of material distribution, animation...
The blocks are general enough to allow infinite combinations, each
plugged block possibly offering new user controls. Our representa-
tion is particularly convenient in the case of landscapes, the visual-
ization of which requires showing details of the foreground as well
as wide, non-repetitive features of the overall scenery. Since every-
thing is done in texture space, the mesh is totally free of constraints
and can be sampled according to geometrical criteria only.

More block types could be designed for the needs of specific ap-
plications. The animation probably has the greatest potential for
extensions. We implemented color and transparency textures, but
also bump maps and volumetric textures. The latter two require
more complicated filtering which is intricate to the shading model.
This is a topic of future work. Finally, it would be interesting to
adapt some ideas of the clipmaps (caching, fetching on request) to
develop a model allowing infinite zooming. More generally, in-
direct textures open new horizons to texture programming and for
alternate representations.

Programming on the NV30 board was a great pleasure. The frag-
ment program language almost allows general programming. As
we stated in the paper the notion of sub-texture would help recog-
nizing indirect textures as a native feature. A noise function is doc-
umented in the CG specification but is not yet implemented. When

available, it might be usable to generate aperiodic tiling (depending
on what it really does !). Conversely, our index hashing based on
permutation tables could be a way to implement this noise.

The properties of this board are different enough compared to
previous graphics boards as to change the strategy concerning the
representation choices. For instance the discard feature allows
to abort a fragment program as soon as it can be known that the
fragment is not visible. This can dramatically decrease the fill-
rate cost, pushing the representations based on transparent tex-
tures (billboards, volumetric textures...). Yet, having room for
1024 instructions means that the evaluation of one pixel might
get costly: For each given family of applications, we will have to
compare geometry-based, billboard-based, point-based and texture-
based solutions to find which can give the best performance.

Acknowledgments

We wish to thank Peter Wonka, Stéphane Guy, Alexis Angelidis and Sylvain Paris
for rereading this paper, and also Xavier Décoret, Laure Heigeas and Jean-Sébastien
Franco who reread the submission version. Thanks are also due to Nvidia for providing
us with a GeForceFX, and to Blizzard for the tile textures used in Figure 15.

References

BENSON, D., AND DAVIS, J. 2002. Octree textures. In In SIGGRAPH’02 Conference
Proceedings, ACM Press, 785–790.

COOK, R. L. 1985. Antialiasing by Stochastic Sampling. In SIGGRAPH ’85 State of
the Art in Image Synthesis seminar notes. July.

COOL, M. M., 2002. Sparse Texture Storage for Graphics Accelerators. Technical
Talk. http://www.cgl.uwaterloo.ca/Projects/rendering/Talks/
sparse/slides.pdf.

DEBRY, D., GIBBS, J., PETTY, D. D., AND ROBINS, N. 2002. Painting and ren-
dering textures on unparameterized models. In In SIGGRAPH’02 Conference Pro-
ceedings, ACM Press, 763–768.

EBERT, D., MUSGRAVE, K., PEACHEY, D., PERLIN, K., AND WORLEY. 1994.
Texturing and Modeling: A Procedural Approach. Academic Press, Oct. ISBN
0-12-228760-6.

KRAUS, M., AND ERTL, T. 2002. Adaptive Texture Maps. In Proc. SIGGRAPH/EG
Graphics Hardware Workshop ’02, ACM SIGGRAPH, 7–15.

LEWIS, J.-P. 1989. Algorithms for Solid Noise Synthesis. In Computer Graphics
(SIGGRAPH ’89 Proceedings), J. Lane, Ed., vol. 23, 263–270.

MEYER, A., AND NEYRET, F. 1998. Interactive Volumetric Textures. In Rendering
Techniques’98, Eurographics Rendering Workshop, Springer Wein, G. Drettakis
and N. Max, Eds., Eurographics, 157–168.

NEYRET, F., AND CANI, M.-P. 1999. Pattern-Based Texturing Revisited. In SIG-
GRAPH 99 Conference Proceedings, ACM SIGGRAPH, 235–242.

NEYRET, F., HEISS, R., AND SENEGAS, F. 2002. Realistic Rendering of an Organ
Surface in Real-Time for Laparoscopic Surgery Simulation. the Visual Computer
18, 3 (may), 135–149. http://www-imagis.imag.fr/Publications/2002/NHS02.

NVIDIA, 2002. CG Toolkit Reference Manual v1.5 http://www.cgshaders.org.

NVIDIA, 2002. NV30 emulation: beta detonator driver (version 40.41).
http://developer.nvidia.com/view.asp?IO=nv30 emulation.

PERLIN, K. 1985. An Image Synthesizer. In Computer Graphics (SIGGRAPH 85
Proceedings), B. A. Barsky, Ed., vol. 19, ACM SIGGRAPH, 287–296.

SGI OpenGL Extension Registry:
ARB texture compression & EXT texture compression s3tc
http://oss.sgi.com/projects/ogl-sample/registry/.

SOLER, C., CANI, M.-P., AND ANGELIDIS, A. 2002. Hierarchical Pattern Mapping.
In Siggraph’02, ACM SIGGRAPH, 673–680.

STAM, J. 1997. Aperiodic Texture Mapping. Tech. Rep. R046, Euro-
pean Research Consortium for Informatics and Mathematics (ERCIM), Jan.
http://www.ercim.org/publication/technical reports/

046-abstract.html.

TANNER, C. C., MIGDAL, C. J., AND JONES, M. T. 1998. The Clipmap: A Virtual
Mipmap. In Proceedings of SIGGRAPH 98, ACM SIGGRAPH, 151–158.

WORLEY, S. P. 1996. A Cellular Texturing Basis Function. In SIGGRAPH 96 Con-
ference Proceedings, Addison Wesley, ACM SIGGRAPH, 291–294.

Published in the proceedings of ACM SIGGRAPH 2003 Symposium on Interactive 3D Graphics

Figure 10: From left to right: a: Aperiodic tiling of 16 patterns on a terrain. Since everything is done in texture space, it is independent of the mesh.
b: Non-uniform distribution using a probability map. c: Non-stationary distribution using an 8×8 areas map (shown on bottom right). d: Same with dithering
interpolation of the areas map (the resulting virtual texture is 4096×4096, and could be far greater).

Figure 14: From left to right: a: Sparse convolution of a leaf pattern (plus random rotations). b: Sparse convolution of random leaf patterns using a
probability texture. c: Non-stationary sparse convolution using a 8×8 probability map (shown on top left) with dithering interpolation. d: Sparse convolution
of volumetric textures (the tree pattern is 2563. The terrain is rendered using 256 slices, i.e. 256 quads).

Textures from Warcraft R© III: Reign of ChaosT M .
c© 2002 Blizzard Entertainment R©. All rights reserved.

Figure 15: From left to right: a: Regular and transition patterns (extracted from the game Warcraft 3) and the 8×8 probability map. b: Zoom on a detail of
the virtual texture (the geometry is a single quad). c: Dithering interpolation of the map. d: Mapping of the virtual texture (4096×4096) on a terrain.

Figure 21: From left to right: a: The sequence textures are triggered by the distance to the two balls. b: The sequence patterns used for images a and c.
c: A LED message board with blinking LEDs (the virtual texture is 12288×1536). d: Interactive positioning of patterns.

