
Rendering Layered Depth Images

Steven J. Gortler

Harvard University

Li-wei He

Stanford University

Michael F. Cohen

Microsoft Research

March 19, 1997

Technical Report

MSTR-TR-97-09

Microsoft Research

Advanced Technology Division
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052



Abstract

In this paper we present an e�cient image based rendering system that renders multiple

frames per second on a PC. Our method performs warping from an intermediate represen-

tation called a layered depth image (LDI). An LDI is a view of the scene from a single input

camera view, but with multiple pixels along each line of sight. When n input images are

preprocessed to create a single LDI, the size of the representation grows linearly only with

the observed depth complexity in the n images, instead of linearly with n. Moreover, because

the LDI data are represented in a single image coordinate system, McMillan's warp ordering

algorithm can be successfully adapted. As a result, pixels are drawn in the output image

in back to front order. No z-bu�er is required, so alpha-compositing can be done e�ciently

without depth sorting. This makes splatting an e�cient solution to the resampling problem.

1



1 Introduction

Image based rendering (IBR) techniques have been proposed as one e�cient way of synthe-

sizing views of real and synthetic objects. With traditional rendering techniques, the time

required to render an image becomes unbounded as the geometric complexity of the scene

grows. The rendering time also grows as the requested shading computations (such as those

requiring global illumination solutions) become more ambitious.

In the simplest image based rendering technique, one synthesizes a new image from a

single input depth image, that is, an image with z-bu�er information stored with each pixel.

Hidden surfaces are not included in the input image, and thus the image has an e�ective

depth complexity of one. The complexity of the image has constant size, determined by

the image resolution, and thus new images can be rendered in constant time. Shading

computations, already computed for the input image, can be reused by subsequent images.

Finally, if a depth image is obtained from a real world scene using real images, new views can

be created with IBR methods without �rst creating a traditional geometric representation.
Because the pixels of an image form a regular grid, image based rendering computations

are largely incremental and inexpensive. Moreover McMillan has developed an ordering
algorithm [10, 12] that ensures that pixels in the synthesized image are drawn back to front,
and thus no depth comparisons are required. This also permits proper alpha compositing of

pixels without depth sorting.
Despite these advantage, there are still many problems with current image based ren-

dering methods. For example, since a single depth image has no information about hidden
surfaces, if the viewer moves slightly and thereby uncovers a surface, no relevant informa-
tion is available for this newly unoccluded surface (see Color Image (a) and (b)). A simple

solution to this problem is the use of more than one input image, but this approach is not
without its drawbacks. If one uses n input images, one e�ectively multiplies the size of the
scene description by n, and the rendering cost increases accordingly. Moreover, if one uses
more than one input image, McMillan's ordering algorithm no longer applies, and one must
perform depth computations (z-bu�er) to resolve hidden surfaces in the output image.

Another di�culty arises from the fact that the input image has a di�erent sampling

pattern and density than the output image. When mapping the discrete pixels forward from
the input image, many input pixels might squeeze together in an output pixel and should be

properly blended for anti-aliasing. A more serious problem occurs when the forward mapping

spreads the pixels apart, creating gaps in the output picture (see Color Image (a)). Proposed
solutions to this problem include performing a backwards mapping from the output sample

location to the input image [5]. This is an expensive operation that require some amount of
searching in the input image. Another possible solution is to think of the input image as a

mesh of micro-polygons, and to scan-convert these polygons in the output image. This is an
expensive operation, as it requires a polygon scan-convert setup for each input pixel [8].

The simplest solution to �ll gaps in the output image is to predict the projected size of an

input pixel in the new projected view, and to \splat" the input pixel into the output image

using a precomputed footprint [12]. For the splats to combine smoothly in the output image,

the outer regions of the splat should have fractional alpha values and be composed into the
new image using the \over" operation. This requires the output pixels to be drawn in depth

order. But, as stated earlier, McMillan's ordering algorithm cannot be applied when more

2



than one input image is used, and so a depth sort would seem to be required.

In this paper we present a method that solves many of these di�culties. The result is a

very e�cient image based rendering system that renders multiple frames per second on a PC.

Our solution is as follows: instead of performing IBR directly from a set of n input depth

images, we �rst create a single intermediate representation called a layered depth image

(LDI). Instead of a 2D array of depth pixels (a pixel with associated depth information), we

store a 2D array of layered depth pixels. A layered depth pixel stores a set of depth pixels

along one line of sight sorted in front to back order. The front element in the layered depth

pixel samples the �rst surface seen along that line of sight, the next pixel in the layered

depth pixel samples the next surface seen along that line of sight, etc. When rendering from

an LDI, the requested view can move away from the original LDI view and expose surfaces

that were not visible in the �rst layer. The previously occluded regions may still be rendered

from data stored in some later layer of a layered depth pixel.

There are many advantages to this representation. When n input images are preprocessed
to create a single LDI, pixels from di�erent images that sample the same surface location are
collapsed into a single depth pixel. The size of the representation grows linearly only with the

observed depth complexity in the n images, instead of linearly with n. Moreover, because the
LDI data are represented in a single image coordinate system, McMillan's ordering algorithm
can be successfully adapted. As a result, pixels are drawn in the output image in back to
front order. No z-bu�er is required, so alpha-compositing can be done e�ciently without
depth sorting. This makes splatting an e�cient solution to the resampling problem.

2 Previous Work

Over the past few years, there have been many papers on image based rendering. In [7],

Levoy and Whitted discuss rendering point data. Chen and Williams presented the idea of
rendering from images [1]. Laveau and Faugeras discuss IBR using a backwards map [5].
McMillan and Bishop discuss IBR using cylindrical views [12]. Seitz and Dyer describe a
system that allows a user to correctly model view transforms in a user controlled image
morphing system [15]. In a slightly di�erent direction, Levoy and Hanrahan [6] and Gortler

et al. [3] describe IBR methods using a large number of input images to sample the high

dimensional radiance function.

Max uses a representation similar to an LDI [9], but for a purpose quite di�erent than
ours; his purpose is high quality anti-aliasing, while our goal is e�ciency. Max reports his

rendering time as 5 minutes per frame while our goal is multiple frames per second. Max
warps from n input LDIs with di�erent camera information; the multiple depth layers serve

to represent the high depth complexity of trees. We warp from a single LDI, so that the
warping can be done most e�ciently. For output, Max warps to an LDI. This is done so

that, in conjunction with an A-bu�er, high quality, but somewhat expensive, anti-aliasing

of the output picture can be performed.
The system presented here relies heavily on McMillan's ordering algorithm [10, 11, 12].

Using input and output camera information, a warping order is deduced such that any pixels
that map to the same location in the output image are guaranteed to arrive in back to front

order.

3



Layered
Depth
Image
Camera

Output
Camera

Epipolar Point

Figure 1: Back to front output ordering

In McMillan's work, the depth order is computed by �rst �nding the projection of the
output camera's location in the input camera's image plane. This point, known as the
epipolar point, is the intersection of the line joining the two camera centers, with the �rst
camera's �lm plane (see Figure 1). The input image is then split horizontally and vertically

at the epipolar point, generally creating 4 image quadrants. (If the epipolar point lies o�
the image plane, we may have only 2 or 1 regions.) The pixels in each of the quadrants
are processed in a di�erent order. Depending on whether the output camera is in front

of or behind the input camera, the pixels in each quadrant are processed either inward
towards the epipolar point or outwards away from it. In other words, one of the quadrants
is processed left to right, top to bottom, another is processed left to right, bottom to top,

etc. McMillan discusses in detail the various special cases that arise and proves that this

ordering is guaranteed to produce depth ordered output [11].
When warping from an LDI, there is e�ectively only one input camera view. Therefore

one can use the ordering algorithm to order the layered depth pixels visited. Within each
layered depth pixel, the layers are processed in back to front order. The formal proof of [11]

applies, and the ordering algorithm is guaranteed to work.

3 Rendering System

The layered depth image data structure is de�ned as follows.

4



LayeredDepthImage{

Camera;

LayeredDepthPixel[Xres,Yres];

}

LayeredDepthPixel{

NumActiveLayers;

DepthPixel[MaxLayers];

}

DepthPixel{

RGBcolor;

Zdepth;

TableIndex;

}

The layered depth image contains camera information plus an array of size Xres by Yres
layered depth pixels. In addition to image data, each layered depth pixel has an integer
indicating how many valid layers are contained in that pixel. The data contained in the

depth pixel includes the color, the depth of the object seen at that pixel, plus an index
into a table. This index is formed from a combination of the normal of the object seen and
the distance from the camera that originally captured the pixel. This index will be used to
compute the splat size as outlined in section 3.2.

There are a variety of ways to generate an LDI. For example, one could use a ray tracer
that stores all of the computed ray intersections for each pixel. Or one could use multiple

images for which depth information is available at each pixel. These can be derived from a
multi-baseline stereo camera vision system capable of inferring depth.

In this paper, we construct an LDI by warping n synthetic depth images into a common
camera view. 1 If, during the warp from input camera to LDI, two or more pixels map to
the same layered depth pixel, then their z values are compared. If the z-values di�er by

more than a preset epsilon, a new layer is added to that layered depth pixel for each distinct
z-value (i.e., NumActiveLayers is incremented and a new depth pixel is added), otherwise,

the values are averaged with the present layer. This preprocess is similar to the rendering

described by Max [9]. The construction of the layered depth image is e�ectively decoupled
from the �nal rendering of images from desired viewpoints. Thus, the LDI construction does

not need to run at multiple frames per second to allow interactive camera motion.
As in any image based rendering system, there needs to be some control mechanism for

determining which of the available input images should be used in the rendering. In our
case, this amounts to deciding which images should be used to de�ne the current LDI. How

these decisions are made is an orthogonal issue and is not discussed in this paper.

The main component of our system is the fast warping based renderer. This component

takes as input an LDI along with its associated camera information. Given new desired

1Any arbitrary single coordinate system can be speci�ed here. However, we have found it best to use one

of the original camera coordinate systems. This results in fewer pixels needing to be resampled twice; once

in the LDI construction, and once in the rendering process.

5



camera information, the warper uses the incremental warping computation to e�ciently

create an output image. Pixels from the LDI are splatted into the output image using the

over compositing operation. The size and footprint of the splat is based on an estimated

size of the reprojected pixel.

3.1 Incremental Warping Computation

The incremental warping computation is similar to the one used for certain texture mapping

operations [4, 14]. The geometry of this computation has been analyzed by McMillan [13],

and e�cient computation for the special case of orthographic input images is given in [2].

Let C1 be the four by four matrix for the LDI camera. It is comprised of an a�ne

transformation matrix, a projection matrix, and a viewport matrix, C1 = V1 � P1 � A1, and

transforms a point from the global coordinate system into the camera's projected image

coordinate system. The projected image coordinates (x1; y1), obtained after multiplying the
point's global coordinates by C1 and dividing out w, index a pixel address. The z1 coordinate
can be used for depth comparisons in a z bu�er.

Let C2 be the output camera's matrix. De�ne the transfer matrix as T1;2 = C2 � C
�1

1
.

Given the projected image coordinates of some point seen in the LDI camera, this matrix

computes the image coordinates as seen in the output camera.

T1;2 �

2
6664

x1
y1
z1
1

3
7775 =

2
6664

x2 � w
y2 � w
z2 � w

w

3
7775 = resultVec

The coordinates (x2; y2) obtained after dividing out w, index a pixel address in the output
camera's image.

Using the linearity of matrix operations, this matrix multiply can be factored to allow
one to reuse much of the computation as one iterates through the layers of a layered depth

pixel; resultVec can be computed as

T1;2 �

2
6664

x1
y1
z1
1

3
7775 = T1;2 �

2
6664

x1
y1
0

1

3
7775+ z1 � T1;2 �

2
6664

0

0

1
0

3
7775 = startVec+ z1 � depthVec

To compute the warped position of the next layered depth pixel along a scanline, the
new startVec is simply incremented.

T1;2 �

2
6664

x1 + 1
y1
0

1

3
7775 = T1;2 �

2
6664

x1
y1
0

1

3
7775+ T1;2 �

2
6664

1
0
0

0

3
7775 = startVec+ incrVec

The warping algorithm proceeds using McMillan's ordering algorithm as in [10]. The

LDI is broken up into four regions above and below and to the left and right of the epipolar
point. For each quadrant, the LDI is traversed in (possibly reverse) scan line order. At the

6



beginning of each scan line, startVec is computed. The sign of incrVec is determined by

the direction of processing in this quadrant. Each layered depth pixel in the scan line is then

warped to the output image by calling warpLayeredDepthPixel. This procedure visits each

of the layers in back to front order and computes resultVec to determine its location in

the output image. As in texture mapping, a divide is required per pixel. Finally, the depth

pixel's color is splatted at this location in the output image.

warpLayeredDepthPixel(layeredDepthPixel pix,

4vec &startVec, // reference variable

4vec depthVec,

4vec incrVec,

image outIm)

for (k=0; k < pix.howManyActiveLayers; k++)

z1 = pix.layer[k].z

resultVec = startVec + z1 * depthVec

//cull if the pixel goes behind the output camera

//or if the pixel goes out of the output cam's frustum

if (resultVec.w > 0 &&

imageRange(resultVec, outIm.width, outIm.height) )

recip = 1./resultVec.w

x2 = resultVec.x * recip;

y2 = resultVec.y * recip;

z2 = resultVec.z * recip;

// see next section

sqrtSize = z2 * lookupTable[pix.layer[k].tableIndex]

splat(pix.layer[k].rgb, outIm, x2, y2, sqrtSize)

// increment for next layered pixel on this scan line

startVec += IncrVec

3.2 Splat Size Computation

To splat the LDI into the output image, we approximate the projected area of the warped

pixel. The proper size can be computed (di�erentially) as

size =
(d1)

2 cos(�2) res2 tan(:5fov1)

(d2)2 cos(�1) res1 tan(:5fov2)

where d1 is the distance from the sampled surface point to the LDI camera, fov1 is the �eld

of view of the LDI camera, res1 is the pixel resolution of the LDI camera, and �1 is the angle

7



Normal

Surface

Camera1

Camera2

θ1
θ2

φ1

φ2
d1

d2

Figure 2: Values for size computation of a projected pixel.

between the surface normal and the line of sight to the LDI camera (see Figure 2). The same
terms with subscript 2 refer to the output camera.

It will be more e�cient to compute an approximation of the square root of size,

p
size =

1

d2
�
d1
q
cos(�2)res2tan(:5fov1)q
cos(�1)res1tan(:5fov2)

�
1

ze2
�
d1
q
cos(�2)res2tan(:5fov1)q
cos(�1)res1tan(:5fov2)

� z2 � lookup[nx; ny; d1]

We approximate the �s as the angles � between the surface normal vector and the z axes
of the camera's coordinate systems. We also approximate d2 by ze2, the z coordinate of the

sampled point in the output camera's unprojected eye coordinate system.
The current implementation supports 3 di�erent splat sizes, so a very crude approxima-

tion of the size computation is implemented using a lookup table. For each pixel in the LDI,

we store d1 using 2 bits. We use 4 bits to encode the normal, 2 for nx, and 2 for ny. This

gives us a six-bit lookup table index. Before rendering each new image, we use the new
output camera information to precompute values for the 64 possible lookup table indexes.

During rendering we choose the projection matrix P2 such that z2 = 1=ze2. At each pixel we
obtain

p
size by multiplying the computed z2 by the value found in the lookup table.

The three splat sizes we currently use are a 1 pixel footprint, a 3 by 3 pixel footprint,

and a 5 by 5 pixel footprint. Each pixel in a footprint has an alpha value of 1, 1/2, or 1/4,

so the alpha blending can be done with integer shifts and adds. The following splat masks

8



are used:

1 and :25

2
64
1 2 1

2 4 2

1 2 1

3
75 and :25

2
6666664

1 2 2 2 1

2 2 4 2 2

2 4 4 4 2

2 2 4 2 2

1 2 2 2 1

3
7777775

4 Results

We have implemented our system in C++. In the accompanying video, we used a barnyard

scene modeled in Softimage, and a cache of 10 images rendered from the scene with the

Mental Ray renderer. The renderer returns colors, depths, and normals at each pixel. The

images were rendered at 320 by 320 pixel resolution. Each image took approximately one
minute to generate.

In the interactive system, a controller uses the current camera information to pick the
\best" 3 images out of the image cache. The preprocessor (running in a low-priority thread)
uses these images to create an LDI in about 1 second. The LDIs are allocated with a maxi-

mum of 10 layers per pixel. The average depth complexity for these LDIs was approximately
1:24. Thus the use of three input images only increases the rendering cost by 24 percent.
The fast renderer (running concurrently in a high-priority thread) generates images at 256 by
256 resolution (see Color Images). On a Pentium-Pro PC running at 200Mhz, we achieved
a �ve fps frame rate.

5 Discussion

In this paper we have described a method for e�cient image based rendering using a layered
depth image representation. This representation allows us to use the information available

from an input set of n images without incurring most of the cost associated with multiple
images. The average depth complexity in our LDI's was 1.24. The LDI representation
allows us to apply McMillan's ordering algorithm, and allows us to splat pixels with the over
compositing operation.

Choosing a single camera view to organize the data does have its disadvantages. First,

pixels undergo two resampling steps in their journey from input image to output. This can
potentially degrade image quality. Secondly, if some surface is seen at a glancing angle in the

chosen camera view, the depth complexity for that LDI increases, while the spatial sampling
resolution over that surface degrades.

The sampling and aliasing issues involved in image based rendering are still not fully

understood; a formal analysis of these issues would be invaluable.

References

[1] Shenchang Eric Chen and Lance Williams. View interpolation for image synthesis. In

Computer Graphics, Annual Conference Series, 1993, pages 279{288.

9



[2] William Dally, Leonard McMillan, Gary Bishop, and Henry Fuchs. The delta tree: An

object centered approach to image based rendering. Mit ai technical memo, 1996.

[3] Steven Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen. The lumi-

graph. In Computer Graphics, Annual Conference Series, 1996, pages 43{54.

[4] Paul S. Heckbert and Henry P. Moreton. Interpolation for polygon texture mapping

and shading. In David Rogers and Rae Earnshaw, editors, State of the Art in Computer

Graphics: Visualization and Modeling, pages 101{111. Springer-Verlag, 1991.

[5] S. Laveau and O. D. Faugeras. 3-d scene representation as a collection of images. In

Twelfth International Conference on Pattern Recognition (ICPR'94), volume A, pages

689{691, Jerusalem, Israel, October 1994. IEEE Computer Society Press.

[6] Mark Levoy and Pat Hanrahan. Light-�eld rendering. In Computer Graphics, Annual

Conference Series, 1996, pages 31{42.

[7] Mark Levoy and Turner Whitted. The use of points as a display primitive. UNC
Technical Report 85-022, University of North Carolina, 1985.

[8] William R. Mark, Leonard McMillan, and Gary Bishop. Post-rendering 3d warping. In
1997 Symposium on Interactive 3D Graphics (to appear). ACM, 1997.

[9] Nelson Max. Hierarchical rendering of trees from precomputed multi-layer z-bu�ers.
In Seventh Eurographics Workshop on Rendering, pages 166{175. Eurographics, June
1996.

[10] Leonard McMillan. A list-priority rendering algorithm for redisplaying projected sur-
faces. UNC Technical Report 95-005, University of North Carolina, 1995.

[11] Leonard McMillan. Computing visibility without depth. unpublished manuscript, 1996.

[12] Leonard McMillan and Gary Bishop. Plenoptic modeling: An image-based rendering
system. In Computer Graphics, Annual Conference Series, 1995, pages 39{46.

[13] Leonard McMillan and Gary Bishop. Shape as a pertebation to projective mapping.
unpublished manuscript, 1996.

[14] Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim Foran, and Paul Haeberli. Fast

shadows and lighting e�ects using texture mapping. Computer Graphics, 26(2):249{252,

1992.

[15] Steven M. Seitz and Charles R. Dyer. View morphing. In Computer Graphics, Annual

Conference Series, 1996, pages 21{30.

10


