
Computer Graphics Volume 18, Number 3 July 1984

T h e A - b u f f e r , a n A n t i a l i a s e d H i d d e n S u r f a c e M e t h o d

Loren Carpenter

Computer Graphics Project
Computer Division

Lucasfilm Ltd

Abstract
The A-buffer (anti-aliased, area-averaged, accumulation
buffer) is a general hidden surface mechanism suited to
medium scale virtual memory computers. It resolves visi-
bility among an arbitrary collection of opaque, tran-
sparent, and intersecting objects. Using an easy to com-
pute Fourier window (box fl ter), it increases the effective
image resolution many times over the Z-buffer, with a
moderate increase in cost. The A-buffer is incorporated
into the REYES 3-D rendering system at Lucasfilm and
was used successfully in the "Genesis Demo" sequence in
Star Trek II.

CR CATEGORIES AND SUBJECT DESCRIPTORS:
1.3.3 [Computer Graphics]: Picture/Image Genera-
tion - Display algorithms; 1.3.7 [C o m p u t e r G r a p h -
ics]: Three-Dimensional Graphics and Realism - Visi-
ble line/surface elimination.

GENERAL TERMS: Algorithms, Experimentation.

ADDITIONAL KEY WORDS AND PHRASES: hidden
surface, image synthesis, z-buffer, a-buffer, antialias-
ing, transparency, supersampling, computer imagery.

1. Introduction

There are many hidden surface techniques known to com-
puter graphics. A designer of a 3-D image synthesis sys-
tem must balance the desire for quality with the cost of
computation. The A-buffer method, a descendant of the
well-known Z-buffer, has proven to deliver moderate to
good quality images at moderate cost. At each pixel,
sufficient information is available to increase the effective

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 ACM 0-89791-138-5/84/007/0103 $00.75

resolution of the image several times over that of a simple
Z-buffer.

2. Historical Perspective

The A-buffer belongs to the class of hidden surface algo-
rithms called "scanline". The REYES (Renders Every-
thing You Ever Saw) system, of which the A-buffer is a
part, is a scanline renderer, but scanline order is not
required by the A-buffer.

The first scanline algorithms[7] did perspective, clipping,
sorting, visibility determination, and "filtering" all at the
same time. They resolved visibility at one point per
pixel, and aliased terribly, although our standards were
different then. In 1974, E. Catmull described the Z-buffer
method[2]. A Z-buffer is a screen-sized array of pixels
and Z's. Objects, in no particular order, are examined to
determine which pixels they cover. At each covered
pixel, the perspective Z depth of the object is determined
and compared with the Z in the array. If the new Z is
closer, then the new Z, and the objeet 's shade at this
point, replaces the array's Z and pixel. This development
started the trend toward modularizing the rendering pro-
cess, as a Z-buffer could comprise the visibility section of
almost any kind of renderer. Although extremely fast
and simple, the Z-buffer aliases too much and cannot
render transparent objects correctly.

The aliasing problems of the Z-buffer can be softened
somewhat by modifying it from a point sampler to a line
sampler so that visibility is determined over horizontal
segments of scanlines[1]. In this way the line Z-buffer is
very similar to the classical polygon algorithms of Wat-
kins and others[7]. Polygons are sliced horizontally as in
Watkins, but no X sorting is done. Instead, polygon seg-
ments conditionally overwrite others based on Z depth.
The segment boundaries do not have to be coincident
with pixel boundaries. This added information clears up
aliasing of nearly vertical edges. However, nearly hor-
izontal edges still alias and dropouts of small objects still
occur.

In 1978, E. Catmull introduced the "ul t imate" visibility
method[3], a full polygon hidden surface process, based

103

@SIGGRAPH'84

on Weiler-Atherton[8], at each pixel. Dropouts are pre-
cluded, as every sliver is accounted for. The color of the
resulting pixel is simply the weighted average of all the
visible polygon fragments. This can be extremely expen-
sive. It is so expensive that it 's primary use is in 2-D ani-
mation of a few fairly large polygons. In that applica-
tion, most pixels are completely covered by some polygon,
where the hidden surface process has a trivial solution.
Pixels needing the full power of the visibility resolver are
rare, and so the total cost per frame is acceptable.

polygon against another becomes a simple boolean opera-
tion. The mask is similar in several ways to the mask of
Fiume, Fournier and Rudolph[4], although both were
developed independently.

Silhouettes of objects still exhibited coarse intensity
quantization effects, so the actual screen area of
subpixel-sized polygons was kept with the mask. When-
ever possible, the actual area is used instead of the bit
count in the mask.

3. Goals and C o n s t r a i n t s

The visibility techniques described above span a wide
range of computational expense and image quality. What
is needed is a method that combines the simplicity and
speed of the Z-buffer with the two dimensional anti-
aliasing benefits of Catmull 's full polygon process at each
pixel.

The method must support all conceivable geometric
modeling primitives: polygons, patches, quadrics, fractals,
and so forth. It must handle transparency and intersect-
ing surfaces (and transparent intersecting surfaces). It
must do all this while being fast enough for limited pro-
duction using a DEC VAX 11/780.

6. T h e A - b u f f e r A l g o r i t h m

The A-buffer works with two different data types: "pixel-
structs" (distinct from pixels) and "fragments". A pixel-
struct is two 32-bit words (figure 2), one containing a Z
depth and the other either a color or a pointer. A frag-
ment (figure 3) is for the most part a polygon clipped to a
pixel boundary. Pixelstructs occur in an array the size
and shape of the final image (like the Z-buffer). In
REYES, the array is paged in software to save virtual
memory space. If a pixel is simple, i.e. completely
covered, the Z value is positive and the pixelstruct con-
tains a color. Otherwise, the Z value is negative and the
pointer points to a list of fragments sorted front-to-back
by frontmost Z.

4. S t r a t e g y

The rendering system (REYES) in which the visibility
processor was to reside began to take shape in mid 1981.
Adaptive subdivision[5] (splitting geometric primitives
until "fiat" on the s c r e e n) would produce a common
intermediate form: polygons. Everything would be con-
verted to polygons in approximately scanline order, as the
picture developed. The polygons would be thrown away
after the visibility resolver had finished with them and
their memory space would be used for polygons to be
created later. To reduce the scope and complexity of the
visibility resolver, polygons would be clipped to pixel
boundaries. The visibility resolver would only have to
deal with one pixel at a time.

In a virtual memory computer, like the VAX, code space
is not a serious limitation, so it was decided to optimize
the algorithm for the common cases and write potentially
voluminous code for the unusual situations.

O O O O O O O O

O O O O O O O O

O O O O O O O O

O O O O O O O O

Figure 1. P ixe l bi t mask .

float z; /* negative Z */
fragment_ptr fiist; /* never null */

(or)

float z; /* positive Z */
byte r, g, b; /* color */
byte a; /* coverage */

Figure 2. P ixe l s t ru c t definit ion.

5. G e o m e t r y inside the pixel

The geometric information inside a complex pixel is vital
to the correct display of the pixel. Pictures produced by
REYES had to be free of aliasing artifacts. The aliasing
deficiencies of the simple Z-buffer precluded its use. More
resolution inside the pixel was called for, but a full
polygon intersector/clipper was too expensive. After
some experimentation, a 4x8 bit mask (figure 1) was
selected to represent the subpixel polygons. Clipping one

fragment_ptr next;
short int r, g, b; /*
short_int opacity; /*
short_int area; /*
short_int object_tag; /*
pixelmask m; /*
float zmax, zmin; /*

Figure 3. F r a g m e n t

color, 12 bit */
1 - transparency */
12 bit precision */
from parent surface */
4x8 bits */
positive */

definit ion.

104

Computer Graphics Volume 18, Number 3 July 1984

The following discussion contains several symbols which
we define here:

M 4x8 bit mask
A area (0..1)
C color (r, g, b)
Op ac i ty 1 - transmission fraction
o~ coverage, usually area times opacity[6]

Sorting in Z is necessary for two reasons. Proper calcula-
tion of transparency requires all visible transparent sur-
faces to be sorted in Z. The other benefit of a Z-sort is
that fragments from the same geometric primitive tend to
cluster together in the list and so can be merged. For
example, a bicubic patch may be turned into several
polygons. These polygons are all from the same continu-
ous parent surface, but they may be chopped into frag-
ments in an unpredictable order (depending on screen
orientation, etc.) (figure 4). Merging two or more frag-
ments simplifies the data structure and reclaims the space
used by the merged-in fragments. If the result is opaque
and completely covers the pixel we cannot with certainty
reclaim hidden fragments, as they may be part of an
incomplete intersecting surface.

The process of merging fragments is fairly straightfor-
ward. Fragments are merged if and only if they have the
same object tag and they overlap in Z. This test is per-
formed whenever a new fragment is added to a pixel-
struct list. Object tags are integers assigned to continu-
ous non-self-intersecting geometric primitive objects, like
spheres and patches. The tag is augmented by a bit indi-
cating whether the surface faces forward or backward, so
as to prevent improper merging on silhouettes. If the
fragments do not overlap on the screen (M 1 n M2 = 0)
then the bitmasks are or'ed, the colors blended

C---- C 1 X A 1 -{- C 2 X A 2

and the areas added. If they overlap (which is highly
abnormal), they are split into three parts.

Mfront-only ~ Mfront n "~'Mback

Mback_only ~ Mback n ~Mfron t

Moverlap ----- Mfront n Mback

The contribution of the front fragment is computed,

Otfront ~ Afront_only -{- OpacitYfron t X Aoverla p

the col'ors blended,

C ----- Otfron t X Cfron t q- (1 - O~front) X Cback

and the area computed.

Aback-only
A ~ A f r o n t -k Aback X

Aback__only "k Aoverla p

When no more fragments are to be sent to a pixelstruct,
the pixelstruct's color is determined and written into the
picture. Generally, the pixel will be fully covered by
some object and a few pixel-sized fragments will remain.
If any fragments are present, a recursive packing process
is invoked.

2

11

O

12

F igure 4. T y p i c a l f r a g m e n t arr ival order.

7. P a c k i n g f r a g m e n t s

Area-averaging means the color of a pixel is computed by
the area-weighted average of the colors of the visible sur-
faces contained in the pixel. The problem is, then, how
to determine the visible fragments and visible parts of
fragments.

To understand the method used in the A-buffer, consider
the following simplified example. Assume, for the
moment, no transparency and no intersecting surfaces. If
the fragment at the front of the list covers the pixel, we
are done; otherwise, it covers part of the pixel. We
divide the pixel into two parts, inside and outside, using
the fragment's mask. The contribution of the inside part
is the color of the fragment weighted by its area. The
contribution of the outside part is some yet to be
discovered color weighted by the complement of the
fragment's area.

C ~ Cin X Ai n + Cou t X (1 - A i n)

The yet to be discovered color is found by recursively cal-
ling the packing routine with the outside mask to
represent the rest of the pixel and a pointer to the next
item in the fragment list.

We can now describe the method in more detail. We
start the packing process with a full 32 bit search mask
to represent the entire pixel. Fragments are considered
only if they overlap the search mask. When all or part of
a fragment is found within the search mask, the search
mask part of the pixel is partitioned using the fragment
mask.

Min ~ Msearch n Mf

Mout ~--- Msearch n ~ ,Mf

105

@SIGGRAPH'84

If Mou t ~ 0 we use a recursive call with Mou t as the
search mask to find the color of the rest of the searched
area. If the fragment is transparent, a recursive call
using Min as a search mask is used to find the color of
the surfaces behind the fragment to be filtered by the
color of the fragment.

Cin ---- Opac i ty f X Cf + (1 - Opaclty¢) X Cbehind
The composite coverage is computed similarly.

O/in = Opac i ty f X O/f + (1 - Opacity¢) X O/behind

Otherwise, the color of the fragment suffices for Cin.
When we have the colors of the inside and outside regions
we blend them weighted by their coverage.

O/in X Cin -{- O¢ou t X Cou t
Creturned =

O/in -F O/out
For all but the first fragment on the list, we use the
number of one bits in a mask to estimate area.

Now for intersections.

Pixels where intersecting surfaces are visible usually
number in the dozens or hundreds in a typical 512x512
resolution picture. Also, the antialiasing along the line of
intersection is not quite as critical as that on a silhouette,
for example, because the contrast is often lower. These
observations suggest we can get by with simple approxi-
mations.

Since no orientation information (vertices or plane equa-
tions) is kept in a fragment, we define an intersection to
occur when the object tags differ and the fragments over-
lap in Z. This works satisfactorily in all but a few cases.
Since we don't know exactly how much of the frontmost
fragment is visible, we estimate it from the minimum and
maximum Z values (figure 5).

ZmaXnext- Z m l n f r o n t
Vis f ron t =

(Zmax - Zmln)front + (Zmax - Zmin)nex t

Since part of the front fragment obscures the next frag-
ment and vice versa, we need to estimate the weighting
factor to be used to blend the two fragment's colors.

o/in = Vi s f ron t X OpacitYfron t

4- (1 -- Vis f ron t) X (1 - O/next)

EY E

Figure 5.

Zminnext Zmaxfront

Visfr°nt I

Zminf~ont Zmaxnext
Z D

Visible fraction of front fragment.

Pack_under_mask (fragment_ptr, mask, r, g, b, a)

if this is the last fragment on the list
return fragment's color and coverage

else
find inside and outside masks
if outside mask not empty

find color and coverage of outside area
(recursive call with outside mask)

if fragment is transparent or overlaps in Z with next on list
find color and coverage of what's behind

(recursive call with inside mask)
if nothing hidden behind the fragment affects its appearance

return a blend of the fragment and the outside area
else

if Z's overlap with next fragment (maybe transparent)
estimate visibility ratio
estimate coverage of fragment
blend fragment with what's behind it
return blend of inside and outside

else (just transparent)
blend fragment with what's behind it
return blend of inside and outside

end

Figure 6. Fragment packing procedure.

106

Computer Graphics Volume 18, Number 3 July 1984

This is the sum of the unobscured part of the front frag-
ment and the part of the front fragment filtered through
the other fragment. Given these factors, we blend the
front fragment with the other fragment within the inside
mask.

Cin ~ O/in X Cfron t -{- (1 - O~in) X Cnext

Then we blend the inside and outside part.

O/in X Cin ~ O~ou t X Cou t
Creturned

O/in -{- O~ou t

A high level pseudocode description of the packer is given
in figure 6.

8. I m p l e m e n t a t i o n de ta i l s

The A-buffer is implemented in approximately 800 lines
of C, including a substantial amount of debugging code.
All arithmetic is done in fixed point (except for Z). There
are two heavily used procedures inside the system that
ought to be described in more detail.

The first is the bitmask constructor, which is designed to
work correctly given arbitrary polygons. It begins with a
polygon that has been clipped to a pixel boundary. The
polygon bitmask is built up by exclusive or'ing together
masks derived from the polygon's edges. Each polygon
edge defines a trapezoid, bounded by the edge, the right
side of the pixel, and the projection of the ends of the
edge toward the right side of the pixel. (figure 7) The
edge mask is constructed by or'ing together row masks
taken from a table indexed by the quantized locations of
the intercepts of the edge. The exclusive or of all these
masks leaves one bits in the interior and zero bits else-
where. All this sounds complicated, but it rarely involves
more than eight boolean operations.

OOOO~.Q_Q_.O_.
O O ~ g $ O @
0 0 # , , 4 0 0 0 0 0
OOOOOOOO

Figure 7. Polygon edge mask.

The other process computes the coverage ("area") of a
polygon mask. Since the VAX has no bit counting
instructions, the method is to strip off four bits at a time
and look up the bit count in a table. The whole pro-
cedure can be put into a single C expression which gen-
erates efficient machine code.

9. Results

The REYES system, incorporating the A-buffer, has been
used to make thousands of pictures. Figure 8 shows a
magnified silhouette of the top of a teapot. Note the
softness of the edge, even though the box filtering limits
the edge intensity ramp to one pixel width. The Utah
teapot, which appears in figures 8 and 9, is constructed so
that its handle and spout penetrate its body. This is a
common geometric modelling technique which avoids the
explicit (and nearly intractable) calculation of the inter-
section curve. Figure 9 is a closeup of the upper part of
the handle. The color of pixels through which the inter-
section curve passes is clearly a blend of the handle and
body colors. Figure 10 is the "Genesis device". It is a
collection of spheres, patches and polygons inside a par-
tially transparent cylinder with quadrically modelled
engines on the outside. Stars can be seen through the
cylinder. All of figure 11, with the exception of the parti-
cle system grass plants, was rendered by REYES. The
background of the picture was computed at 1024 lines
and the foreground at 2048 lines resolution.

We have described a successful, relatively uncomplicated,
anti-aliasing hidden surface mechanism. Like all visibility
resolving methods, the A-buffer has its strengths,
weaknesses, and limitations. It was designed to process
the vast majority of pixels with minimum effort and max-
imum precision, spending compute time only on excep-
tional cases. On the other hand, the approximations used
in the fragment intersection code can go astray if several
surfaces intersect in the same pixel, and, of course, one
cannot expect polygons smaller than the bitmask spacing
to be sampled faithfully. Recognizing these limitations,
we have found the A-buffer to be a practical, reliable
means of producing synthetic images of high complexity.

References

1. CARPENTER, L., "A New Hidden Surface Algo-
ri thm," Proceedings of NW76, ACM, Seattle, WA,
1976.

2. CATMULL, E., A Subdivision Algorithm for Computer
Display of Curved Surfaces, University of Utah, Salt
Lake City, December 1974.

3. CATMULL, E., "A Hidden-Surface Algorithm with
Ant)-Aliasing," Computer Graphics, vol. 12, no. 3,
pp. 6-11, ACM, 1978.

4. FLUME, E., A. FOURNIER, AND L. RUDOLPH, "A
Parallel Scan Conversion Algorithm with Anti-
Aliasing for a General-Purpose Ultracomputer,"
Computer Graphics, vol. 17, no. 3, pp. 141-150,
ACM, July 1983.

5. LANE, J. M., L. C. CARPENTER, T. WHITTED, AND
J. BLINN, "Scan-line methods for displaying
parametrically defined surfaces," Communications of
the ACM, vol. 25, no. 1, pp. 23-34, ACM, Jan. 1980.

107

~SIGGRAPH'84

6. PORTER, T. AND T. DUFF, "Compositing Digital
Images," Computer Graphics, vol. 18, no. 3, ACM,
1984.

7. SUTHERLAND, I. E., R. F. SPROULL, AND R. A.
SCHUMACKER, "A characterization of ten hidden-
surface algorithms," Computing Surveys, vol. 6, no.
1, pp. 1-55, ACM, March 1974.

8. WEILER, K. AND P. ATHERTON, "Hidden Surface
Removal Using Polygon Area Sorting," Computer
Graphics, vol. 11, no. 3, pp. 214-222, ACM, 1977.

Figure 8. Detail o f t eapot si lhouette. (4X) Figure 9. Detai l o f t eapot handle intersection. (8X)

Figure 10. Genes lsdevlce . (4X) Figure 11. Road to Po int Reyes.

108

