Introduction to Computer Graphics Marie-Paule Cani & Estelle Duveau

04/02 Introduction & projective rendering 11/02 Prodedural modeling, Interactive modeling with parametric surfaces 25/02 Introduction to OpenGL + lab: first steps & modeling + lecture/lab: transformations & hierarchies 04/03 Implicit surfaces 1 11/03 Implicit surfaces 2 + Lights & materials in OpenGL 18/03 Textures, aliasing + Lab: Lights & materials in OpenGL 25/03 Textures in OpenGL: lecture + lab 01/04 Procedural & kinematic animation + lab: procedural anim 08/04 Physics: particle systems + lab: physics 1 22/04 Physics: collisions, control + lab: physics 2 29/04 Animating complex objects + Realistic rendering

06/05 Talks: results of cases studies

- Smooth surfaces
- Branching shapes
- Local details

Three possible strategies

- 1. Lots of simple skeletons
- 2. Fewer, complex skeletons
- 3. Discrete scalar field

1. Lots of simple skeletons, additive field

- Cost of field queries function of the number of skeletons
 Can be improved using local fields plus a query grid...
- Lack of smoothness ? Unwanted blending?

2. Fewer, complex skeletons

- Intuitive
 - Skeleton graph of the shape's topology
 - Analogy with medial axis
- Major problems!
 - Bulges
 - Unwanted blending

The bulges problem

Field values based on distance Distance to the closest point on S_i The shape changes if S_i is divided 3D bulge at all joints! iso Distance Ρ One segment Two segments

Avoid Unwanted Bulges?

Convolution surfaces [Bloomenthal Shoemake 91]

• Integral along Si on point contributions

$$F(S, p) = \int_{s \in S} f(s, p) ds$$

= convolution of the skeleton with a "kernel" f

Convolution Surfaces

- [Bloomenthal Shoemake 1991]
 - Blinn's exponential field
 - Discrete, approximate computation of the integral
- [Sherstyuk 1998-1999]
 - Some analytical solutions
 - Skeletons
 - segments
 - triangles
 - arcs of circles

Convolution surfaces

Example of analytical solution [Cani Hornus 2001]

Along a line-segment

$$f(P) = \int_{r_1}^{r_2} \frac{1}{r^3} dr$$

$$F(P) = \frac{\sin(\alpha_1) - \sin(\alpha_2)}{d^2(P, H)}$$

Convolution surfaces Non-constant radius?

- R(u) computed by interpolation
- Modified convolution kernel (iso=0.5)

$$F(P) = \frac{\sin(\alpha_1) - \sin(\alpha_2)}{D^2(P, H)} \quad \text{where} \quad D(P, H) = \sqrt{2} \frac{d(P, H)}{R(H)}$$

Surfaces of non-constant radius Exact solution [Hornus Cani Angelidis 2002]

Surfaces of non-constant radius Not exact on triangles [Angelidis Cani 2002]

 $\int_{s \in S} \frac{1}{(1 + s^2 d^2 (n, s))^2} dS$

• Sherstyuk' field [She98]

• Practical solution to varying radius

 $F(S, p) = \int$

The unwanded Blending problem

• Primitives blend according to their distance!

Solution to Unwanded Blending Blending graph expressing the topology

- [Guy Wyvill 1995]
 - Field at P: Find skeleton with main influence Add its immediate neighbors : discontinuous!!
- [Cani Hornus 2001]

Blend until the contribution is small enough

Only works in specific cases!

Solution to Unwanded Blending Blending graph expressing the topology

- [Angelidis Cani 2002]
 - decay functions (force the field contributions to vanish)

Example of use [Angelidis Cani 2002] Subdivision curves & surfaces as skeletons

Implicit surfaces with levels of detail!

- 1. Lots of simple skeletons
- 2. Fewer, complex skeletons

3. Discrete scalar field

Discrete field, stored in a grid Smooth interpolation

 \rightarrow Constant time field queries

Discrete scalar field: data structures

Unbounded grid?

- H-table storage of non-empty cells
 - Created or deleted when and where needed
 - Field values clamped to [Max, 0], where iso = max/2

3 structures

non-empty cells, surface cells, surface vertices (on edges)

f=0

Sculpting tools

Analytical or discrete tools defined by

- 1. A continuous field function = Tool's contribution
- 2. An action = The blending operation to apply

Possible actions

- Add material (+)
- Remove material (-)
- Paint
- Smooth (low band filter)

Visualization

- Real-time, incremental marching cubes
 Re-compute triangle data only where needed
- Environment textures
 good perception of the shape

But clay also deforms!

"Push" the material with a rigid tool?

– Geometric deformation mimicking physics

Addition of local deformations

- Push material with a rigid tool *[Ferley Cani Gascuel, 2001]*
 - User controlled bulge : no exact volume preservation

"Feel" the material: Force Feedback

Two forces are available

- Viscous friction from the tool's speed and field value
- Contact force along the field's gradient at the tool center

Phantom desktop (1000 Hz)

Force feedback: Best combination of forces?

Non-applied tool

- More contact force
 - The user feels the surface
 - He can place the tool from it

Applied tool

- More viscous friction
 - The tool can penetrate inside
 - The user feels the density of clay
- → *«Expressive» haptic feedback!*

Sculpted in 1 hour

Multi-resolution?

- Both coarse and fine features at interactive rates?
- Internal representation still transparent to the user

Multi-grid, two options

- Store average + delta contributions at finer levels
 Elegant but extra cost for coherency
- 2. Store extra field samples at finer levels

Levels can be updated independently

 $\rightarrow option 2$

Multi-Resolution

- Multi-grid of un-bounded resolution (H-table)
- The tools' sharp features guide local resolution
- Progressive action of tools : update from coarse to fine levels
- LODs for surface display

[Ferley Cani Gascuel, GMOD 2002]

Multi-Resolution

Sculpted in 1,5 hour

Modeling complex shapes Best implicit representation?

Constructive representation (tree)

- Lots of very simple primitives?
 → objects breaking into pieces
- Fewer, complex skeletons?
 → skeleton-based animation

Discrete field, with smooth interpolation?

- Constant time field queries
- No limitation of complexity!
- \rightarrow cannot be deformed easily

Advanced bibliography Animation of Deformable Models Using Implicit Surfaces

[Cani Desbrun 1997] (SIGGRAPH 93/95]

- Precise contact modeling
- Constant volume
- Controlled blending

Advanced bibliography Modeling with Implicit Surfaces that Interpolate

[Turk, O'Brien, SIGGRAPH 2002]

- Introduction of *Variational implicit surfaces*
 - Defined by solving a linear system of position constraints
 - Now widely used for reconstructing/re-sampling point sets

Advanced bibliography 2D potential fields for advanced implicit modeling

[Barthe, Dodgson, Sabin, Wyvill Computer Graphics Forum 2003]

- Controllable blending defined by a free-form curve $G(f_1, f_2)$
- Unifies CSG operators & smooth blending

