
Introduction to Computer Graphics

1. Rendering
2. Modeling
3. Textures
4. Animation
5. Complex models

2

Course schedule (3h a week, A009 or ARV)
Marie-Paule Cani & Estelle Duveau

04/02 Introduction & projective rendering
11/02 Prodedural modeling, Interactive modeling : parametric surfaces
25/02 Introduction to OpenGL + lab: first steps & modeling
04/03 Implicit surfaces 1 + C/lab: transformations & hierarchies
11/03 Implicit surfaces 2 + Lights & materials in OpenGL
18/03 Textures + Lab: Lights & materials in OpenGL
25/03 Textures in OpenGL: lecture + lab
01/04 Procedural & kinematic animation + lab: procedural anim
08/04 Physics: particle systems + lab: physics 1
22/04 Physics: collisions, control + lab: physics 2
29/04 Animating complex objects + Realistic rendering
06/05 Talks: results of cases studies

3

Motivation
Quest for Visual Realism

4

Reminder: from Modeling to Rendering

Object =
list of points + normals,
grouped into faces

• Faces are noticeable on
the apparent silhouette

5

Reminder: from Modeling to Rendering

• Normals are used to compute shadows and reflection

Flat shading = normals to faces Smooth surface: exact normals

Faces still
visible on
silhouettes!

• Soft shading for meshes:
normal (P) = average of normals of adjacent faces

6

Modeling object’s « material »

Add attributes (color, transparency…) to each point
– Color will be multiplied by the shading coefficient

Problem : We should not model everything at the scale of geometry!

Still a single
face, but several

colors?

7

Modeling object’s « material »

Add attributes (color, transparency…) to each point
– Color will be multiplied by the shading coefficient

Problem : We should not model everything at the scale of geometry!

Micro-polygons
would be needed!

8

Textures

• Enable the attributes to vary inside each face

Texture for colors Texture for normals

9

2D Textures
• Planar image I (u,v) + mapping P(x,y,z) → (u,v)
• Store: mesh point + normal + texture coordinates (u,v)

In a face:

Interpolate
(u,v) using
barycentric
coordinates

10

Simple mappings

f: (x,y,z) → [0,1] x [0,1]

• Planar mapping

f (x,y,z) = (||x|| , ||y||)

• Spherical mapping
(part of a sphere)

f (θ,ψ) = (2θ/π , (π/2 – ψ) / π/4)

• Cylindrical mapping

f (θ,z) = (θ/2π , z) P

v
u

f

11

Mapping on free-form surfaces ?

f: (x,y,z) → [0,1] x [0,1]
• On a spline surface S(u,v)

f (S(u,v)) = (u,v)

• Other??? (free form mesh...)
– Map the texture before applying the deformation

– Or paint the texture on the mesh!

12

Mapping 2D textures: problems!

• Mapping on free-form shapes
– Singularities (poles)

– Distorsions

• Topological problems !

?

13

Case of pattern-based texturing

Image: pattern with toric topology
• Still poles and distorsions
• Too repetitive!

Paint of synthetise a similar
texture on the surface ?

• Burden to create
• Costly to store

14

Pattern based texturing

• Some solutions
[Soler Cani
Angelidis 02]

[NeyretCani99]

Arbitrary texturesIsotropic textures

15Texture space

Result

Arbitrary pattern-based texturing

Solution by hierarchical
local mapping
[Soler Cani Angelidis 02]

16

Projective textures

Use the texture like a slide projector

No need to specify texture
coordinates explicitly!

• A good model for shading
variations due to illumination

• A fair model for reflectance (can
use pictures)

• Bad for animation!

17

Projective textures: example

Modeling from photograph: use input photos as texture

18

3D textures

• Volume of material embedding the object
– Wood, marble…

+ No mapping to compute !
u = x, v = y, w = z

- Memory cost
(ou of computational cost) P(x,y,z)

19

Texels : Some 3D along a surface

• Multiresolution voxels with 3D geometry
• Mapped on surface, like texture patterns

20

Creating a texture

• Real images
– 2D textures only
– Re-shading problem

Snake skin (photograph)

21

Creating a texture

• Procedural textures (2D and 3D)
– Statistical analysis of a material
– Creation of a similar texture

– Continuous fractal noise
(wood, marble, lava)

22

Perlin’s textures (continuous fractal noise)

23

Perlin’s noise

1D basis function
• B(x) = interpolation of

evenly spaced random
values
– Pseudo-period!

• Pre-computation of
values (1D table)

• To reduce smoothness
B’(x) = | 2B(x) -1 |

24

Perlin’s noise

Turbulent noise : sum copies of B at different scales

T(x) = ∑ 1/2i B(2i x)

25

Perlin’s textures

2D or 3D extensions of Perlin’s noise

Random values (x,y) = 1D table [(x + permut(y)) mod n]

26

Perlin’s texture : control ?

• Direct use by combining « boxes »
– Noise linked to some of the material attributes

• Use to modify an image
– Image : I(x,y) replaced by I(x+T1(x,y), y+T2(x,y))

27

Perlin’s texture : control ?

Modification of an image or a simple function
– Image : I(x,y) replaced by I(x+T1(x,y), y+T2(x,y))
– Method applied to an « idealized » material

Example : Marble = veins + noise

cos(y) cos(y + k T(x,y,z))

28

Perlin’s texture : control ?

Modification of an image or a simple function
– Image : I(x,y) replaced by I(x+T1(x,y), y+T2(x,y))
– Method applied to an « idealized » material

Example : Wood
= series of cylinders

29

Textures of normals: « bump mapping »

Perturbation of normals
• Given by a Perlin noise, an image

• Computed from a displacement
O’(u,v) = O(u,v) + d(u,v) N(u,v)

N’(u,v) = N + ∂d/∂u A + ∂d/∂v B
A = N ∧ u, B = N ∧ v

Gradient of d : finite differences

O(u,v)

30

Textures of normals: « bump mapping »

• Example : displacement given by an image
– The geometry of faces has not been changed!

31

Aliasing problems for textures

- At the front, we see the
pixels

- At the back
• Several colors to display in a

pixel of the screen
– An average would be good!

• Extra low frequencies called
« aliases »

32

Aliasing problems for textures

Solutions
• Post-filtering (general case)

– Image computed at a higher
resolution

– Smoothing filter
The image we filter is incorrect!
(the aliases are still there)

• Pre-filtering (textures only)
– texture = image pyramid
Bilinear « mip-mapping »

