Introduction to Computer Graphics

- 1. Rendering
- 2. Modeling
- 3. Textures
- 4. Animation
- 5. Complex models

Course schedule (3h a week, A009 or ARV) Marie-Paule Cani & Estelle Duveau

```
04/02 Introduction & projective rendering
11/02 Prodedural modeling, Interactive modeling: parametric surfaces
25/02 Introduction to OpenGL + lab: first steps & modeling
04/03 Implicit surfaces 1 + C/lab: transformations & hierarchies
11/03 Implicit surfaces 2 + Lights & materials in OpenGL
18/03 Textures + Lab: Lights & materials in OpenGL
25/03 Textures in OpenGL: lecture + lab
01/04 Procedural & kinematic animation + lab: procedural anim
08/04 Physics: particle systems + lab: physics 1
22/04 Physics: collisions, control + lab: physics 2
29/04 Animating complex objects + Realistic rendering
06/05 Talks: results of cases studies
```

Motivation Quest for Visual Realism

Reminder: from Modeling to Rendering

Object =
list of points + normals,
grouped into faces

 Faces are noticeable on the apparent silhouette

Reminder: from Modeling to Rendering

Normals are used to compute shadows and reflection

Flat shading = normals to faces

Smooth surface: exact normals

Soft shading for meshes:
 normal (P) = average of normals of adjacent faces

Modeling object's « material »

Add attributes (color, transparency...) to each point

Color will be multiplied by the shading coefficient

Problem: We should not model everything at the scale of geometry!

Modeling object's « material »

Add attributes (color, transparency...) to each point

Color will be multiplied by the shading coefficient

Problem: We should not model everything at the scale of geometry!

Micro-polygons would be needed!

Textures

• Enable the attributes to vary inside each face

Texture for colors

Texture for normals

2D Textures

- Planar image I (u,v) + mapping $P(x,y,z) \rightarrow (u,v)$
- Store: mesh point + normal + texture coordinates (u,v)

In a face:

Interpolate (u,v) using barycentric coordinates $u_P = (1-\beta-\gamma)u_A + \beta u_B + \gamma u_C$ 3D model with texture coordinates u, v at each vertex

Texture map (2D image)

Simple mappings

$$f: (x,y,z) \to [0,1] \times [0,1]$$

Planar mapping

$$f(x,y,z) = (||x||, ||y||)$$

• Spherical mapping (part of a sphere)

$$f(\theta,\psi) = (2\theta/\pi, (\pi/2 - \psi)/\pi/4)$$

• Cylindrical mapping

$$f(\theta,z) = (\theta/2\pi, z)$$

Mapping on free-form surfaces?

$$f: (x,y,z) \to [0,1] \times [0,1]$$

• On a spline surface S(u,v)

$$f(S(u,v)) = (u,v)$$

- Other??? (free form mesh...)
 - Map the texture before applying the deformation

Or paint the texture on the mesh!

Mapping 2D textures: problems!

- Mapping on free-form shapes
 - Singularities (poles)
 - Distorsions
- Topological problems!

Case of pattern-based texturing

Image: pattern with toric topology

- Still poles and distorsions
- Too repetitive!

Paint of synthetise a similar texture on the surface ?

- Burden to create
- Costly to store

Pattern based texturing

• Some solutions

Isotropic textures

Arbitrary textures

Arbitrary pattern-based texturing

Solution by hierarchical local mapping

[Soler Cani Angelidis 02]

Projective textures

Use the texture like a slide projector

No need to specify texture coordinates explicitly!

- A good model for shading variations due to illumination
- A fair model for reflectance (can use pictures)
- Bad for animation!

Projective textures: example

Modeling from photograph: use input photos as texture

Figure from Debevec, Taylor & Malik http://www.debevec.org/Research

3D textures

- Volume of material embedding the object
 - Wood, marble...

+ No mapping to compute!

$$u = x$$
, $v = y$, $w = z$

Memory cost(ou of computational cost)

Texels: Some 3D along a surface

- Multiresolution voxels with 3D geometry
- Mapped on surface, like texture patterns

Creating a texture

- Real images
 - 2D textures only
 - Re-shading problem

Snake skin (photograph)

Creating a texture

- Procedural textures (2D and 3D)
 - Statistical analysis of a material
 - Creation of a similar texture

Continuous fractal noise(wood, marble, lava)

Perlin's textures (continuous fractal noise)

Perlin's noise

1D basis function

- B(x) = interpolation of evenly spaced random values
 - Pseudo-period!
- Pre-computation of values (1D table)
- To reduce smoothness B'(x) = /2B(x) 1/2

Perlin's noise

Turbulent noise : sum copies of B at different scales

Perlin's textures

2D or 3D extensions of Perlin's noise

Random values (x,y) = 1D table $[(x + permut(y)) \mod n]$

Perlin's texture : control?

- Direct use by combining « boxes »
 - Noise linked to some of the material attributes
- Use to modify an image
 - Image : I(x,y) replaced by $I(x+T_1(x,y), y+T_2(x,y))$

Perlin's texture: control?

Modification of an image or a simple function

- Image : I(x,y) replaced by $I(x+T_1(x,y), y+T_2(x,y))$
- Method applied to an « idealized » material

Example : Marble = veins + noise

Perlin's texture: control?

Modification of an image or a simple function

- Image : I(x,y) replaced by $I(x+T_1(x,y), y+T_2(x,y))$
- Method applied to an « idealized » material

Example: Wood

= series of cylinders

Textures of normals: « bump mapping »

Perturbation of normals

• Given by a Perlin noise, an image

• Computed from a displacement

$$O'(u,v) = O(u,v) + d(u,v) N(u,v)$$

$$N'(u,v) = N + \partial d/\partial u A + \partial d/\partial v B$$
$$A = N \wedge u, B = N \wedge v$$

Gradient of d: finite differences

Textures of normals: « bump mapping »

- Example : displacement given by an image
 - The geometry of faces has not been changed!

Aliasing problems for textures

- At the front, we see the pixels
- At the back
- Several colors to display in a pixel of the screen
 - An average would be good!
- Extra low frequencies called
 « aliases »

Aliasing problems for textures

Solutions

- Post-filtering (general case)
 - Image computed at a higher resolution
 - Smoothing filterThe image we filter is incorrect!(the aliases are still there)
- Pre-filtering (textures only)
 - texture = image pyramidBilinear « mip-mapping »

