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A Continuous Attractor Network Model Without Recurrent Excitation:
Maintenance and Integration in the Head Direction Cell System
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Abstract. Motivated by experimental observations of the head direction system, we study a three population
network model that operates as a continuous attractor network. This network is able to store in a short-term memory
an angular variable (the head direction) as a spatial profile of activity across neurons in the absence of selective
external inputs, and to accurately update this variable on the basis of angular velocity inputs. The network is
composed of one excitatory population and two inhibitory populations, with inter-connections between populations
but no connections within the neurons of a same population. In particular, there are no excitatory-to-excitatory
connections. Angular velocity signals are represented as inputs in one inhibitory population (clockwise turns) or
the other (counterclockwise turns). The system is studied using a combination of analytical and numerical methods.
Analysis of a simplified model composed of threshold-linear neurons gives the conditions on the connectivity for
(i) the emergence of the spatially selective profile, (ii) reliable integration of angular velocity inputs, and (iii) the
range of angular velocities that can be accurately integrated by the model. Numerical simulations allow us to study
the proposed scenario in a large network of spiking neurons and compare their dynamics with that of head direction
cells recorded in the rat limbic system. In particular, we show that the directional representation encoded by the
attractor network can be rapidly updated by external cues, consistent with the very short update latencies observed
experimentally by Zugaro et al. (2003) in thalamic head direction cells.
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1. Introduction

Continuous attractor network models (Amari, 1977;
Ermentrout, 1998) have been proposed to account for
selectivity properties of sensory (Ben-Yishai et al.,
1995; Somers et al., 1995; Hansel and Sompolinsky,
1998) and motor (Lukashin and Georgopoulos, 1993)
systems, for maintenance of a continuous variable in
working memory in prefrontal and parietal cortices
(Camperi and Wang, 1998; Compte et al., 2000; Laing
and Chow, 2001; Gutkin et al., 2001), and for properties
of hippocampal place cells (Tsodyks and Sejnowski,
1995; Samsonovich and McNaughton, 1997; Redish
and Touretzky, 1997; Battaglia and Treves, 1998; Kali
and Dayan, 2000).

Head direction (HD) cells have been hypothesized to
constitute yet another system with continuous attractor
dynamics (Skaggs et al., 1995; Zhang, 1996; Redish
et al., 1996; Goodridge and Touretzky, 2000; Degris
et al., 2004). HD cells are observed in a network of
structures centered on the rat limbic system. The dis-
charge of these neurons is correlated with the direction
of the head of the animal in the azimuthal plane. Each
HD cell is selective for one specific ‘preferred’ direc-
tion, regardless of the animal’s ongoing behavior and
position (Taube, 1998). The response curve of a HD
cell (obtained by plotting its mean firing rate as a func-
tion of the directional heading) can be approximated
by means of a Gaussian tuning profile. The preferred
directions of all HD cells are evenly distributed over
360◦ such that the HD cell system might work as an al-
locentric neural compass (Taube, 1995). If the head of
the animal remains motionless and oriented in a given
direction θ , the sub-population of HD cells with pre-
ferred directions close to θ remains active, demonstrat-
ing the persistence of the HD neural activity pattern in
stationary conditions.

Although the responses of HD cells are anchored on
stable visual cues of the environment (Taube, 1998),
the intrinsic dynamics of the HD cell system seems to
rely upon the integration of self-motion inertial signals
(e.g., vestibular information). During head turns (both
in light and in darkness conditions) the ensemble ac-
tivity profile, determined by the sub-population of HD
cells active at a particular time, could vary according to
the instantaneous head angular velocity. Thus, besides
pure maintenance, the HD cell system seems to have
the additional property of integration of head velocity
signals and it provides an ongoing memory trace of the
direction of the head.

HD cells were first electrophysiologically recorded
in the rat postsubiculum (PoSC) (Ranck, 1984; Taube
et al., 1990a), and then found in numerous other
structures including the laterodorsal thalamic nucleus
(Mizumori and Williams, 1993), the dorsal striatum
(Wiener, 1993), the retrosplenial cortex (Chen et al.,
1994), the anterodorsal thalamic nucleus (ADN)
(Taube, 1995; Blair and Sharp, 1995), the lateral
mammillary nucleus (LMN) (Stackman and Taube,
1998), and the dorsal tegmental nucleus (DTN) (Sharp
et al., 2001).

Although the actual mechanisms underlying the gen-
eration of the HD signal are still unclear, anatomical
and lesion data suggest that LMN and DTN might con-
stitute an essential sub-circuit of the HD cell system
for generating and maintaining the directional signal
(Blair et al., 1998; Bassett and Taube, 2001b; Taube
and Bassett, 2003). This would yield the following as-
cending processing scheme: DTN → LMN → ADN
→ PoSC. Lesions to DTN disrupt the directional se-
lectivity in ADN (Bassett and Taube, 2001a). Bilateral
lesions of LMN abolish the HD signal in ADN (Blair
et al., 1998). The directional selectivity of PoSC cells
is seriously impaired when lesioning ADN (Goodridge
and Taube, 1997), but lesions of the PoSC leave the sig-
nal in ADN largely intact (Goodridge and Taube, 1997).
A further evidence for the above processing pathway
is provided by a series of studies that have investigated
the temporal properties of HD cells in LMN, ADN,
and PoSC. During head turns, LMN neurons tend to
anticipate the future head direction by approximately
40–75 ms (Stackman and Taube, 1998; Blair et al.,
1998), ADN cells show a smaller anticipatory time de-
lay of about 25 ms (Taube and Muller, 1998; Cho and
Sharp, 2001), and PoSC cells tend to encode the current
directional heading (Blair and Sharp, 1995). The DTN-
LMN circuit seems also well suited to account for the
additional property of the HD cell system of integrating
the head angular velocity. The DTN receives ascending
inputs from the medial vestibular nucleus, directly and
indirectly via the nucleus prepositus hypoglossi (Liu
et al., 1984; Bassett and Taube, 2001b), and both DTN
and LMN contain neurons whose activity is correlated
with the angular velocity of the head in the horizontal
plane (Bassett and Taube, 2001b).

Several investigators have proposed one-dimen-
sional continuous attractor networks to model the
HD cell system (Skaggs et al., 1995; Zhang, 1996;
Redish et al., 1996; Goodridge and Touretzky, 2000;
Xie et al., 2002; Degris et al., 2004). As in most
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continuous attractor systems, these models implement
a recurrent neural network in which cells represent-
ing similar states (i.e., neighboring orientations in the
one-dimensional directional state space) are coupled
by strong excitatory collaterals, whereas units repre-
senting distant states strongly inhibit each other. The
intrinsic dynamics of the interaction between excita-
tory and inhibitory signals generates a center-surround
attractor scheme and allows the system to settle down to
stable (self-sustained) states where sub-populations of
HD neurons with similar preferred directions are active
while others remain silent (sometimes called ‘bump’
states).

In these models, the integration of the head angu-
lar velocity is achieved by introducing an asymme-
try in the center-surround attractor dynamics, which
makes the bump of activity shift over the continuous
directional state space. To relate this asymmetric com-
ponent to head rotations, Zhang (1996) and Redish
et al. (1996) modulate the synaptic weights by means
of angular velocity signals, whereas Goodridge and
Touretzky (2000) utilize synapses with a non-linearity
that is tuned to yield a perfect integration of angular
velocity signals. Skaggs et al. (1995) hypothesize the
existence of two groups of ‘rotation cells’ that receive
vestibular inputs and fire as a function of the magni-
tude of the angular velocity. One group is responsive
for clockwise head turns, the other for counterclock-
wise turns. The two groups project asymmetrically to
the left and to the right of the HD bump of activity, re-
spectively. However, Skaggs et al. (1995) did not sim-
ulate any model system to check the feasibility of this
scenario. Blair et al. (1998) and Degris et al. (2004)
realized a neural implementation of this scenario by
proposing an attractor-integrator circuit modeling the
LMN-DTN system. Finally, Xie et al. (2002) studied
a two population network of left and right units, and
showed that with appropriate connections and linear
synapses, the network can integrate the inputs with
good accuracy in a large velocity range.

All the aforementioned models rely on recurrent ex-
citation to sustain persistent activity in HD neurons.
However, anatomical data show no evidence of re-
current excitatory collaterals in the structures of the
HD cell system that seem to give rise to the self-
sustained signal dynamics, the lateral mammillary nu-
cleus (LMN) and the dorsal tegmental nucleus (DTN)
(Allen and Hopkins, 1988, 1989). On the other hand,
reciprocal connections between LMN and DTN have
been demonstrated experimentally. Anatomical stud-

ies suggest that LMN receives ascending inhibitory
(GABAergic) afferents from DTN (Shibata, 1987;
Allen and Hopkins, 1989; Gonzalo-Ruiz et al., 1992;
Wirtshafter and Stratford, 1993) and that, in turn, LMN
sends descending excitatory efferents back to DTN
(Allen and Hopkins, 1989, 1990). Finally, electrophys-
iological data suggest that a large fraction of cells
in DTN are selective for angular velocity in either
clockwise or counterclockwise directions (Bassett and
Taube, 2001b; Sharp et al., 2001). These cells could
provide the basis for the ‘rotation cells’ postulated by
Skaggs et al. (1995).

Taken together, this anatomical and electrophysio-
logical data motivate investigations of alternative at-
tractor models in which no recurrent excitation is
present. Rubin et al. (2001) studied a model of ADN
with excitatory thalamocortical (TC) cells and in-
hibitory thalamic reticular (RE) cells with no recurrent
excitatory connections, and showed that a bump state
could be sustained thanks to a combination of post-
inhibitory rebound in TC cells, localized GABAA and
more widespread GABAB connections from RE to TC
cells. Song and Wang (2003) introduced a model with
three populations, one excitatory (‘LMN’) and two in-
hibitory (‘left DTN’ and ‘right DTN’), and showed,
using numerical simulations, that a bump state could
be stabilized in such a model with proper wiring be-
tween excitatory and inhibitory populations, in absence
of recurrent excitation.

The goal of this paper is to analyze in detail the model
introduced by Song and Wang (2003). The architecture
of the model is shown in Fig. 1. The model includes re-
ciprocal connections between LMN and DTN, whose
existence has been demonstrated experimentally. It as-
sumes the existence of two DTN sub-populations, one
selective for clockwise turns, the other selective for
counterclockwise turns. Finally, the model also as-
sumes that these two DTN networks mutually inhibit
each other. As we will see later, such connections are
not necessary for the model to operate, but they expand
greatly the performance of the system in terms of angu-
lar velocity integration. As far as we know, there is no
experimental evidence for such a functional lateraliza-
tion within the rat DTN, nor for the presence of DTN
intrastructural inhibition. However, Sharp et al. (2001)
report that DTNs in the left-and right-hemispheres ex-
hibit reciprocal inhibitory projections, and show some
preliminary electrophysiological data suggesting a ten-
dency for DTN cells to be selective for ipsiversive head
rotations.
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Figure 1. The attractor-integrator model includes a population of
excitatory directional units in the lateral mammillary nucleus (LMN)
and two networks of inhibitory neurons in the dorsal tegmental nu-
cleus (DTNl,r ). Arrows and circles indicate excitatory and inhibitory
synapses, respectively. The circuit does not contain recurrent exci-
tatory collaterals. LMN receives an external input current IE , while
DTNl,r receive modulatory external inputs II + Il,r providing the
system with the head angular velocity signal. (The reader is referred
to Appendix A for a table of all abbreviations and variables used in
this paper).

The paper is organized as follows. We first study the
simplest circuits that exhibit bistability in spite of the
absence of recurrent excitation: a model with mutually
coupled inhibitory populations, and a model with four
populations, two excitatory and two inhibitory. Then,
we develop a mathematical analysis of an attractor-
integrator model with the architecture of Fig. 1 by using
analog (firing rate) simplified neurons, in the spirit
of previous studies with simpler architectures (Ben-
Yishai et al., 1995; Hansel and Sompolinsky, 1998; Xie
et al., 2002). Our results (Sections 2 and 3) provide the
analytical insight to the two-fold problem of mainte-
nance and integration of a HD signal in a model without
recurrent excitation. In particular, they allow us to
identify the conditions on the connectivity parameters
for the emergence of a direction selective response
and for a reliable integration of head angular velocity
signals.

In Section 4 we derive a more realistic implemen-
tation of the model by means of large populations
of spiking neurons forming an attractor-integrator
network according to the architecture shown in Fig. 1.
Numerical simulations allow us to compare the
responses of the formal HD cells to those of neurons
electrophysiologically observed in LMN and DTN.
These simulations confirm the persistence and stability
properties of the system and the finding that inhibitory

projections between the two DTN populations play an
important role in determining the stability of the HD
representation. Then, we study the integration property
of the system and test it on a set of rat angular velocity
profiles. Finally, we investigate how rapidly the direc-
tional representation encoded by our attractor network
can be updated by reorienting external inputs (e.g., vi-
sual cues) and find transient latencies consistent with
those observed experimentally by Zugaro et al. (2003)
in rat HD neurons.

2. Bistable Networks Without
Recurrent Excitation

Bistability in neuronal systems is usually assumed to
arise through positive coupling between excitatory neu-
rons (recurrent excitation). Positive coupling can also
arise in absence of recurrent excitation, due to loops
involving two (or in general an even number of) in-
hibitory connections. The simplest system in which
bistability can occur is a pair of mutually inhibitory
units. Another possibility with mutual connections be-
tween excitatory and inhibitory units is a four popula-
tion network, with two excitatory and two inhibitory
populations. A feedback loop is formed through four
synapses, two of which are excitatory and two in-
hibitory. In both cases, excitatory external inputs are
required to obtain active states. The study of these
simple networks sheds light on the properties of the
more complex network models of Sections 3 and 4,
which combine features of these two simplified net-
works. The four population network is a caricature of
the LMN-DTN network with only two possible orien-
tations, with ‘iso-orientation’ projections from LMN
to DTN and ‘cross-orientation’ projections from DTN
to LMN; and the two inhibitory population network
helps to understand the effect of mutual DTN cou-
plings on the dynamics of the more complete HD cell
model.

2.1. Two Mutually Inhibitory Units with Excitatory
External Inputs

We consider two populations of inhibitory neurons mu-
tually inhibiting each other with strength L0. Both pop-
ulations receive an external excitatory input current II .
The circuit is illustrated in Fig. 2A. The firing rates
fi1 and fi2 of the two populations have a continuous
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Figure 2. (A) The simplest circuit without recurrent excitation: two mutually inhibitory units each of which receives an external excitatory input
II (black circles and arrows indicate, respectively, inhibitory and excitatory synapses). (B) Bifurcation diagrams (firing rate of populations vs
control parameter) of the mutually inhibitory network, for II = 1. In all diagrams, thin black line: rates of both populations in a stable symmetric
state (both populations at equal rates); thick black lines: rates of both populations in asymmetric states (one population at high rate, the other at
low rate); dotted line: unstable symmetric state. The dashed vertical lines indicate the boundaries of the region in which the network has three
stable states, one symmetric and two asymmetric states. Left: rates vs inhibitory coupling in the case of a threshold-linear transfer function.
Center: rates vs inhibitory coupling in the case of a quadratic/square root transfer function. Right: rates vs II in the case of a quadratic/square
root transfer function and for an inhibitory coupling L0 = 1.

leaky integrator dynamics:

τ
df i1

(t)

dt
= − fi1 (t) + φ(I (t))

= − fi1 (t) + φ
(
II − L0 fi2 (t)

)
(1)

τ
df i2

(t)

dt
= − fi2 (t) + φ(I (t))

= − fi2 (t) + φ
(
II − L0 fi1 (t)

)
(2)

where φ is the steady-state ‘current-to-rate’ neuronal
transfer function.

Threshold linear neurons have a firing rate f that
depends on the input current I through the relationship
f = φ(I ) = [I ]+, where [I ]+ = 0 for I < 0, and
[I ]+ = I for I > 0. In this case, such a network has
two types of solutions, depending on the strength of the
inhibitory coupling L0. If L0 < 1, the uniform solution
is the only stable solution. The rate of both populations
in the uniform solution is

fi1 = fi2 =
[

II

1 + L0

]
+

(3)

When L0 > 1 and II > 0, the uniform solution be-
comes unstable. There is a spontaneous symmetry

breaking and one of two possible solutions is selected
by the system, either fi1 = II and fi2 = 0, or vice
versa. This spontaneous symmetry breaking is shown
in Fig. 2B (left panel).

For non-linear response functions, symmetry break-
ing occurs for L0φ

′ > 1 where φ′ represents the gain
of the neuronal gain function at the uniform firing rate
(derivative of the f-I curve φ(I ) with respect to the input
current I , taken at the firing rate of the uniform solu-
tion). For example, if we consider a quadratic/square
root transfer function (Brunel, 2003)

φ(I ) =




0 I < 0

I 2 I ∈ [0, 1]

2
√

I − 3/4 I > 1

(4)

we obtain the bifurcation diagram shown in Fig. 2B
(center and right panels). Note that in the case of this
transfer function, the tuned state emerges continuously
from the uniform state, unlike in the case of a threshold-
linear transfer function (compare left and center panels
in Fig. 2B). The quadratic/square root transfer func-
tion is used here due to its simplicity, and because
it shares the qualitative features of the transfer func-
tion of many spiking neuron models: (i) the ‘quadratic’
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region mimics the typical shape of the f-I curve of a
spiking neuron for sub-threshold inputs in presence
of noise; (ii) a ‘square root’ behavior is typically ob-
tained for supra-threshold inputs for a wide class of
neurons, the so-called type I neurons (see discussion
in Brunel, 2003). Other continuous non-linear trans-
fer functions show the same qualitative behavior (not
shown).

2.2. Two Excitatory and Two Inhibitory Units

Let e1 and e2 denote two populations of excita-
tory neurons and let i1 and i2 be two popula-
tions of inhibitory neurons. The excitatory popula-
tion e1 activates the inhibitory population i1, while
e2 projects onto i2. The efficacy of these exci-
tatory projections is H1. The populations i1 and
i2 inhibit, respectively, the populations e2 and e1

with strength K1. Both excitatory populations e1

and e2 receive an external input current IE . The
circuit is illustrated in Fig. 3A. It can be considered
as a simplified version (which can only encode two
possible head directions) of the more complete model
of Sections 3 and 4 (in which a continuum of head
directions can be represented).

Figure 3. (A) Circuit composed of two excitatory (e1,2) and two inhibitory (i1,2) units. e1,2 receive an external excitatory current IE . (B)
Bifurcation diagrams of the excitatory-inhibitory network. Firing rates of the excitatory populations e1 and e2 are shown as a function of H1

(left), K1 (center) and IE (right). Parameters: H1 = 1 (except in left), K1 = 1 (except in center), IE = 1 (except in right). The uniform states
(thin solid line) become unstable (dotted line) above a critical value of H1 (left) and K1 (center), and at intermediate values of IE (right).
The asymmetric states (one pair of populations suppressing the other pair) are indicated by thick black lines. At some intermediate level of
IE , the system is tristable (between the dashed lines in right panel). Note the similarity with the diagrams of the mutually inhibitory network,
Fig. 2.

The firing rates of the four neural populations evolve
according to

τ
df e1

(t)

dt
= − fe1 (t) + φ

(
IE − K1 fi2 (t)

)
(5)

τ
df e2

(t)

dt
= − fe2 (t) + φ

(
IE − K1 fi1 (t)

)
(6)

τ
df i1

(t)

dt
= − fi1 (t) + φ

(
H1 fe1 (t)

)
(7)

τ
df i2

(t)

dt
= − fi2 (t) + φ

(
H1 fe2 (t)

)
(8)

For threshold-linear neurons, such a network has
again two types of solutions, depending on the strength
of the excitatory-inhibitory loop defined by K1 H1. If
K1 H1 < 1, the uniform solution is the only stable so-
lution. For IE > 0, the firing rate functions are equal to

fe1 = fe2 = IE

1 + K1 H1
(9)

fi1 = fi2 = H1 IE

1 + K1 H1
(10)

If K1 H1 > 1, the uniform solution becomes unstable.
The system settles down to one of two possible
solutions, either fe1 = IE , fi1 = H1 IE , and fe2 =
fi2 = 0, or vice versa. A bifurcation diagram showing
the firing rates as a function of either K1 or H1 would
look qualitatively as those of Fig. 2.
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In the case of non-linear response functions, sym-
metry breaking occurs for H1 K1φ

′
eφ

′
i > 1, where φ′

e,i
represents the gains of the e and i neuronal gain func-
tions at their uniform firing rate (derivative of the f-I
curve φ(I ) with respect to the input current I , taken at
the firing rate of the uniform solution). The bifurcation
diagrams (rates vs K1, H1 or IE ) are shown in Fig. 3B.

3. Ring Attractor Networks Without
Recurrent Excitation

The model presented here is a generalization of pre-
vious ring attractor networks (Ben-Yishai et al., 1995,
1997; Zhang, 1996; Redish et al., 1996; Hansel and
Sompolinsky, 1998; Goodridge and Touretzky, 2000;
Xie et al., 2002; Degris et al., 2004). All these previous
studies consider one or two population networks (either
one population with couplings that can be either excita-
tory or inhibitory, or an excitatory-inhibitory network).
Here, we investigate the three-population architecture
proposed by Song and Wang (2003): one excitatory
population (representing the LMN), and two inhibitory
populations (representing two distinct populations in
the DTN, one selective for clockwise turns, the other
selective for counterclockwise turns). In this section,
we consider a network of simplified threshold-linear
firing rate units. This allows us to obtain analytical ex-
pressions for the firing rate profiles of the network in
stationary states as well as in traveling states, and to
explore systematically the parameter space. Numeri-
cal simulations of a network of spiking neurons with a
similar architecture are presented in Section 4.

The network architecture is shown in Fig. 1. The
network is composed of a population of excitatory di-
rectional units with evenly distributed preferred direc-
tions (‘LMN’ or ‘e’ network), and two populations of

τ ṡe(θ, t) = −se(θ, t) + fe(θ, t) (11)

τ ṡl(θ, t) = −sl(θ, t) + fl(θ, t) (12)

τ ṡr (θ, t) = −sr (θ, t) + fr (θ, t) (13)

fe(θ, t) =
[

IE (t) −
∫ π

−π

K (θ − θ ′ − π + α)sl(θ ′, t) + K (θ − θ ′ − π − α)sr (θ ′, t)

4π
dθ ′

]
+

(14)

fl(θ, t) =
[

II + Il(t) +
∫ π

−π

H (θ − θ ′)se(θ ′, t) + L0sr (θ ′, t)

2π
dθ ′

]
+

(15)

fr (θ, t) =
[

II + Ir (t) +
∫ π

−π

H (θ − θ ′)se(θ ′, t) − L0sl(θ ′, t)

2π
dθ ′

]
+

(16)

inhibitory directional neurons with evenly distributed
preferred directions (‘left DTN’ or ‘l’, and ‘right DTN’
or ‘r ’). All excitatory neurons receive an external input
current IE as well as inhibitory afferents from both
inhibitory networks. The projection from a neuron in
left DTN with preferred direction θ ′ to a neuron in
LMN with label θ has a synaptic efficacy defined by
K (θ − θ ′ − π + α), where α is an angular offset, and
K (θ ) = K0 + K1 cos(θ ), where K1 ≤ K0. The π term
indicates that the l → e projections generate cross-
orientation inhibition. Thus, a left DTN neuron with
label θ ′ inhibits maximally a LMN neuron with label θ

only when θ −θ ′ = π −α. The connection from a right
DTN unit with label θ ′ to a LMN neuron with label θ is
defined by K (θ − θ ′ −π −α). That is, the unit inhibits
mostly the neuron having a preferred orientation π +α

away from its preferred direction.
All inhibitory neurons receive an external input cur-

rent II + Il and II + Ir , respectively, where II repre-
sents a background current to both populations, while
Il and Ir represent angular velocity-dependent input
currents. In addition, both networks receive excita-
tory afferents from the LMN population according
to an iso-orientation connection scheme. The projec-
tion from a LMN neuron with preferred direction θ

to a DTN neuron with label θ ′ is H (θ − θ ′) with
H (θ ) = H0 + H1 cos(θ ) and H1 ≤ H0. Finally, left
and right DTNs have mutual inhibitory connections
with fixed strength L0. All neurons are analog units de-
scribed by an instantaneous firing rate fe,l,r (θ, t) and a
synaptic activation variable se,l,r (θ, t), where θ is the
preferred orientation of the neuron and t is time, and
e, l, r is the population index (e: LMN, l: left DTN, r :
right DTN). The dynamics of the synaptic activation
variables and firing rates of the system is described by
the following set of equations:
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Hence, the synaptic activation variables are obtained
from the firing rates by a simple temporal low-pass fil-
tering, with synaptic time constant τ (Eqs. (11)–(13)),
which is the only time constant in this model (for sim-
plicity, we take excitatory and inhibitory time constants
to be identical here). The firing rates are in turn given
by a threshold-linear function of the synaptic inputs,
which are given by the various synaptic variables con-
volved by the relevant connection profiles (Eqs. (14)–
(16)).

Following previous studies (Ben-Yishai et al., 1995,
1997; Hansel and Sompolinsky, 1998; Xie et al., 2002),
we define the variables sA0(t) and sA1(t) as

sA0(t) =
∫ π

−π

sA(θ, t)dθ

2π
(17)

sA1(t) =
∫ π

−π

sA(θ, t) cos(θ − ψA(t))dθ

2π
(18)

0 =
∫ π

−π

sA(θ, t) sin(θ − ψA(t))dθ

2π
(19)

where the index A = e, l, r defines the neural popula-
tion corresponding to the variable; sA0(t) is the average
synaptic activation variable of population A; sA1(t) is
the first Fourier component of the activation variable;
and ψA(t) is the center of mass of the activation variable
(location of the peak in the case of a bump solution).
Using these variables, the integrals in Eqs. (14)–(16)
can be performed explicitly, and the firing rates for the
populations e, l, and r become:

fe(θ, t) =
[

IE (t) − K0

2
[sl0(t) + sr0(t)]

+ K1

2
[cos(θ + α − ψl(t))sl1(t)+ cos(θ

−α − ψr (t))sr1(t)]

]
+

(20)

fl(θ, t) = [II + Il(t) + H0se0(t) − L0sr0(t)

+ H1 cos(θ − ψe(t))se1(t)]+ (21)

fr (θ, t) = [II + Ir (t) + H0se0(t) − L0sl0(t)

+ H1 cos(θ − ψe(t))se1(t)]+ (22)

From Eqs. (11)–(13), the dynamics of the variables
sA0, sA1 and ψA are given by

τ ṡA0(t) = −sA0(t) +
∫ π

−π

f A(θ, t)
dθ

2π
(23)

τ ṡA1(t) = −sA1(t) +
∫ π

−π

f A(θ, t)
cos θdθ

2π
(24)

τ ψ̇A(t)sA1(t) =
∫ π

−π

f A(θ, t)
sin θdθ

2π
(25)

We rewrite the equations for the firing rate profiles as

f A(θ, t) = [IA0(t) + IA1(t) cos(θ − φA(t))]+
A = e, l, r (26)

where IA0(t) is the synaptic input averaged over all
neurons in population A at time t , IA1(t) is the first
Fourier component of the synaptic input, and φA(t) is
the instantaneous location of the bump, i.e. neurons
with preferred direction φA(t) have the peak firing rates
of population A at time t . The parameters IA0(t), IA1(t)
and φA(t) are given by the system of equations

Ie0(t) = IE (t) − K0

2
(sl0(t) + sr0(t)) (27)

Il0(t) = II + Il(t) + H0se0(t) − L0sr0(t) (28)

Ir0(t) = II + Ir (t) + H0se0(t) − L0sl0(t) (29)

Ie1(t) = K1

2
(cos(ψl(t) − α − φe(t))sl1

+ cos(ψr (t) + α − φe(t))sr1(t)) (30)

0 = sin(ψl(t) − α − φe(t))sl1(t)

+ sin(ψr (t) + α − φe(t))sr1(t) (31)

Il1(t) = H1se1(t) (32)

Ir1(t) = H1se1(t) (33)

φl(t) = ψe(t) (34)

φr (t) = ψe(t) (35)

To calculate the integrals in Eqs. (23)–(25), we de-
fine θA(t) = arccos(−IA0(t)/IA1(t)) as the width of the
bump of the firing rate profile ( f A(θ, t) = 0 for θ out-
side of the range [φA(t) − θA(t), φA(t) + θA(t)], while
f A(θ, t) is positive within that range). The integrals
yield ∫ θA

−θA

dθ

2π
(IA0 + IA1 cos(θ )) = IA1 f0(θA) (36)

∫ θA

−θA

dθ

2π
(IA0 + IA1 cos(θ )) cos θ = IA1 f1(θA) (37)

where f0 and f1 are given by

f0(x) = 1

π
(sin x − x cos x) (38)

f1(x) = 1

2π

(
x − sin 2x

2

)
(39)
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Finally, the equations governing the dynamical vari-
ables sA0(t), sA1(t) and ψA(t) are

τ ṡA0(t) = −sA0(t) + IA1(t) f0(θA(t)) (40)

τ ṡA1(t) = −sA1(t)

+IA1(t) f1(θA(t)) cos(φA(t) − ψA(t))

(41)

τ ψ̇A(t)sA1(t) = IA1(t) f1(θA(t)) sin(φA(t) − ψA(t))

(42)

where IA1(t), θA(t) and φA(t) are given by Eqs. (27)–
(35). Equations (40)–(42) completely describe the
dynamics of the system for any time-dependent
input.

3.1. Stationary Solutions

This section considers a stationary situation where Il =
Ir = 0, that is the two inhibitory networks receive the
same external signal II . We seek a solution to Eqs. (40)–
(42) with ψe = ψl = ψr = 0, sl0 = sr0 ≡ si0, sl1 =
sr1 ≡ si1, Il0 = Ir0 ≡ Ii0, Il1 = Ir1 ≡ Ii1, θl =
θr ≡ θi . The synaptic activation variables and the firing
rate variables are then

sA0 = IA1 f0(θA), A = e, i (43)

sA1 = IA1 f1(θA), A = e, i (44)

θA = arccos

(
− IA0

IA1

)
, A = e, i (45)

Ie0 = IE − K0si0 (46)

Ii0 = II + H0se0 − L0si0 (47)

Ie1 = K1 cos αsi1 (48)

Ii1 = H1se1 (49)

These equations define the firing rate profile of sta-
tionary states as a function of seven parameters:
IE , II , K0, K1 cos α, L0, H0 and H1.

3.1.1. Uniform State. The spatially uniform state has
sA1 = 0 for A = e, l, r . The firing rates of the three
populations are given by

se0 = [IE − K0si0]+ (50)

sl0 = sr0 ≡ si0 = [II + H0se0]+
1 + L0

(51)

In particular, both excitatory and inhibitory firing rates
are non-zero for IE > K0 II /(1 + L0).

3.1.2. Stability of Uniform State. To study the sta-
bility of the uniform state, one must compute the
time evolution of small perturbations around it. Small
perturbations around the uniform state are denoted
by δsA0, δsA1. We rewrite �si0 = (δsl0 + δsr0)/2,
	si0 = (δsl0 − δsr0)/2, �si1 = (δsl1 + δsr1)/2,
	si1 = (δsl1 − δsr1)/2. From Eqs. (40)–(42), the evo-
lution equations for these small perturbations can be
obtained:

τ
dδse0

dt
= −δse0 − K0�si0 (52)

τ
d

∑
si0

dt
= −(1 + L0)σ si0 + H0δse0 (53)

τ
d	si0

dt
= −(1 − L0)	si0 (54)

τ
dδse1

dt
= −δse1 + K1 cos(α)

2
�si1 (55)

τ
d�si1

dt
= −�si1 + H1

2
δse1 (56)

d	si1

dt
= −	si1 (57)

The 6 eigenvalues of the corresponding linear stability
matrix can be computed easily:

• The two eigenvalues associated with Eqs. (52) and
(53) always have negative real parts.

• From Eq. (54), we obtain that for L0 > 1, initial
small differences in activity in left and right pop-
ulations grow exponentially in time; this is the in-
stability studied in Section 2.1. Hence, the left-right
inhibitory network becomes bistable.

• From Eqs. (55) and (56), we obtain that for
H1 K1 cos α > 4, the uniform state becomes unsta-
ble, and the system converges to a tuned state.

Hence, two types of instabilities of the uniform state
may occur. For L0 > 1, the network becomes bistable
(due to mutual inhibition between left and right net-
works). This instability of the uniform state is simi-
lar to the instability of the two population network of
Section 2.1. For H1 K1 cos α > 4, the network becomes
tuned, and has a continuum of attractor states, param-
eterized by the angular location of the bump. This in-
stability of the uniform state is the equivalent of the in-
stability of the four population network of Section 2.2.
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3.1.3. The Stationary Tuned State. The firing rate
profiles in the tuned state beyond the bifurcation at
H1 K1 cos α > 4 can be obtained by solving numer-
ically Eqs. (43)–(49). For example, Fig. 4 shows the
mean and peak firing rates in all populations as one
of the parameters is varied. In the particular example
shown in Fig. 4, L0 = 0.5, H0 = H1 = 1.5, K0 =
K1 = K , α = π/3, II = 0, and IE = 10(1 + K ).

Figure 4. Characteristics of the tuned state vs connection strength
K . Top: width of the tuned state as a function of K . Bottom: peak
and background firing rates as a function of K (solid line: excitatory
network; dashed line: inhibitory networks; thin lines: uniform state;
thick lines: tuned state). For K < 16/3 (marked by the thin dashed
line), the uniform state is the only stable stationary state. Above
K = 16/3, the tuned state becomes the only stable stationary state.
Note that the tuning widths decrease while K is increasing, while
the peak firing rates increase with increasing K . Other parameters:
L0 = 0.5, H0 = H1 = 1.5, K0 = K1 = K , α = π/3, II = 0, and
IE = 10(1 + K ).

The relationship between IE and K ensures that the
mean firing rates in the uniform state remain constant
as K is varied. Note that the bottom panel of Fig. 4
is the analog of Fig. 3B. The basic mechanism for
generating selective attractor states is essentially simi-
lar in the two networks: a combination of connections
from excitatory to inhibitory neurons with the same
preferred direction, and connections from inhibitory
to excitatory neurons with opposite preferred direc-
tions. Note also that the opposite connectivity scheme
(‘cross-orientation’ from excitatory to inhibitory neu-
rons, ‘iso-orientation’ from inhibitory to excitatory
neurons) would yield qualitatively the same results.
The difference between the network of Section 2.2 and
the network studied here is that beyond the bifurca-
tion, the first has only two attractors, while the second
has a continuum of attractors, parameterized by the
angle θ .

Conversely, given the firing rate profiles, one can
deduce the connectivity parameters H1 and K1 cos α

through Eqs. (48) and (49), and two relationships be-
tween the remaining five parameters. For example, if
we consider a firing profile of width θe = 80◦ and a
peak firing rate Ie0 + Ie1 = 50 Hz for the excitatory
network e, and we take θi = 110◦ and a peak firing
rate Ii0 + Ii1 = 30 Hz for the inhibitory networks l
and r , we obtain H1 = 1.89, K1 cos α = 7.61. A set of
parameters for which the given firing rate profiles are
stable is then H0 = 1.89, IE = 111, K1 = 10.7, L0 =
1.71, II = 0.

3.1.4. Stability of the Stationary Tuned State. Lin-
ear stability analysis of the stationary tuned state can
be performed along the same lines as the analysis of
the uniform state. The analysis is more complicated
because the eigenvalues are no longer obtained by so-
lutions of linear or quadratic equations. They can be
obtained by finding numerically the eigenvalues of the
stability matrix associated with Eqs. (40)–(42). In par-
ticular, we find that, again, a large value of L0 leads to
a destabilization of the stationary state: one of the two
inhibitory populations (left or right) becomes active at
high rates and suppresses the activity of the other. As a
consequence of the offset in the connections, the bumps
in the three populations start to move, even though in-
puts to left and right populations are equal. Hence, a
traveling bump is obtained. The condition for the sta-
tionary bump to start moving is L0 > π/θi (see below),
to be compared with the condition L0 > 1 for the sta-
tionary state.
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3.2. Traveling Bump Solutions

When the external inputs to the inhibitory networks l
and r differ, i.e. Il 	= Ir , the stationary attractor state
becomes unstable and the tuned state starts moving
around the ring. For constant external inputs, the sys-
tem moves eventually at a constant speed according to
ψA = vt/τ , where v is the angular velocity in units of
τ . The equations governing the system are

sA0 = IA1 f0(θA), A = e, l, r (58)

sA1 = IA1 f1(θA)
1√

1 + v2
, A = e, l, r (59)

θA = arccos

(
− IA0

IA1

)
, A = e, l, r (60)

0 = (sin α − v cos α)sr1 − (sin α + v cos α)sl1

(61)

Ie0 = I − K0

2
(sl0 + sr0) (62)

Il0 = Il + H0se0 − L0sr0 (63)

Ir0 = Ir + H0se0 − L0sl0 (64)

Ie1 = K1

2
√

1 + v2
[(cos α − v sin α)sl1

+ (cos α + v sin α)sr1] (65)

IA1 = H1se1, A = l, r (66)

These equations provide the angular velocity v of the
traveling bump as a function of the difference between
the external inputs Il and Ir . In particular, the speed is
given by

v = 1

ρ
(
√

1 + ρ2 − 1) (67)

where

ρ = tan α|sl1 − sr1|
sl1 + sr1

(68)

= tan α| f1(θl) − f1(θr )|
f1(θl) + f1(θr )

(69)

For a small difference δ I ≡ Il − Ir we obtain, for
L0 < π/θi :

v = tan αθi

4 f1(θi )H1 Ie1 f1(θe)(π − L0θi )
δ I (70)

For L0 > π/θi , any δ I leads to a finite speed. The
stationary bump is unstable even for equal inputs to
left and right DTNs.

When δ I goes beyond a critical value, one of the two
inhibitory populations, e.g. l if Il 
 Ir , becomes silent.
At this point, we obtain from Eq. (68) that the velocity
becomes independent from the difference between the
two external inputs: ρ = tan α, and consequently

v = 1 − cos α

sin α
(71)

is the saturation velocity of the network. Equation (71)
shows that the saturation velocity depends only on the
offset α in the connections from the inhibitory to the
excitatory population. It increases with α, as α/2 for α

small, up to 1 when α tends towards π/2. For instance,
for time constants τ of the order of 10 ms, this means
a saturation velocity that can reach up to 5000◦/s. This
velocity is much larger than typical angular velocities
experienced by a rat in natural conditions. Figure 5
shows the saturation velocity as a function of α.

The velocity of the traveling bump is shown as a
function of the differential input δ I for different values
of α, L0 and K in Fig. 6. Note that the curves (veloc-
ity vs differential input) can be far from linear in the
sub-saturation range. In particular, for low values of
L0 (L0 = 0.5 in Fig. 6), the curves are linear only in a
very small range of inputs. On the other hand, for inter-
mediate values of L0, the curves can be linear in a large
range (see for example the curves, corresponding to
α = 75 and α = 85◦ respectively in the panel L0 = 1).
The range where linearity holds is optimal at intermedi-
ate values of α, (α about 75◦ for L0 = 1, K = 1.5 Kc,
where Kc = 4/(H1 cos α) is the value at which the
bump state appears). Finally, increasing L0 too much

Figure 5. Saturation angular velocity as a function of the offset α.



216 Boucheny, Brunel and Arleo

Figure 6. Angular velocity of the bump vs differential input δ I for different values of α, L0, and K . Each panel displays four sets of curves
corresponding to four values of α (from thickest line to thinnest line, α = 85◦, 75◦, 60◦, 30◦; solid curves, velocity vs δ I as obtained from solving
Eqs. (58)–(66) numerically; dashed curves, slope at the origin, as obtained from Eq. (70)). Top panels: K0 = K1 = K = 6H1/cos(α), L0 is
varied (value indicated on top of each panel). Bottom panels: L0 = 1, K0 = K1 = K is varied (Kc = 4H1/cos(α) is the critical value of the
coupling beyond which the tuned states appear). Other parameters: H0 = H1 = 1 + L0, II = 0, and IE = 10(1 + K ).

causes a loss of stability of the stationary bump state.
Hence, the bump moves at a finite speed even if there is
no differential input to the DTN networks. Finally, the
range of linearity tends to increase as the networks be-
come more sharply tuned, as shown by the bottom pan-
els of Fig. 6 where K is increased from 1.1 Kc to 2.5 Kc.

4. An Attractor-Integrator Network
of Spiking Neurons

This section presents simulations of a network of
spiking neurons with the architecture of Fig. 1. The
model simulated in this section differs in many re-
spects from the one of Section 3: neurons are spiking
leaky integrate-and-fire neurons rather than analog fir-
ing rate units; footprints have a Gaussian shape rather
than cosine; synaptic currents mimic the time courses

of AMPA, NMDA, and GABA receptors. Nonetheless,
these simulations allow us to show that the main results
obtained in Section 3 hold qualitatively in this more re-
alistic network.

4.1. Methods

4.1.1. Model Architecture. The architecture of the
attractor-integrator network is as defined in Section 3
and shown in Fig. 1. The LMN network is implemented
as a population of NE = 1000 excitatory directional
neurons, and DTNl,r are two networks of NI = 1000
inhibitory directional units. The preferred directions
θe,l,r are evenly distributed over all possible directions.

All LMN neurons receive an external excitatory
input IE inducing a mean background activity of
80 Hz. LMN receives also inhibitory afferents from
DTNl and DTNr . The projections from cells in
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DTNl,r with preferred directions θl,r to a cell in LMN
with label θe have a weight K (θe − θl,r − π ± α)
with a Gaussian profile as a function of the dis-
tance between θe and θl,r , where the constant
α = 50◦ indicates an angular offset. For instance,
the strength of the projection l → e is proportional
to

Kel(θe − θl) = K1 exp
( − (θe − θl − π + α)2/2σ 2

I

)
(72)

where K1 = 1.1 and σI = 30◦ define, respectively,
the amplitude and the width of the synaptic weight
function. Thus, a unit in DTNl with preferred direction
θl inhibits mostly the neuron in LMN with preferred
direction θe = θl + π − α. Conversely, a cell in
DTNr with label θr sends the strongest inhibitory
signal to the neuron in LMN with preferred direction
θe = θr + π + α.

The networks DTNl,r receive afferent excitation
from LMN by means of iso-directional projections.
The synaptic efficacy of the projection from a neuron
in LMN with label θe to a neuron in DTNl,r is given
by H (θe − θl,r ), where H is a gaussian weight function
centered at θl,r , with amplitude H1 = 0.3 and width
σE = 80◦. As described in the next section, the exci-
tatory connections from LMN to DTN, H (θe − θl,r ),
are mediated by AMPA and NMDA receptors. Note
that the Gaussian kernels that define how LMN and
DTN networks are wired (Eq. (72)) allow us to ob-
tain Gaussian shaped tuning curves which are close to
those observed in rat HD cells (see simulation results
in Section 4.2.1).

The two populations DTNl,r are also fully intercon-
nected by means of reciprocal inhibitory projections of
strength L0 = 0.02. Finally, each unit in DTNl,r re-
ceives an external excitatory input current II + Il,r (vh),
where II is a background input, while Il,r (vh) is pro-
portional to the amplitude of the head angular veloc-
ity vh(t). In particular, the input current Ir (vh) signals
clockwise head rotations and is taken as Ir ∝ |vh | for
vh < 0, Ir = 0 otherwise. On the other hand, Il ∝ |vh |
for vh > 0, Il = 0 otherwise, signals counterclockwise
head turns.

4.1.2. Neuron and Synapse Models. The basic com-
ponents of the model are: (i) leaky integrate-and-fire
spiking neurons, (ii) synapses mediated by AMPA and
NMDA receptors (for the excitatory synapses) and by
GABA receptors (for the inhibitory synapses). The de-

scription of the dynamics of the neurons and of the
synaptic transmission is similar to Brunel and Wang
(2001) and can be considered as a generalization of
Eqs. (11)–(16) for spiking units.

Let Vleak, Vthreshold, and Vreset denote the resting mem-
brane potential, the firing threshold, and the reset po-
tential of a neuron, respectively. Let I (t) be the total
synaptic drive received by a cell from other units. The
dynamics of the membrane potential V (t) is given by

C · dV(t)

dt
= −g · (V (t) − Vleak) − I (t) (73)

where C and g are, respectively, the membrane capaci-
tance and leak conductance (τ = C/g is the membrane
time constant). We take Vleak = −70 mV, Vthreshold =
−50 mV, and Vreset = −55 mV for all neurons of the
model. For LMN units the membrane capacitance Ce

is 0.5 nF, and the conductance ge is 25 nS. Thus, the
membrane time constant is τe = Ce/ge = 20 ms.
For DTNl,r units, Cl,r = 0.2 nF, gl,r = 20 nS, and
τl,r = 10 ms. Whenever the membrane potential V (t)
reaches the threshold Vthreshold the neuron emits one
spike. Then, its membrane potential is reset to Vreset

and the dynamics of V (t) is frozen during a refractory
period tref. We take tref = 2 ms for LMN units and
tref = 1 ms for DTNl,r units.

The total synaptic input to a LMN neuron is

I (t) = IE + IGABA(t) (74)

whereas for a DTN neuron it is given by

I (t) = II + Il,r (t)+IAMPA(t) + INMDA(t) + IGABA(t)

(75)

The inhibitory synaptic input IGABA(t) is defined as

IGABA(t) = gGABA · (V (t) − VI ) ·
nGABA∑

j=0

sGABA
j (t) (76)

where gGABA = 1.25 nS, VI = −70 mV, and nGABA

is the number of GABAergic afferents (2NI for LMN
cells, NI for DTN cells). The term sGABA

j (t) is a gat-
ing variable (fraction of open channels) of the j th
GABAergic synapse, whose dynamics is defined by
Eq. (79).

The AMPA-mediated contribution to the total synap-
tic input is given by

IAMPA(t) = gAMPA · (V (t) − VE ) ·
nAMPA∑

j=0

sAMPA
j (t)

(77)
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where gAMPA = 0.016 nS, VE = 0 mV, and sAMPA
j (t)

is the gating variable.
The synaptic drive due to the NMDA receptors is

INMDA(t) = gNMDA · (V (t) − VE )

1 + [Mg2+] exp(−0.062V (t))/3.57

·
nNMDA∑

j=0

sNMDA
j (t) (78)

where gNMDA = 0.258 nS, sNMDA
j (t) is the gating vari-

able, and the voltage dependence of the conductance
is taken from Jahr and Stevens (1990), assuming an
extracellular concentration of magnesium [Mg2+] =
1 mM.

The gating variables s j (t) are defined according to
the following equation

ds j (t)

dt
= − s j (t)

τdecay
+

∑
k

δ
(
t − t k

j

) · w j (79)

where the decay time constant τdecay is 5 ms for GABA
receptors, 2 ms for AMPA receptors, and 100 ms for
NMDA receptors. The term

∑
k δ(t − t k

j ) · w j is a
weighted sum over the spikes emitted by the presynap-
tic neuron j , modeled as delta functions. The weight
w j is equal to Ke,l(θe − θl) for the inhibitory projec-
tions from DTN to LMN, it is equal to L0 for the re-
ciprocal DTN inhibitory connections, and it is equal to
H (θe − θl,r ) for the excitatory projections from LMN
to DTN.

4.1.3. External Inputs. Each neuron receives extrin-
sic background noise simulating external spontaneous
activity (corresponding to IE for LMN units and to II

for DTN). This noise consists of Poisson spike trains
transmitted through AMPA synaptic receptors with
conductances gAMPA

E = 2.08 nS and gAMPA
I = 1.62 nS.

The frequency of the spike train is such that, in the
absence of recurrent inputs, DTN neurons are below
threshold for firing, whereas LMN neurons fire, in av-
erage, at about 80 Hz. This background LMN activity,
along with other free parameters of the model, was set
to obtain a mean peak firing rate of LMN HD cells
of about 60 Hz in the presence of recurrent inhibitory
inputs (see simulation results in Section 4.2.1).

4.1.4. Choice of Parameters. Neuronal and synaptic
parameters have been taken to be similar to previous
modeling studies (e.g., Brunel and Wang, 2001) and

are consistent with corresponding experimental mea-
surements. On the other hand, the parameters defining
the architecture (synaptic footprints, external inputs)
are not constrained by current experimental data. The
values of these parameters were set such that the tuning
curves in both DTN and LMN are consistent with ex-
perimental data. The values of the offset α and the mu-
tual inhibitory projections L0 can be set to obtain a good
performance of the model in terms of integration of an-
gular velocity signals (see below). The balance between
NMDA and AMPA conductances was set in order to get
stable asynchronous activity. When the post-synaptic
membrane potential is at the resting level, the result-
ing ratio between the NMDA and AMPA contribution
to a single excitatory post-synaptic potential (EPSP) is
about 0.5 in terms of the peak of the EPSP, and about
20 in terms of the integral of the EPSP over time.

4.1.5. Population Vector Coding. In the model, the
ongoing animal’s heading is encoded by means of a
bell-shaped activity profile distributed over the LMN
HD cell population. In order to reconstruct the current
head direction θ (t) in bins [t, t + 	t], a population
vector scheme (Georgopoulos et al., 1986) is employed
to decode the ensemble HD cell activity:

θ̄ (t) = arctan

( ∑NE
e=1 sin(θe)ne(t, t + 	t)∑NE
e=1 cos(θe)ne(t, t + 	t)

)
(80)

where θe is the preferred direction of unit e, and the
function ne(t, t + 	t) is equal to 1 if the neuron e fires
in the interval [t, t + 	t], 0 otherwise.

4.2. Simulation Results

4.2.1. Stationary Attractor State Regime. In this sec-
tion we take Il = Ir = 0 to simulate the situation in
which the head of the animal remains still (zero head
angular velocity) over time. Therefore, the two net-
works DTNl,r do not receive any differential modula-
tory signal and the dynamics of the LMN-DTN system
depends upon the intrinsic excitatory-inhibitory loop.

4.2.1.1. Persistence and Stability of the HD Signal.
We first checked that the tuned state emerges from ran-
dom initial configurations for the parameter set given in
Section 4.1. For this parameter set, the uniform state is
unstable and, after a transient period of about 200 ms, a
tuned attractor state emerges: a sub-group of LMN units
with similar preferred directions discharge tonically,
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whereas the others exhibit a very low baseline fre-
quency. Such a self-sustained attractor state provides
a stable directional coding over a scale of seconds. To
assess the stability of the self-sustained bump of activ-
ity we run a series of n simulations, where in each trial
1 ≤ i ≤ n we measure the average center of mass of
the activity profile θ̄i and the standard deviation σi of
the temporal fluctuations around θ̄i , in the interval of
15 s duration. The mean standard deviation, calculated
over n = 40 trials, is σ = 19.1◦.

For the ‘standard’ set of parameters, the tuning curve
of LMN units has a mean peak firing rate of 60–65
spikes/s and a directional firing range of about 180◦

(Fig. 7A). DTN units have a mean peak firing rate of
about 25 spikes/s and a directional firing range of about
250◦ (Fig. 7B). These values are consistent with those

Figure 7. Tuning curves of the formal HD cells in LMN (A) and
DTN (B). The mean peak spike frequency is about 60–65 spikes/s for
LMN units and 25 spikes/s for DTN cells. The width of the gaussian
activity profile is 180◦ for LMN and 250◦ for DTN.

observed experimentally when recording HD cells in
the rat LMN and DTN (Taube, 1998; Bassett and Taube,
2001b).

One of the main predictions of the analysis,
Eqs. (43)–(49), is that a tuned state emerges when the
parameter H1 (the maximum weight of the excitatory
projections from LMN to DTN) and/or the parame-
ter K1 (the maximum weight of the inhibitory projec-
tions from DTN to LMN) are strong enough. In the
threshold-linear network, the condition for a tuned state
to emerge is given by H1 K1cosα > 4, where α is the
angular offset of the connections from DTN to LMN.
To check that a qualitatively similar condition holds
in the network of integrate-and-fire neurons, we per-
formed a series of simulations keeping the angular off-
set α fixed and multiplying both parameters K1 and
H1 of the ‘standard’ set of parameters by a single pa-
rameter 0 ≤ m ≤ 2. For each m, we let the network
evolve during 1s. Consistent with the analytical result,
we found that there exists a threshold value m ≈ 0.6
above which a gaussian-shaped attractor state emerges
from a uniform initial condition.

4.2.1.2. Influence of the Mutual Inhibitory Projections
of the two DTN Networks on the Stability of the Head
Direction Signal. We studied the stability of the tuned
state as a function of the strength L0 between the two
inhibitory populations DTNl,r . In our ‘standard’ set of
parameters, Section 4.1.1, L0 = 0.02. Here L0 is varied
in the range [0.03, 0.15]. For each value L0 we let the
network evolve during 5 s. Then we compute both the
mean angular velocity v of the bump of activity in LMN
and the variance around v over the 5 s period.

Figure 8A shows the values of the mean angular ve-
locity v (solid curve) and its variance (dashed curve)
as a function of L0, averaged over n = 5 trials. Inter-
estingly, the strength of the mutual inhibition between
the two DTN networks plays an important role in de-
termining the stability of the tuned attractor state. For
L0 < 0.06, the network exhibits an equilibrium regime
in which the bump of activity remains stable over time
(small angular speed and small variance over 5 s). For
L0 > 0.06, the HD attractor state becomes unstable and
enters a transitory regime showing an irregular behav-
ior (the angular speed increases and the variance over
5 s becomes very large). For L0 > 0.07, the network
dynamics is characterized by a new regime in which
the tuned state moves around the ring attractor with
a constant angular velocity, and the variance is again
very small.
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Figure 8. Stability of the tuned state as a function of the strength L0 of the mutual inhibitory connections between the two DTNs. (A) For
each value 0.03 ≤ L0 ≤ 0.15 we measure the angular velocity v (solid curve) of the bump of activity in LMN and the variance around v over a
5 s period (dashed curve). For L0 < 0.06, the tuned attractor state remains stable over time (angular speed v close to zero). Around L0 > 0.06,
the stationary bump becomes unstable, and the tuned state starts moving around the ring. Close to the bifurcation, there are large fluctuations
of the angular velocity: the bump moves in a very irregular fashion (v increases and the variance is very large). For L0 > 0.07 the tuned state
moves around the ring with a constant angular velocity v, with small fluctuations around v. (B) Encoded head direction θ̄ (t) over a 5 s trial for
three particular values of L0. The curves represent the center of mass of the ensemble LMN activity computed according to Eq. (80). Left: for
L0 = 0.03 the bump of activity remains stable over time. Center: for L0 = 0.062 the attractor state exhibits a random angular velocity profile.
Right: for L0 = 0.09 the bump moves at constant angular velocity.

Figure 8B shows three samples of network dynam-
ics given three specific values of the inhibitory cou-
pling L0. Each diagram displays the center of mass
of the ensemble LMN activity (Eq. (80)) over time.
As previously mentioned, with our set of parameters
about 200 ms are necessary for a tuned attractor state
to emerge. For L0 = 0.03 (left panel), a balance be-
tween the two DTNl,r occurs and the bump of activ-
ity remains stable (small mean angular velocity v and
small variance around v). For L0 = 0.09 (right panel),

one of the two DTNs dominates over the other and the
tuned state travels around the ring at constant velocity
(small variance). For L0 = 0.062 (central diagram),
the stochastic nature of the external excitatory drive
(Poisson noise, Section 4.1.2) makes the two DTNl,r

dominate each other alternately. This results in abrupt
random changes, in both amplitude and sign, of the
bump angular velocity, and yields a large value of the
variance (see the peak in the variance vs L0 curve in
Fig. 8A).



Continuous Attractor Network Model Without Recurrent Excitation 221

4.2.2. Integration of the Head Angular Velocity. For
non-zero head angular velocity, the two DTNl,r net-
works receive a differential external modulation, i.e.
Il 	= Ir . This generates an asymmetry within the LMN-
DTN coupling and yields a stronger inhibition at one
side of the LMN bump of activity. As a consequence,
the ‘bump’ state becomes unstable and starts moving.

4.2.2.1. Response of the System to an External Constant
Angular Velocity Signal. Figure 9 (circle data points)
shows the response of the system to a set of constant
head angular velocities corresponding to counterclock-
wise rotations, i.e. Il > 0 and Ir = 0. The continuous
angular velocity space is discretized by taking bins of
20◦/s. Each angular velocity is applied to the HD cell
system for a period of 4 s, and the mean angular ve-
locity of the bump state induced by the external input
Il is measured. The figure, obtained by averaging over
n = 5 experiments, shows that the system integrates
angular velocities within the range 0 < vh < 400◦/s
properly. Above 400◦/s the response of the system be-
comes non-linear and, as predicted by the analytical
model in Section 3.2, for Il 
 Ir a saturation of the
bump angular velocity occurs. The saturation velocity

Figure 9. For non-stationary regimes, e.g. Il > 0 and Ir = 0, the
tuned state shifts around the ring with a speed proportional to the
angular velocity encoded by the differential input δ I (t), e.g. δ I (t) =
Il (t)− Ir (t). The two sets of symbols show the angular velocity of the
tuned state (averaged over 4 s) as a function of constant head angular
velocity, for two values of the angular offset in the projections from
DTNl,r to LMN (circles: α = 50◦, saturation occurs v at ≈520◦/s;
stars: α = 65◦, the saturation velocity increases to v ≈ 780◦/s).

is about 520◦/s. Note that this value is of the same order
of magnitude as the analytical estimate of Eq. (71), tak-
ing as τ the longest time constant of the system, which
is that of NMDA receptors of about 100 ms.

The analysis of the previous section predicts that the
saturation velocity depends only on the angular offset
α in the projections from DTNl,r to LMN (Eq. (71)).
In our standard set of parameters, α = 50◦. We run
another series of simulations to assess the response of
the system to a set of constant angular velocities when
taking a larger angular offset α′ = 65◦. The star data
points in Fig. 9 show the results averaged over n =
5 trials. Consistent with the analytical prediction, the
system can integrate angular velocities within a larger
velocity range [0, 700◦/s] and the saturation velocity is
about 780◦/s.

4.2.2.2. Tracking a Rat Angular Velocity Profile. To
test the integration property of the system on actual
recorded data, we apply a set of n = 35 rat head an-
gular velocity profiles during a period of 120 s. These
angular velocity profiles were recorded by sampling
at 60 Hz the heading of four Long-Evans rats freely
moving on a small circular platform 20 cm in di-
ameter (Arleo, Zugaro, Déjean, Wiener, unpublished
observations). Figure 10 shows one example of the
heading θ̄ (t) (gray line) encoded by the LMN-DTN
attractor-integrator when tracking the rat’s orientation

Figure 10. The angular velocity profile v(t) of a freely moving rat
is applied to the HD system for 120 s. The model integrates v(t)
over time providing an ongoing estimate θ̄ (t) (gray line) of the rat’s
heading θ (t) (black line). One example out of n = 35 simulations is
shown here (for sake of clarity, the two curves have been smoothed
by means of an averaging time window of 500 ms).
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Figure 11. Mean reconstruction error, averaged over n = 35 trials,
of the HD system when tracking angular velocity profiles of freely
moving rats during 120 s. The diagram shows that the integration of
head angular movements based on inertial signals only is prone to
cumulative drift over time.

θ (t) (black line) over time. During the first part of the
simulation, the HD network provides an appropriate
estimate of θ (t). Then, since the integration of angu-
lar displacements based on inertial self-motion signals
is prone to cumulative drift (Matthews et al., 1988;
McNaughton et al., 1991; Goodridge et al., 1998), the
system fails to maintain a stable directional coding
over time. To quantify the tracking performance of the
HD system we compute the mean reconstruction error
ε(t) = 1/n

∑n
i=1 |θ̄i (t) − θi (t)|, with ε ∈ [0◦, 180◦].

Figure 11 displays the mean tracking error function
ε(t) obtained by averaging over the n = 35 trials. Con-
sistent with earlier hypotheses (Taube et al., 1990b;
McNaughton et al., 1991; Skaggs et al., 1995; Knierim
et al., 1998; Arleo and Gerstner, 2001), our system pre-
dicts that incorporating allothetic sensory inputs (e.g.,
vision, touch) is necessary to recalibrate pure inertial
signals and achieve robust directional coding.

4.2.3. Response of the HD Cell System to Reorienting
External Inputs. Electrophysiological data demon-
strate that HD cells are strongly influenced by salient
visual cues of the environment (Taube et al., 1990b;
McNaughton et al., 1991; Goodridge and Taube, 1995;
Knierim et al., 1998; Zugaro et al., 2001). For instance,
rotating a familiar visual landmark by an angle β in-
duces a rotation β ′ ≈ β of the preferred directions of
all HD cells. Recently, Zugaro et al. (2003) have quan-
titatively measured the time necessary for the preferred

directions of HD cells in the rat ADN to be updated by
a reorienting visual cue. The experimental setup con-
sisted of a black high-walled cylinder with a large white
card attached to the inner wall which provided the dom-
inant visual landmark. The preferred directions of the
HD cells were first measured in light conditions. Then,
in the dark, the cue card was rotated by an angle β =
90◦. Finally, the light was switched back on, which trig-
gered the reorientation β ′ of the preferred directions.
The authors observed a mean latency of 80 ± 10 ms
for a HD cell to go from baseline to peak firing activity
(i.e., establishment of a new bump following the re-
orientation event). On the other hand, they found that
140±10 ms were necessary for a cell to return to base-
line activity from its peak firing rate (i.e., extinction of
the bump existing prior the reorientation event).

In this section we focus on the temporal aspects of
the state transition in our HD cell model. To simulate
a reorientation event, we apply a strong external stim-
ulus R to the LMN network at time tR = 1 s. In the
simulation, the stimulus is conveyed to LMN neurons
by modulating the external current IE that generates
the background spontaneous activity (Section 4.1.2).
In particular, for each LMN cell i , we modulate the
conductance gAMPA

E by adding a gaussian component
according to:

gAMPA′
E (t) = gAMPA

E · (
1 + R(t)

· exp
( − (θR − θi )

2/2σ 2
R

))
(81)

where θR is the allocentric direction of the reorienting
stimulus, θi denotes the preferred direction of cell i ,
and σR = 45◦ is the width of the gaussian profile.
The amplitude of the stimulus decreases exponentially
over time according to the term R(t) = R0 exp(−t/τ ),
for t > tR . R0 = 1.3 is chosen such that a new bump
appears close to θR and destabilizes the previous bump.
An exponential decay with τ = 100 ms was used to
prevent the firing rates in LMN and DTN to become
very high.

With such parameters of the input, the dynamics of
the system rates following reorientation matched qual-
itatively the experimental data of Zugaro et al. (2003),
as shown in Fig. 12. A new bump appears at the location
of the reorienting stimulus after a few tens of ms. The
appearance of this bump in turn switches the old bump,
due to an overall increase in DTN inhibition. The old
bump decays in about 100 ms. To compare the simu-
lation data with the experimental data, we normalized
between 0 and 1 the instantaneous firing rates (com-
puted in 10 ms bins) of two populations of cells: those
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Figure 12. The HD model responds to reorienting external stimuli
by rapidly relocating the bump of activity defined by the discharges of
all LMN units. Top: Rastergram of the spikes emitted by LMN units
over time. Each dot represents one spike. For t < 1 s the system
has a self-sustained tuned state centered at θ̄ ≈ 90◦; at t = 1 s
a strong external input is applied to the system at θ = 180◦ and
provokes the state transition. The new bump of activity (A) in turn
extinguishes the existing bump (B), through an increase in inhibition
from DTN. Bottom: Spike peri-event histograms (bins of 10 ms) for
the sub-population of HD cells that return to baseline activity after
the reorientation event (thick red line: simulation; thin orange line:
experimental data) and for sub-group of cells that become active
after the stimulus onset (thick blue line: simulation; thin blue line:
experimental data). The simulation data has been shifted in time by
25 ms to maximize the overlap between the two sets of curves. Note
the good agreement between simulation and theory.

with preferred orientation close to the old bump loca-
tion, and those with preferred orientation close to the
new bump location, for both simulation and experi-
mental data. The normalization was done as follows:
we computed the average firing rates in the intervals
[−500, −100] ms and [100, 500] ms where 0 ms cor-
responds to the reorienting event. After normalization,
these firing rate averages became 0 and 1. As shown
in Fig. 12B, there is a good agreement between sim-
ulation and experiment, provided the simulation data
is shifted by 25 ms. This temporal shift of 25 ms thus
gives an estimate of the latency for the visual inputs to
reach the HD cell system. Finally, note that the relative
time course of the two events (appearance of the new
bump followed by extinction of the previous bump)
is independent of the implementation of the stimulus,
provided it is strong enough to provoke the appearance

of a new bump. However, the quantitative time course
depends on the details of the external inputs.

5. Discussion

Self-sustaining persistent activity in the brain has been
postulated to mediate working memory functions (see
e.g. Wang, 2001). The discharge of head direction (HD)
cells constitutes an example of persistent neuronal ac-
tivity that might serve an ongoing memory trace of the
allocentric orientation of the rat, which could be used
for navigation purposes (Wiener and Arleo, 2004).

In this paper, we have studied an attractor-integrator
network model without recurrent excitation, using the
architecture first proposed by Song and Wang (2003).
Our paper provides the first analytical investigation
of this architecture using simplified networks of
threshold-linear neurons. The mathematical analysis
provides the boundaries of the parameter space for
which direction selectivity is present, and those for
which the network is able to integrate accurately an-
gular velocity information. In particular, the saturation
velocity was shown to depend critically on the angular
offset in the projections between LMN and DTN
networks.

The simulations of Section 4 confirm the validity of
this scenario in a network of spiking neurons, which
was already demonstrated by Song and Wang (2003).
Our simulation results are complementary from those
of Song and Wang (2003, 2004): they showed how the
network dynamics is influenced by the NMDA/AMPA
ratio, and how the update of the HD signal by external
cues can take the form of either a continuous rotation
of the network state or a discontinuous jump to the new
HD depending on the distance between the old and new
HDs and the strength of the external cue (consistent
with previous studies in networks with simpler archi-
tectures, e.g. Compte et al., 2000). Here, we have shown
how the network dynamics is influenced by the mutual
inhibitory connections in DTN, and how the offset in
the projections from DTN to LMN control the satura-
tion velocity above which the system is no longer able
to integrate accurately. Finally, both our work and the
work of Song and Wang (2004) have demonstrated that
a system with such an architecture is able to perform
rather well when real angular velocity data is applied
to it, and that it is able to update following a strong
reorienting signal.

The model presented here is consistent with both
anatomical and neurophysiological findings currently
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available. From the anatomical point of view, the struc-
tures we have considered (i.e., LMN and DTN) are
known to be critically involved in the maintenance of
the HD signal, and their inter-connectivity as well as the
nature of the projections (i.e., excitatory vs inhibitory)
have been documented (see e.g., Sharp et al., 2001).
From the neurophysiological point of view, the tuning
curves we observe are quantitatively similar to the tun-
ing curves recorded in the rat HD cell system. HD cells
are numerous in the LMN (Blair et al., 1998; Stackman
and Taube, 1998). In the DTN, the picture is less clear,
because few electrophysiological recordings are avail-
able in this area (Sharp et al., 2001; Bassett and Taube,
2001b). HD cells in the DTN typically have broader
tuning curves than in other structures, and some cells
are modulated by both angular velocity and head di-
rection (AV-by-HD cells) and are therefore functionally
similar to the ‘DTN cells’ in the model we have studied
(Sharp et al., 2001). These cells often have linear de-
pendence of the firing rate vs angular velocity, as in our
model. In fact, these ‘AV’ tuning curves can be extrapo-
lated to lead to zero firing rate at around 1000◦ per sec-
ond, which our model predicts to be the order of magni-
tude of the saturation velocity. However, most recorded
cells in DTN show a clear AV but not HD dependence.
This type of cell is not present in our model. Hence,
more data is needed in order to conclude whether the
mechanisms studied here are necessary and/or suffi-
cient to maintain and integrate the HD signal.

Our analytical results are a generalization of previ-
ous results in simpler models for maintenance/ integra-
tion in the HD system (Zhang, 1996; Xie et al., 2002).
Our model includes a more realistic architecture for the
HD system, compared to the two-population models of
Zhang (1996) and Xie et al. (2002). In particular, in the
two population model of Xie et al. (2002), ‘left’ and
‘right’ populations are connected directly together in
an excitatory fashion. Both our model and that of Xie
et al. (2002) have a saturation velocity that depends
only on the angular offset of the connectivity α and the
synaptic time constant τ , though the dependence on α

is different: tan α in Xie et al. (2002) vs (1 − cos(α))/
sin α in our model. The range of saturation velocities
is typically of the order of 1000◦ in both models.

Are there computational advantages of the architec-
ture we studied here? One possible advantage is that
the lack of recurrent excitatory connections permits to
stabilize a selective attractor with relatively low firing
rates for a wide range of parameters, unlike networks
with recurrent excitation, where selective persistent ac-

tivity at low rates occurs typically in a narrow parameter
range.

In the model studied here, sustained persistent activ-
ity depends on the network interactions. A weak point
of the model is the perfect homogeneity of the con-
nectivity structure, with translation invariance along
the circle of preferred orientations. Inhomogeneities
are known to disrupt continuous attractors in a small
number of discrete attractors. However, additional sin-
gle cell properties can reinforce the stability of the at-
tractor network (Camperi and Wang, 1998; Koulakov
et al., 2002). In particular, known electrophysiologi-
cal properties of LMN neurons could stabilize the se-
lective sustained discharge of HD cells (Llinás and
Alonso, 1992). More theoretical and experimental stud-
ies are necessary to clarify the role of single cell prop-
erties in maintenance and/or integration of the HD
signal.

Appendix A

Abbreviations Full name

ADN Anterodorsal thalamic nucleus

DTN Dorsal tegmental nucleus

HD Head direction

LMN Lateral mammillary nucleus

PoSC Postsubiculum (dorsal presubiculum)

Variables Definition

Both types of models
θ Animal’s head direction (deg)

θi Preferred direction (deg) of neuron i

v Bump angular velocity

vh Head angular velocity

IE,I Background external input to excitatory/
inhibitory network

Il,r Velocity-dependent external input to left/right
DTN

H (·) (H0, H1) Footprint of excitatory connections from LMN
to DTN (average, modulation)

K (·) (K0, K1) Footprint of inhibitory connections from DTN
to LMN (average, modulation)

L0 Mutual inhibition between DTN networks

α Angular offset of the projections from DTNs
to LMN (deg)

(Continued on next page.)
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(Continued).

Rate models, Sections 2.3

φ Steady-state ‘current-to-rate’ neuronal
transfer function

f A Mean firing rate of population A

τ Synaptic time constant

sA0, sA1 Average and first Fourier component
of synaptic activation variables

ψA Center of mass of activation variable

φA Location of bump in firing rate profile

θA Width of the bump of population A

Spiking neuron model, Section 4

NE , NI Number of excitatory/inhibitory
directional neurons

σE , σI Width of footprints (deg)

V (t), I (t) Neuron’s membrane potential (mV),
input current (nA)

Vleak, Vthreshold, Vreset Resting, firing threshold, reset
membrane potential (mV)

VE and VI Reversal potential for excitatory and
inhibitory synapses

C Neuron’s membrane capacitance (nF)

g Membrane conductance (nS)

gGABA, gAMPA, gNMDA GABA, AMPA, NMDA individual
synaptic conductances (nS)

s Synaptic activation variable

tref Refractory period (ms)

θ̄ Estimated head direction, i.e. center
of mass of the activity profile, (deg)

θR Allocentric direction of the
reorienting stimulus (deg)

σR Width of the gaussian profile of the
external stimulus R (deg)

ε Mean tracking error function

β Angle of rotation of the reorienting
stimulus (deg)

R(t) Exponential function determining the
intensity of the external stimulus
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