Introduction to Computer Graphics
Marie-Paule Cani & Estelle Duveau

04/02 Introduction & projective rendering
11/02 Procedural modeling, Interactive modeling with parametric surfaces

25/02 Introduction to OpenGL + lab: first steps & modeling
04/03 Implicit surfaces 1 + lecture/lab: transformations & hierarchies
11/03 Implicit surfaces 2 + Lights & materials in OpenGL
18/03 Textures, aliasing + Lab: Lights & materials in OpenGL
25/03 Textures in OpenGL: lecture + lab
01/04 Procedural & kinematic animation + lab: procedural anim
08/04 Physically-based animation: particle systems + lab: physics 1
22/04 **Physically-based animation: collisions, control** + lab: physics 2
29/04 Animating complex objects + Realistic rendering

06/05 Talks: results of cases studies
Physically-based models

Interactions (collisions) between objects

Processing them: an advantage of physically-based models!

• Continuous solutions
 – Intersections of trajectories
 – Back to the contact time!

• Discrete time solutions
 1. Detect penetrations
 2. Model contact
 3. Respond to collisions
Physically-based models
Interactions between objects

1. Detect interpenetrations
 • Broad phase
 – Event-based processing
 – Use a space grid
 – Use bounding volumes
 • Narrow phase
 – Intersection of geometry
Physically-based models

Interactions between objects

1. Detection: broad phase

- **Event-based detection**
 - For rigid solids with bounded acceleration
 Guarantee that a pair cannot collide before …
 - Use a temporal queue to store the next tests

- **Space grid**
 - Each cell: list of objects intersecting it
 - Tests: pairs of object in the same cell
Physically-based models

Interactions between objects

1. Detection: broad phase
 • Use bounding volumes
 − Spheres
 distance > R1 + R2 ?
 − Axes parallel bounding boxes (ABB)
 X1-max > X2-min ?
 − Oriented bounding boxes (OBB)
Physically-based models

Interactions between objects

1. Detection: broad phase

- Hierarchies of bounding volumes
 - Divide & conquer approach
 - refine if the parents intersect
 - Constant time, approximate detection
 - Stop when needed
Physically-based models

Interactions between objects

1. Detection: narrow phase
 • For each pair of object
 Use the geometric description
 - Polygonal models: intersection between pairs of faces (O(n^2))
 - Tests point/field function if one of the objects is implicit (O(n))

 (restrict to points of faces in bounding volume)
Physically-based models

Interactions between objects

1. Detection: narrow phase
 • For each pair of object
 Use the geometric description …

Notes
- Many recent methods are based on the graphics hardware (GPU)
- Difficult case: thin, deformable objects can cross between time steps
Physically-based models

Interactions between objects

2. Contact modeling
 - Rigid objects
 - Back to a « valid configuration »?
 Inequalities expressing non-penetration
 Global system to be solved
 - Virtual reality: fast solution for a single collision
 Display non-penetrating copies
 - Deformable models
 - Deform objects without moving them?
Physically-based models

Interactions between objects

Problem for thin, deformable objects: Untangling cloth

Image from Bridson et al.
3. Response to collisions

- Rigid bodies: 2 possible solutions
 - Impulses
 \[V = V_t + V_n \]
 Modified speed: \[V := V_t - k V_n \]
 (mirror with energy decay in normal direction)
 - Contact forces

- Soft objects
 - Contact forces
3. Response to collisions

- “Penalty method” for response forces
 - Normal force fct of penetration
 - + Friction forces (viscous, dry…)

Overshooting problem

- Go back in time?
- Project the object to the closest point?
- Control energy after rebounce?
- Use adaptive time-steps?
Motion Control
What the art director would like

« Help to realism »

• Master the scénario
 – Give approximate trajectories
 – Control some Dof, synchronize

• Use simulation
 – Realistic motion of floating parts
 – Collision detection and response
 – Improve realism of trajectories
Physically-based models

Motion control?

- Hard for inanimate objects
 - Unpredictable effect of collisions!
 - Instable

- Impossible for a character?
 - Animation governed by muscle forces over time
 - Ex: a dinoausaur descending stairs
 - More than 150° degrees of freedom to synchronize
 - Keep equilibrium!
Physically-based models

Motion control

Technics for combining realism and control?

1. Imposing the motion of some DoF
2. Improving a trajectory given by key-frames
3. Using/generating motion controllers

(and combinations of the above!)
Physically-based models
Motion control

1. Imposing the motion of some Dof

• **Goals**
 1. Imposed motion for some degrees of freedom
 2. The simulation computes the rest

• **Examples**
 – Swim : impose rotations of the arms
 – Swing : impose rotations of the legs
Physically-based models

Motion control

1. Imposing the motion of some Dof
 - Some resolution methods
 - Inverse dynamics
 - Constraint forces (optimization)
 - Displacement constraints
 - Animate each part as independant
 - Iterate displacements until each constraint is reached
Physically-based models

Motion control

1. Imposing the motion of some DoF

Results

Objects move as puppets (some parts pull the others)

For controlled DoF:

- No help to realism
- No deviation from ideal motion due to collision
2. Improving trajectories given by key-frames

Simple method: Following a target

Physically-based model
- Attracted by a geometric target
- Computes speed, collisions…

- **Results**
 - Object are pulled as puppets
 - Fake realism!
Physically-based models

Motion control

2. Improving trajectories given by key-frames

Space-time constraints [Witkin, Kass 88]

1. The user specifies constraints (position/orientation at t_i)

2. The trajectory is improved through optimisation
 - Temporal discretization: unknowns X_i, F_i
 - Mecanics laws are used as constraints
 - A criteria is minimized (amount of internal energy used)
Physically-based models

Motion control

2. Improving trajectories given by key-frames

Space-time constraints [Witkin, Kass 88]

Results

– Attractive idea: “physically-based interpolation”
– Collisions cannot be handled automatically
Physically-based models
Motion control

3. Use/generate motion controllers

- *Method inspired from robotics*
 - Use a real simulation (ex walking: maintain equilibrium)
 - Muscular forces computed by a “controller”

Current state: x, v

Captors

Controller

Simulation (collisions)

Motors
Physically-based models

Motion control

3. Use/generate motion controllers

- Controllers can act by pulling towards a succession of poses
 - Blind control (mecanic toys)
 - Reactive control: take contacts into account (captors)
Physically-based models

Motion control

3. Use/generate motion controllers

- Synthesis of controllers
 - Manual: example of athletic motion \([Hod95]\)
 - Optimisation: random search, selection, improvement \([VdP93-95]\)
 - Genetic algorithms: population, crossings \([NM93]\)

\textit{Find how a given creature can use its muscles!}
Physically-based models
Motion control

3. Manual tuning of motion controllers

[Miller 89] [Hodgins 95]
Physically-based models
Motion control

3. Automatic generation of motion controllers

[Van de Panne 93-2000]
3. Use/generate motion controllers

Complex motion

- Transition graphs between controllers
 Ex: walk + equilibrium, fall, get up
- Each controller is itself a graph of desired postures

The “captor” data play an essential part!