04/02 Introduction & projective rendering
11/02 Procedural modeling, Interactive modeling with parametric surfaces

25/02 Introduction to OpenGL + lab: first steps & modeling
04/03 Implicit surfaces 1 + lecture/lab: transformations & hierarchies
11/03 Implicit surfaces 2 + Lights & materials in OpenGL
18/03 Textures, aliasing + Lab: Lights & materials in OpenGL
25/03 Textures in OpenGL: lecture + lab
01/04 Procedural & kinematic animation + lab: procedural anim
08/04 Physically-based animation: particle systems + lab: physics 1
22/04 Physically-based animation: collisions, control + lab: physics 2
29/04 Animating complex objects + Realistic rendering

06/05 Talks: results of cases studies
Descriptive vs Procedural animation

Descriptive animation
- Describes a single motion
- Ex: interpolating key-frames, direct and inverse kinematics

Procedural animation
- Generates a family of motion and deformations from
 - Initial conditions
 - Laws of motion
 - Interaction (from other objects or the user)
- Ex: physically-based models
Physically-based models

Laws of motion from mechanics

- Model + initial conditions + applied forces → motion

Advantage: a help for realism!

- Useful when dynamics plays an important part
- Easier for passive models!

Examples:
- Toy-Story 1, Shreck
Physically-based models

Animation algorithm

• At each time step
 – for each object
 1. Compute new speed (use its law of motion)
 2. Compute new position
 3. Detect collisions – *not so simple!*
 4. Update geometry
 5. Update applied forces
Physically-based models
Which law do we need?
Physically-based models

Which law do we need?

• Physically-based particles
 – Gravels, sand, …
• Solids
• Articulated solids

Examples:
 – Rolling ball?
 – Lamps?
 – Wire?
Structured deformations
- **Elasticity**
 - Deformation function of constraints
 - Back to equilibrium
- **Visco-elasticity**
 - Speed of deformation
- **Fractures**

 Ex: ball, flag, organ

Un-structured
- Neighbors change!
 - **Plasticity**
 - Absorbs deformations
 - **Fluids**
 - Navier-Stockes

 Ex: modeling clay, liquids, smoke and clouds...
Some physical laws

Points
- Model \([m, X, V]\)
- Law: \(F = \sum \text{forces} = m \ a \)

Solids
- Model \([m, I \text{ inertia matrix}, X, V, rotation \ \omega, \ \dot{\omega}]\)
- Laws: \(\sum F = m \ a \)
 \[\sum M = I \ \dot{\omega} + \omega \wedge I \omega \]
 Difficulty: representation of orientations!
Some physical laws

Articulated solids

- Solid dynamics + constraints at joints!
 (Lagrange multipliers..)

Deformable models

- Linear vs non-linear elasticity
- Navier stokes for fluids
 Eulerian vs Lagrangian discretization

[Terzopoulos 87]
Example: Visco-elastic models

- Cauchy: linear deformation law
 - OK for small displacements
 - but rotations produce forces!
 - the object inflates!!

Apply Cauchy in local frames!

[Müller et al. 02, 04]

- similar to Green’s non-linear tensor
- real-time
Example: Animating fractures

[James O‘Brien]
Example: liquids

Navier stockes + Eulerian grid + ”level set” (implicit)

[Foster & Fedkiw 2001]

[Enright et al. 2002]
Be careful with integration!

\[\ddot{x} = F(\dot{x}, x, t) = f / m \]
\[\dot{x} = v \]

- **Explicit Euler**
 \[v(t + \Delta t) = v(t) + \Delta t F(v(t), x(t), t) \]
 \[x(t + \Delta t) = x(t) + \Delta t v(t) \]

- **Implicit Euler** (much more stable!)
 \[v(t + \Delta t) = v(t) + \Delta t F(v(t + \Delta t), x(t + \Delta t), t) \]
 \[x(t + \Delta t) = x(t) + \Delta t v(t + \Delta t) \]
Do it all with point-based physics?

- Model: Particles \([m, X, V]\)
- Point-based physics \(\sum \text{forces} = m \ a\)

 Animation algorithm

 - At each time step, for each particle

 \[
 V(t+dt) = V(t) + \frac{\sum F(t)}{m} \ dt \\
 X(t+dt) = xX(t) + V(t) \ dt \quad \text{(if explicit Euler)}
 \]

 - Adapted forces?

- Render with adapted geometry!
Do it all with point-based physics?
Lots of simple objects

“Physically-based particle systems”

• Example: gravels, cereals
 – Gravity
 – Spheres for collisions detection
 – Random individual geometry

• Example: animating autumn
 – Leaves = particle + local frame
 – Wind primitives
 – Gravity
 – Directional friction force
Do it all with point-based physics?
Structured material

• 1D, 2D, 3D mass-spring networks

• Rigid and articulated solids?
 – Doable but very stiff! Too small time steps!
Do it all with point-based physics?
Structured objects

Example 1D case: hair animation
- Dynamics, inertia: wisp skeleton = chain of masses and springs
- Deformable wisp: add radial springs
- Anisotropic collisions
- Render individual hair strands

[Anjyo, 1992] [Plante Cani Poulin 01]
Do it all with point-based physics?

Structured objects

[Plante Cani Poulin
EG CAS 01]
Do it all with point-based physics?
Unstructured objects

- Particle systems inspired from molecular dynamics
 - Lennard-Jones attraction/repulsion forces
Do it all with point-based physics?

Unstructured objects

Example: Lava flow

- SPH particles + temperature
- Heat-diffusion equation
- Render with an implicit surface
- Generate crust texture
 Animated Perlin noise

4000 particules
Do it all with point-based physics?
Unstructured objects

Lava flows: Coupling particles and crust [Stora Agliati Cani Neyret 99]
Do it all with point-based physics?
Unstructured objects

Viscous fluids in real-time [Clavet, Beaudoin, Poulin, SCA’2005]

- Particules SPH: \(P = \rho - \rho_0 \)
- Surface tension effect

- Real-time for 1500 particles
- Plasticity: add/remove springs
Do it all with point-based physics?
Unstructured objects

Particle-based
Viscoelastic Fluid Simulation

Simon Clavet
Philippe Beaudoin
Pierre Poulin

SCA 2005
Do it all with point-based physics?
Unstructured objects

Bi-phasic fluids
with vortex particles
[Coquerelle, Cottet, Cani 2006]