Introduction to Computer Graphics

Marie-Paule Cani : Cours
Estelle Duveau : CTD OpenGL

Computer Graphics

- 3D animation
- «Disney Effects» (Luxo Jr (1986)
Pixar animation studios Director: John Lasseter)

Computer Graphics

- Special effects
- Seam-less mix of real \& virtual

Computer Graphics

- Games
- Immersion through interaction

Computer Graphics

- Simulation : «serious games»
- Predictability \& interaction

Computer Graphics

- Computer Aided Design (CAD)
- Virtual prototypes

Computer Graphics

- Architecture
- Real-time exploration

Computer Graphics

- Virtual reality
- Multi-sensorial immersion
- Augmented reality

Computer Graphics

- Visualization
- Visual exploration of results, interaction

Computer Graphics

- Medical imaging
- Understanding, planning, on-line monitoring

Computer Graphics

- Design
- 3D animation
- Special effects
- Games
- Simulators

- Visualization

Computer Graphics Research

What you will learn

- Overview of Computer Graphics (including vocabulary)
- Modeling : create 3D geometry
- Animation : move \& deform
- Rendering : 3D scene \rightarrow image
- How basic techniques work
- Practice with OpenGL (C++)

- Introduction to research : case studies
- Choose/combine/extend existing techniques to solve a problem

What you will not learn

- Advanced techniques in detail
- Programming the Graphics Hardware (GPU)
- Artistic skills
- Game design
- Software packages (CAD-CAM, 3D Studio Max, Maya, Photoshop, etc)

Following up: MOSIG M2 "GVR" \& ENSIMAG "IRV"

Text books

- No book required
- References
- 3D Computer Graphics Alan H. Watt

Course schedule (3h a week, A009 or ARV)

Marie-Paule Cani \& Estelle Duveau

04/02 Introduction + Projective rendering: graphics pipeline, shading 11/02 Parametric modeling : representations + design tools 25/02 Introduction to OpenGL: C + TD 04/03 Implicit surfaces $1 \quad+$ CTD matrices \& hierarchies 11/03 Implicit surfaces $2+$ C OpenGL lighting, materials 18/03 Textures, aliasing + TD OpenGL lighting, materials 25/03 Textures in OpenGL: C + TD
01/04 Procedural \& kinematic animation + TD procedural anim 08/04 Physics: particle systems + TD physics 1 22/04 Physics: collisions, control + TD physics 2
29/04 Animating complex objects + Realistic rendering
06/05 Talks: results of cases studies

Basic, real-time display?
 Projective rendering

Done by the graphics hardware via OpenGL or directX

- Input: Scene
- 3D models (Faces \& normals)
- Goal
- Image from camera Made of pixels

Camera

Basic, real-time display?
 Projective rendering

2 ingredients:

Graphics pipeline

From a 3D scene to a 2D image

- based on geometry

Local illumination

Which color in each pixel?

- based on optics

Graphics pipe-line

1. Create 3D models

- in local frames, faces $=$ vertices + normals

2. Build the scene

- place instances of models in the "world frame"
- add materials, virtual lights, and a camera

Representation of transformations

- From frame to frame (rotate, translate, scale)?
- Transformations represented by 4×4 matrices

$$
\left.\left.\begin{array}{rl}
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right] & =\left(\begin{array}{llll}
a & b & c & d \\
e & f & g & h \\
i & j & k & l \\
m & n & o & p
\end{array}\right]
\end{array}\right] \begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]
$$

Why 4x4? Homogeneous coordinates

- w will be used for projective transformations
- Cartesian coordinates: $w=1$
- From projective to cartesian: divide by w

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left(\begin{array}{llll}
a & b & c & d \\
e & f & g & h \\
i & j & k & l \\
0 & 0 & 0 & 1
\end{array}\right)\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \quad \begin{aligned}
& \text { Affine } \\
& \text { transformation }
\end{aligned}
$$

Affine transformations

Translation
$T=\left[\begin{array}{cccc}1 & 0 & 0 & T_{x} \\ 0 & 1 & 0 & T_{y} \\ 0 & 0 & 1 & T_{z} \\ 0 & 0 & 0 & 1\end{array}\right]$

Scale
$T=\left[\begin{array}{cccc}s_{x} & 0 & 0 & 0 \\ 0 & s_{y} & 0 & 0 \\ 0 & 0 & s_{z} & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Rotation: Euler anales $R=R_{z} \cdot R_{y} \cdot R_{x}$,
$\boldsymbol{R}_{\boldsymbol{x}}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \cos \psi & -\sin \psi & 0 \\ 0 & \sin \psi & \cos \psi & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
$R_{y}=\left[\begin{array}{cccc}\cos \phi & 0 & \sin \phi & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \phi & 0 & \cos \phi & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
$R_{z}=\left[\begin{array}{cccc}\cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Composition of transformations

Multiplication of matrices: $\mathrm{p}^{\prime}=\mathrm{T}(\mathrm{Sp})=\mathrm{TS} \mathrm{p}$

$$
\mathrm{TS}=\left(\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
2 & 0 & 3 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

Not commutative !!!

Scale then translate : $\mathrm{p}^{\prime}=\mathrm{T}(\mathrm{Sp})=$ TS p

Translate, then scale : $\mathrm{p}^{\prime}=\mathrm{S}(\mathrm{T} p)=\mathrm{ST} \mathrm{p}$

Graphics pipe-line

3. Convert the scene to the camera frame

- «cull» the faces that look in the opposite direction Normal \approx vector to the caméra?

Graphics pipe-line

4. Convert to the screen frame (projective transformation!)

- The viewing frustrum becomes a parallelogram
- « clipping » operations to
- suppress faces outside the frustrum, cut intersecting ones

$P: Z=0$

Perspective projection to image plane?

- Project all points to the $z=d$ plane, eyepoint at the origin

$$
\begin{aligned}
x_{p} & =\frac{d \cdot x}{z}=\frac{x}{z / d} \\
y_{p} & =\frac{d \cdot y}{z}=\frac{y}{z / d} \\
z_{p} & =d
\end{aligned}
$$

$$
\left(\begin{array}{c}
x * d / z \\
y * d / z \\
d \\
1
\end{array}\right)=\left(\begin{array}{c}
x \\
y \\
z \\
z / d
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / d & 0
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right)
$$

Graphics pipe-line

5. Compute the image

- Rasterize each face into pixels (x,y)
- Suppress hidden parts

- Compute a color for each pixel

RGB Image

Rasterize faces into pixels?

- Primitives are continuous; screen is discrete
- triangles are described by a discrete set of vertices
- but they describe a continuous area on screen

Rasterize faces into pixels?

- Scan Conversion: approximation into pixels
- Check pixels in BB wrt the 3 line equations
- Scanline rasterization: increment from corner vertices

Graphics pipeline

Remove the hidden parts of each triangle?
Else the last one will appear «above»

Graphics pipeline

Remove hidden parts of each triangle?

- First method: the painter's algorithm
- Sort the faces
- Display triangles starting with the farthest

- Cost $n(\log n)$
- Problems!

Graphics pipeline

Remonve hidden parts?

- Use a «Z-buffer » (available thanks to memory)
- A second array, as large as the image
- Stores the current z value at each pixel (the associated color being in the image buffer)
Algo
- Init with all pixel at max distance

- For each face, for each pixel P
- update color and z-value iff ($\mathrm{z}<$ current z -value (P))

Graphics pipeline

- Which color should be displayed?
- Uniform colors would not work!
- Given by a « local illumination» model

Local illumination

Which color shall we display in each pixel ?

\Rightarrow Depends on the local amount of light coming back to the eyes
\Rightarrow So it depends on :

- where the surface element is in 3D
- its orientation w.r.t. lights \& camera
- the material the surface is made of

Phong's local illumination

- A constant « ambiant» term
- Direct lighting from the sources > no shadows
- Opaque objects only

specular

Phong's local illumination

$$
\begin{aligned}
& I=K a+\sum I s\left(K d L . N+K s(R . V)^{n}\right) \\
& \text { ambiant diffuse specular }
\end{aligned}
$$

Phong's local illumination

Direct application

- A single normal by face
- Uniform colors!

Gouraud's shading

- A normal by face
- Illumination on each vertex
- Bi-linear interpolation

Better!

Some reflexions can be missed

Phong's shading

- A normal by vertex
- Interpolate normal directions
- Illumination at each pixel

Correct!
Still missing:

- Cast shadows
- Extended light sources
- Transparency

Phong's shading

