
Introduction to Computer Graphics

Marie-Paule Cani : Cours
Estelle Duveau : CTD OpenGL

2

Computer Graphics

• 3D animation
– « Disney Effects »
(Luxo Jr (1986)
Pixar animation studios
Director: John Lasseter)

3

Computer Graphics

• Special effects
– Seam-less mix of real & virtual

4

Computer Graphics

• Games
– Immersion through interaction

5

Computer Graphics

• Simulation : « serious games »
– Predictability & interaction

6

Computer Graphics

• Computer Aided Design (CAD)
– Virtual prototypes

7

Computer Graphics

• Architecture
– Real-time exploration

8

Computer Graphics

• Virtual reality
– Multi-sensorial immersion

• Augmented reality

9

Computer Graphics

• Visualization
- Visual exploration of results, interaction

10

Computer Graphics

• Medical imaging
- Understanding, planning, on-line monitoring

11

Computer Graphics

• Design
• 3D animation
• Special effects
• Games
• Simulators
• Visualization

Realism

Real-time

Tools for artists

Computer Graphics Research

12

What you will learn

• Overview of Computer Graphics (including vocabulary)
– Modeling : create 3D geometry
– Animation : move & deform
– Rendering : 3D scene → image

• How basic techniques work
• Practice with OpenGL (C++)

• Introduction to research : case studies
– Choose/combine/extend existing techniques to solve a problem

13

What you will not learn

• Advanced techniques in detail
• Programming the Graphics Hardware (GPU)
• Artistic skills
• Game design
• Software packages

(CAD-CAM, 3D Studio Max, Maya, Photoshop, etc)

Following up: MOSIG M2 “GVR” & ENSIMAG “IRV”

14

Text books

• No book required
• References

– 3D Computer Graphics
Alan H. Watt

– 3D Computer Graphics: A
Mathematical Introduction
with OpenGL (2003) by Buss.

15

Course schedule (3h a week, A009 or ARV)
Marie-Paule Cani & Estelle Duveau

04/02 Introduction + Projective rendering: graphics pipeline, shading
11/02 Parametric modeling : representations + design tools
25/02 Introduction to OpenGL: C + TD
04/03 Implicit surfaces 1 + CTD matrices & hierarchies
11/03 Implicit surfaces 2 + C OpenGL lighting, materials
18/03 Textures, aliasing + TD OpenGL lighting, materials
25/03 Textures in OpenGL: C + TD
01/04 Procedural & kinematic animation + TD procedural anim
08/04 Physics: particle systems + TD physics 1
22/04 Physics: collisions, control + TD physics 2
29/04 Animating complex objects + Realistic rendering
06/05 Talks: results of cases studies

16

Basic, real-time display?
Projective rendering

Done by the graphics hardware via OpenGL or directX

• Input: Scene
– 3D models (Faces & normals)

• Goal
– Image from camera

Made of pixels
3D « scene »Camera

17

Basic, real-time display?
Projective rendering

2 ingredients:

Graphics pipeline
From a 3D scene to a 2D image

• based on geometry

Local illumination
Which color in each pixel?

• based on optics
3D « scene »Camera

18

Graphics pipe-line

1. Create 3D models
• in local frames, faces = vertices + normals

2. Build the scene
• place instances of models in the “world frame”
• add materials, virtual lights, and a camera

19

Representation of transformations

• From frame to frame (rotate, translate, scale)?
– Transformations represented by 4x4 matrices

x'
y'
z'
w'

=

x
y
z
w

a
e
i
m

b
f
j
n

c
g
k
o

d
h
l
p

p' = M p

20

Why 4x4? Homogeneous coordinates

• w will be used for projective transformations
• Cartesian coordinates: w = 1
• From projective to cartesian: divide by w

x'
y'
z'
1

=

x
y
z
1

a
e
i
0

b
f
j
0

c
g
k
0

d
h
l
1

Affine
transformation

21

Affine transformations
Translation Rotation: Euler angles

Scale

22

Composition of transformations

TS =
2
0

0
2

0
0

1
0

0
1

3
1

2
0

0
2

3
1=

Multiplication of matrices : p' = T (S p) = TS p

0 0 1 0 0 1 0 0 1

(0,0)

(1,1) (2,2)

(0,0)

(5,3)

(3,1)
Scale(2,2) Translate(3,1)

23

Not commutative !!!

Scale then translate : p' = T (S p) = TS p

Translate, then scale : p' = S (T p) = ST p
(8,4)

(0,0)
(1,1)

(2,2)

(0,0)

(5,3)

(3,1)
Scale(2,2) Translate(3,1)

(0,0)

(1,1)
(4,2)

(3,1) (6,2)Translate(3,1) Scale(2,2)

24

Graphics pipe-line

3. Convert the scene to the camera frame
– « cull » the faces that look in the opposite direction

Normal ≈ vector to the caméra ?

z

y

x
P

LCamera
frame

Viewing
frustrum

25

Graphics pipe-line

4. Convert to the screen frame (projective transformation!)

– The viewing frustrum becomes a parallelogram
– « clipping » operations to

• suppress faces outside the frustrum, cut intersecting ones

y

xP
z

L

P: Z=0

L: Z=1

26

Perspective projection to image plane ?

• Project all points to the z = d plane, eyepoint at the origin

27

Graphics pipe-line

5. Compute the image
• Rasterize each face into pixels (x,y)
• Suppress hidden parts
• Compute a color for each pixel

P: Z=0 L: Z=1
RGB Image

pixel
y

x

28

Rasterize faces into pixels?

• Primitives are continuous; screen is discrete
– triangles are described by a discrete set of vertices
– but they describe a continuous area on screen

29

Rasterize faces into pixels?

• Scan Conversion: approximation into pixels
– Check pixels in BB wrt the 3 line equations
– Scanline rasterization: increment from corner vertices

30

Graphics pipeline

Remove the hidden parts of each triangle?
Else the last one will appear « above »

31

Graphics pipeline

Remove hidden parts of each triangle?
– First method: the painter’s algorithm

• Sort the faces
• Display triangles starting with the farthest

• Cost n(logn)
• Problems!

32

Graphics pipeline

Remonve hidden parts?
• Use a « Z-buffer » (available thanks to memory)

– A second array, as large as the image
– Stores the current z value at each pixel

(the associated color being in the image buffer)

Algo
– Init with all pixel at max distance
– For each face, for each pixel P

• update color and z-value iff (z < current z-value(P))

33

Graphics pipeline

• Which color should be displayed?
– Uniform colors would not work!
– Given by a « local illumination » model

P: Z=0 L: Z=1
Image RVB

pixel
y

x

34

Local illumination

Which color shall we display in each pixel ?
⇒Depends on the local amount of light coming back to the eyes
⇒ So it depends on :

– where the surface element is in 3D
– its orientation w.r.t. lights & camera
– the material the surface is made of

35

Phong’s local illumination

• A constant « ambiant » term
• Direct lighting from the sources

no shadows

• Opaque objects only

diffuse specular

36

Phong’s local illumination

I = Ka + ∑ Is (Kd L . N + Ks (R . V)n)

L

NR

V

diffuse specularambiant

37

Phong’s local illumination

n

ks

38

Direct application

• A single normal by face

• Uniform colors!

39

Gouraud’s shading

• A normal by face
• Illumination on each vertex
• Bi-linear interpolation

Better!
Some reflexions can be missed

40

Phong’s shading

• A normal by vertex
• Interpolate normal directions
• Illumination at each pixel

Correct!
Still missing:

– Cast shadows
– Extended light sources
– Transparency Specular reflexion

41

Phong’s shading

