
Introduction to Computer Graphics

Marie-Paule Cani : Cours
Estelle Duveau : CTD OpenGL
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Computer Graphics

• 3D animation
– « Disney Effects »
(Luxo Jr (1986) 
Pixar animation studios
Director: John Lasseter)
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Computer Graphics

• Special effects
– Seam-less mix of real & virtual
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Computer Graphics

• Games
– Immersion through interaction
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Computer Graphics

• Simulation : « serious games »
– Predictability & interaction
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Computer Graphics

• Computer Aided Design (CAD)
– Virtual prototypes
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Computer Graphics

• Architecture
– Real-time exploration
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Computer Graphics

• Virtual reality
– Multi-sensorial immersion

• Augmented reality
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Computer Graphics

• Visualization
- Visual exploration of results, interaction
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Computer Graphics

• Medical imaging
- Understanding, planning, on-line monitoring
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Computer Graphics

• Design
• 3D animation
• Special effects
• Games
• Simulators
• Visualization

Realism

Real-time

Tools for artists

Computer Graphics Research
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What you will learn

• Overview of Computer Graphics  (including vocabulary)
– Modeling : create 3D geometry
– Animation : move & deform
– Rendering : 3D scene → image

• How basic techniques work
• Practice with OpenGL (C++)

• Introduction to research : case studies
– Choose/combine/extend existing techniques to solve a problem
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What you will not learn

• Advanced techniques in detail
• Programming the Graphics Hardware (GPU)
• Artistic skills
• Game design
• Software packages

(CAD-CAM, 3D Studio Max, Maya, Photoshop, etc)

Following up: MOSIG M2 “GVR” & ENSIMAG “IRV”
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Text books

• No book required
• References

– 3D Computer Graphics 
Alan H. Watt

– 3D Computer Graphics: A 
Mathematical Introduction 
with OpenGL (2003) by Buss.
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Course schedule (3h a week, A009 or ARV)
Marie-Paule Cani & Estelle Duveau

04/02 Introduction + Projective rendering: graphics pipeline, shading 
11/02 Parametric modeling : representations + design tools 
25/02 Introduction to OpenGL: C  + TD 
04/03 Implicit surfaces 1 + CTD matrices & hierarchies 
11/03 Implicit surfaces 2 + C OpenGL lighting, materials 
18/03 Textures, aliasing + TD OpenGL lighting, materials 
25/03 Textures in OpenGL:  C + TD
01/04  Procedural & kinematic animation + TD procedural anim
08/04  Physics: particle systems                + TD physics 1 
22/04  Physics: collisions, control             + TD physics 2 
29/04  Animating complex objects  + Realistic rendering
06/05  Talks: results of cases studies
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Basic, real-time display?
Projective rendering

Done by the graphics hardware via OpenGL or directX

• Input: Scene 
– 3D models  (Faces & normals)

• Goal
– Image from camera

Made of  pixels
3D « scene »Camera
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Basic, real-time display?
Projective rendering

2 ingredients:

Graphics pipeline
From a 3D scene to a 2D image 

• based on geometry

Local illumination
Which color in each pixel? 

• based on optics
3D « scene »Camera
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Graphics pipe-line

1. Create 3D models
• in local frames,  faces = vertices + normals

2. Build the scene
• place instances of models in the “world frame”
• add materials, virtual lights, and a camera 
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Representation of transformations

• From frame to frame (rotate, translate, scale)?
– Transformations represented by 4x4 matrices
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Why 4x4?    Homogeneous coordinates

• w will be used for projective transformations
• Cartesian coordinates:  w = 1 
• From projective to cartesian: divide by w
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Affine transformations
Translation Rotation: Euler angles

Scale
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Composition of transformations 
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Not commutative !!!

Scale then translate : p'  =  T ( S p )  =  TS p

Translate, then scale : p'  =  S ( T p )  =  ST p
(8,4)

(0,0)
(1,1)

(2,2)

(0,0)

(5,3)

(3,1)
Scale(2,2) Translate(3,1)

(0,0)

(1,1)
(4,2)

(3,1) (6,2)Translate(3,1) Scale(2,2)
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Graphics pipe-line

3. Convert the scene to the camera frame
– « cull » the faces that look in the opposite direction 

Normal ≈ vector to the caméra ?

z

y

x
P

LCamera 
frame

Viewing
frustrum
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Graphics pipe-line

4. Convert to the screen frame (projective transformation!)

– The viewing frustrum becomes a parallelogram
– « clipping » operations to

• suppress faces outside the frustrum, cut intersecting ones

y

xP
z

L

P: Z=0

L: Z=1
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Perspective projection to image plane ? 

• Project all points to the z = d plane, eyepoint at the origin
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Graphics pipe-line

5. Compute the image
• Rasterize each face into pixels (x,y)
• Suppress hidden parts
• Compute a color for each pixel

P: Z=0 L: Z=1
RGB Image

pixel
y

x



28

Rasterize faces into pixels?

• Primitives are continuous; screen is discrete
– triangles are described by a discrete set of vertices
– but they describe a continuous area on screen



29

Rasterize faces into pixels?

• Scan Conversion: approximation into pixels
– Check pixels in BB wrt the 3 line equations
– Scanline rasterization: increment from corner vertices
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Graphics pipeline

Remove the hidden parts of each triangle?
Else the last one will appear « above »
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Graphics pipeline

Remove hidden parts of each triangle?
– First method: the painter’s algorithm

• Sort the faces
• Display triangles starting with the farthest

• Cost n(logn)
• Problems!
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Graphics pipeline

Remonve hidden parts?
• Use a « Z-buffer » (available thanks to memory)

– A second array, as large as the image
– Stores the current z value at each pixel

(the associated color being in the image buffer)

Algo
– Init with all pixel at max distance
– For each face, for each pixel P

• update color and z-value iff (z < current z-value(P))



33

Graphics pipeline

• Which color should be displayed?
– Uniform colors would not work!
– Given by a « local illumination » model

P: Z=0 L: Z=1
Image RVB

pixel
y

x
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Local illumination

Which color shall we display in each pixel ? 
⇒Depends on the local amount of light coming back to the eyes
⇒ So it depends on :

– where the surface element is in 3D
– its orientation w.r.t. lights & camera
– the material the surface is made of



35

Phong’s local illumination

• A constant « ambiant » term
• Direct lighting from the sources

no shadows

• Opaque objects only

diffuse specular
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Phong’s local illumination

I = Ka + ∑ Is (Kd L . N + Ks (R . V)n )

L

NR

V

diffuse specularambiant
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Phong’s local illumination

n

ks
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Direct application

• A single normal by face

• Uniform colors!
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Gouraud’s shading

• A normal by face
• Illumination on each vertex
• Bi-linear interpolation

Better!
Some reflexions can be missed
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Phong’s shading

• A normal by vertex
• Interpolate normal directions
• Illumination at each pixel 

Correct!
Still missing:

– Cast shadows
– Extended light sources
– Transparency Specular reflexion
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Phong’s shading


