
Abstract

GPU shaders look like threaded C, but hardware
constraints (SIMD, warps, groups, small caches,
slow memory access) hugely impact performances
on unintuitive ways. In the case of ray-marchers,
neighbor rays having different fate locally breaks
the parallelism, at places where the algorithm is al-
ready the slowest (e.g. near silhouettes).
The target of this research is to study various sim-
ple test case and implementation variants, getting
cost heat-map and timing profiling, to understand
how bad some cases can be, interpret what hap-
pens, and get some good practice recommenda-
tions.

1 Introduction
Ray-marching is a rendering method which is applied
widely in game programming because of its high perfor-
mances which are very important in real-time rendering.
However, this rendering method still has some weakness
which combine with hardware constraints may slow down
the game performances.
Our purpose is to do a number of experiments to understand
how GPU works when rendering a ray-marching scene, and
how is the cost structure.

1.1 Previous works
A GPU is designed to control multiple threads which are or-
ganized into multiple parallel thread blocks. A streaming
multiprocessor (SM) executes one or more thread blocks.
The SM executes threads in groups of 32 threads called a
warp. The screen is divided into many tiles, each tile has 4 ×
2 = 8 warps called block and all warp in the same block will
start at the same time.
There are many GPU profilers available but most of them
support only Windows platform and have a many inconve-
nience points (such as cannot provide the exact rendering
time of each pixel or cannot show quick parts of the scene
that cost more than the others). Therefore in this research,
we will develop a few tools to do the experiments.

1.2 Ray-marching
Ray-marching is a variants method of ray-casting, a render-
ing method which calculates the intersections point of the
“view-ray” with the objects’ surface and base on them cal-
culate the object’s diffuse color in the 3D screen.
With ray-marching, the shading program needs not compute
the intersections point but simply walks along the ray and
checks each step whether it hit the objects. Figure 1 shows
the idea of ray-marching.

The larger the distance the program walks each step, the
faster it moves but the less accurate it is. To avoid “step-
over” an object, the program will try to reduce the distance
when it gets close to the object. Therefore it may take many
steps when the ray comes closer to the object’s silhouettes.
This is one of the main reason that causes the performance
reduction. Which will be investigated in this report.

2 Our approach
We will applies ray-marching plus some injected analyzing
shading code into a simple scene to create cost heat-maps
and timing profiling of the scenes. By analyzing the output
information, the research may figure out how much reduc-
tion each case may cause, interpret what happens, and pro-
pose some recommendations to walk around.

Studying and profiling the GPU performances of 3D ray-marchers

HUYNH Danh Chieu Phu
Team MAVERICK, LJK-INRIA

Grenoble, France
danh-chieu-phu.huynh@etu.univ-grenoble-alpes.fr

Figure 1: The idea of Ray marching g

For the experiment, the shader code will be written on
Shadertoy.com and C++ native program then will be ana-
lyzed by Octave script and C++ native program.

The difficulties
GPU shader is a closed process whose the output is only a
color vector of 4 float number RGBA of a pixel on the
screen and no other output channel.
Moreover, the color buffer’s precision is very limit which
may loose the precious information.
To overcome this difficulty we will propose a strategy to en-
code the desired information into the pixel color then dis-
play it to the screen. By analyzing the output image we may
retrieve back that information. Detail method will be repre-
sented with the below correspondent experiments.

3 Our experiment
We will setup a simple scene for the experiment: the scene
is made by 2 spheres (a big one overlaps a smaller one)
whose silhouettes overlap each other and 1 light source. The
scene doesn’t have any other effects (no texture access) to
reduce any unnecessary effect that may affect the complex-
ity and the result of experiment.

3.1 Algorithmic cost analyzing
Algorithmic cost of a pixel is the number of loops needed to
detect the intersection between the view ray and an object.
Experiment’s steps:
Step-1: Add a variable to count the loop then assign it to the
output color of the fragment shader. The output image of

this step is the heat-map whose the lighter pixels are the one
cost more time.
Step-2: Use Octave to calculate the histogram of the image
and base on this create the probability distribution diagram.
In the Heatmap in Figure 3 (a), the pixel which are brighter
are the ones that cost more intersection test than the others.

From the (d) Cumulative distribution function, we can see
that the slot reaches 80% on Y axis (the number of intersec-
tion test) when it got only 20% on X axis (number of pixel).
We can come to the conclusion that 80% of intersections
test is used to render only 20% of the pixels which are the
pixels around the object’s silhouettes.
The reason is when the view-ray comes close to an object’s
surface, it has to “walk” a smaller step to avoid step-over
the surface – unable to detect the intersection.

3.2 Time cost analyzing
The experiment above considers only how much marching
step a program would take to render a pixel. In fact, there
are other reasons that may reduce rendering time.
We want to know the GPU’s efficiency in this case. If the
time cost matches exactly with the algorithmic cost we can
say that GPU’s efficiency is high. Other wide, there should
be a problem to be investigated.
The research will use the OpenGL extensions provided by
Nvidia to measure the elapsed time for rendering each pixel.

Experiment’s steps:
Step-1: Call function clock2x32ARB()1 before and after
RenderSpheres() to get start time and end time in tick.
Step-2: Subtract end time by start time to get elapsed time.

1GLSL function that retrieves the GPU time and store into a
vector of 2 integers. URL can be found in the reference.

Figure 3: (a)-Heatmap of loop (b)- Percent of cost
(c)-Histogram (d)-Cumulative distribution function

Figure 2: (a)-Scene of the experiment (b)-Ray-marching
shader code

Step-3: The time value is stored in a vector 2 of integers.
Because the time cost for a pixel in this experiment is short
and suppose to be fit in the lower vector, we will ignore the
higher one. This value will be assigned to the Blue color of
the fragment shader. The pixels which got more Blue are the
one which takes more time for rendering. The output image
will be like in Figure 4.

From the image, we can notice also that the pixel closed to-
gether would take the same time to rendering even they are
on the different parts of the scene.
This synchronization look similar to the physical organiza-
tion of the GPU: those pixels are rendered by the same
warp,

3.3 GPU organization and Time cost
By using Nvidia’s extension GL_NV_shader_thread_group
we can identify that the GPU used in this research got 7
SMs and each SM got 64 logical warp units. This extension
also provides us id of the SM and the warp that each pixel
belongs to. So we expect that if we can get the information
of warp id and SM id we can confirm the question which
was risen in section 3.2.
Experiment’s steps:
Step-1: Insert 2 lines of code to get the id of warp and SM
and assign them to the color Red and Green of the fragment
shader.
The output image will be like Figure 5
Step-2: Develop a program reads the colors of this image
and generates a timetable storing the following information:
List of SM (0 → 6)

List of Warp (0 → 63)
List of warp call (0 → max call)

Start time
End time

Step-3: Based on the timetable, draw a timeline diagram of
all SMs and warps.

 The timeline we have in result is very synchronized. Most
of the warp start and end at the same among of time. This is
because the problem of precision.

3.4 The problem of color buffer precision
By doing an acid test, we can see that the precision of color
buffer is very limited.

Output value in fragment
shader

Value receive in the color
buffer

0.111 0.109804

0.345 0.345098

0.346 0.345098

0.347 0.345098

0.548 0.549020

0.549 0.549020

0.550 0.549020

… ...

The accuracy is guaranteed from 0.1 or above. That means
with 1 color value, we can encode a digit (0 → 9). In a
warp, we have 32 pixels × 4 color = 128 digits, which is far
enough to encode SM id, warp id, start time and end time.

Figure 5: Heatmap with SM ID and warp ID D

Figure 4: Heatmap of rendering time

Be cause the information of rendering is very important to
making conclusion about GPU’s efficiency, we must keep
all the digits. To do that we propose a strategy like below:

Encode and decode strategy:
We use only 8 first pixels of a warp to store the information
R = SM ID
G = warp ID
B = 0.1
A = 0

R, G, B, A = 4
higher digit of
start time

R, G, B, A = 4
lower digit of
start time

R = SM ID
G = warp ID
B = 0.2
A = 0

R = SM ID
G = warp ID
B = 0.3
A = 0

R, G, B, A = 4
higher digit of
end time

R, G, B, A = 4
lower digit of
end time

R = SM ID
G = warp ID
B = 0.4
A = 0

No use No use No use No use

…

With this strategy, we redraw the timeline and the result will
be like in Figure 6

By doing statistic on the rendering and idle time we can
see that 57% of rendering time is idle, which means the
GPU’s efficiency isn’t high as expect.3.5 Determine ren-
dering tiles

We know that the screen is divided in to tiles. Using an im-
age processing application, we can determine those tiles by
picking the pixels which have the same SM id.

On the GPU using for the experiment, there are 7 SMs, di-
vided into 4 group of blocks: SM-0 and SM-4, SM-1 and
SM-5, SM-2 and SM-6, and SM-3.

By developing an algorithm assigning the color to each
warp in the timeline, the warps in the same block and start at
the same time will be assigned the same color, we can see
clearly the wrap in a block, and when they start and end like
in Figure 8

Figure 7: The blocks of SM-5

Figure 6: Complete percision timeline

4 Conclusion
So far, we developed testing tools and scripts. We did some
experiments. We made early analyzing base on that.
From the result of the experiments we can come to the con-
clusion:
 For ray-marching shader, the rendering cost of a pixel at

the object’s silhouette is very high comparing to other re-
gions of the screen. This is true in term of both the algo-
rithmic cost and the time cost.

 Because all the warps in the same block will start at the
same time, if all 7 warps finished their task they still
have to wait for the last one before starting any new task.
This breaks the parallelism of GPU and reduces frame
rate. Figure 9 is a zoomed-in view of a case like this.

Therefore, the rendering time of a pixel near object’s silhou-
ette is not only longer than other pixel but also delays the
whole warp and even more delay the whole block of 8
warps = 32 pixels
This is the reason why a few complex pixels may hugely
impact the rendering performances.

5 Further research
The problem of color buffer precision is the main difficulty
that slow down the researching process. By figuring out an
efficient method to encode the information in section 3.4 al-
low us to advance into more complex cases such:
 Try to figure out the cause of the gaps (idle time) ap-

peaser between each warp render call.
 A scene with complex objects
 Improving the visualization of the timeline.

References
[Shadertoy] Shadertoy.com

[Adok] Adok. On ray casting, ray tracing, ray marching and
the like. Website http://www.hugi.scene.org

[Haugo, 2013] Simen Haugo. Raymarching Distance Fields.
Website http://9bitscience.blogspot.fr, July 2013.

[Khronos] OpenGL Extension, ARB_shader_clock. URL:
https://www.khronos.org/registry/OpenGL/extensions/AR
B/ARB_shader_clock.txt

[Neyret and Crassin] Understanding G80 behavior and per-
formances, Research report, LJK-INRIA. 2008

[Nvidia] NVIDIA’s Next Generation CUDATM Compute Ar-
chitecture: FermiTM – Whitepaper

[Nvidia] NVIDIA GeForce GTX 980 Featuring Maxwell,
The Most Advanced GPU Ever Made - Whitepaper

[Nvidia] NVIDIA GeForce GTX 750 Featuring Maxwell,
The Most Advanced GPU Ever Made - Whitepaper

[Celarek] Adam Celarek, Real Time 3d Mandelbulb, Web-
site http://celarek.at/tag/ray-marching

Figure 8: Timeline with block info

Figure 9: A case of breaking parallelism

