
Technical report
Procedural generation of 3D realistic dust and nebulas

September, 30, 2020

Procedural generation
of 3D realistic galactic dust and nebulas

Erwan Leria
1 2

, Fabrice Neyret
2 3

1
Aix-Marseille Université,

2
INRIA Grenoble Rhône-Alpes,

3
CNRS

Real-time rendered nebulas generated with our model. They are ordered by progression of our model

Abstract
In this paper, we propose a model to represent and render full-volumetric 3D nebulas in real-time. This include the large-scale shape
and the details of dust, the distribution of color and opacity, and the evaluation of the illumination. We rely on di�erent types of
procedural noises to shape the nebula and its details, and we constrain the noises so as to produce physically valid distributions.
This allows as to analytically estimates the emissive areas as well as the shadowing. Our ray-marching implementation on the GPU
run in real-time at 800× 450 resolution, and is compatible with integration in full galactic scene by limiting the marching to the
space region inside a bounding sphere.

1. Introduction

1.1. Context

As part of my Computer Graphics studies, I had the occasion to

do my Master thesis with Fabrice Neyret. He works as Director of

Research for the CNRS but belongs to the MAVERICK project-team

at INRIA Grenoble Rhône-Alpes. The main topics of the team are

expressive rendering, photorealist rendering, geometric modeling

and real-time rendering. This paper reports the work I did during

the six months of my Master thesis within the MAVERICK

project-team.

A few years years ago, Fabrice Neyret did a joint project

with RSA Cosmos and Observatoire de Paris-Meudon which was

entitled ANR veRTIGE/Galaxy. The goal of the project was to �nd

new visual model for to enrich a real-time 3D galaxy exploration.

They managed to produce high quality large-scale scenes with a lot

of details close to Hubble pictures. The rendering was done in real

time without explicit data in input. The idea is how can we generate

nebulas on the �y in a galaxy explorer. Through this document, we

present a model to render nebula for real-time volume rendering

on at least casual reasonable hardwares.

Figure 1: Picture of a galaxy from SkyExplorer, the RSA Cosmos

software

© Erwan Leria & Fabrice Neyret, 2020

Figure 2: Iris Nebula - NGC 7023, NASA, the contours of the dust

cloud in green, the contours of the bubble in red

1.2. Characterization of a nebula

First, on the nebula picture, we can see a galactic dust cloud. This

cloud extends beyond the edges of the picture of course. Often, at

the center of a nebula picture, there is a star that repels the gas

around it. Here in the picture, the star is in the blue area. If the

bubble drill out of the dust cloud, this open "windows" through

which we can see the enlighten regions, and have Hubble getting

nice pictures of it. The gas is naturally grainy and �lamenty even

in calm regions, but the bubble push and compress it as a spherical

layer, with only some remaining dense chunks inside. This process

creates a bubble that dig an empty space, and the few remaining

gas near to the star is in the form of �lamentary dust. This is the

look of the cloudy �laments and the empty space in the center that

interests us.

2. Previous Works

Realistic and large detailed scenes are very expensive for rendering,

especially if we consider their global illumination. Most of these

scenes are often made o�ine, as they do, for example, in the visual

e�ects industry or for real scienti�c simulations based only on

physical models. But it can takes hours, days or even weeks to

end up with only a few seconds of animation. Another problem

with large detailed scenes is the content editing + management (

from disk to CPU memory to GPU memory), in addition to the

cost of its rendering. Proceduralism consists in generating data on

the �y, from a few control parameters. On the other way, textures

allow to replace meshes that are costly to manage and to render

image with details. Procedural textures do both: produce on the �y

some kind of optical illusion replacing the complex explicit data.

However, in order to achieve this, we need to be ten million times

faster to reach 60 FPS. To produce fast detailed scenes, in Computer

Graphics, one can use a quite common option, the procedural noise.

This technique is very useful to generate natural looking patterns

which could help us for the dusty aspect of the cloud. In this section

we will present an overview of some previous works (general

techniques) that will help us to do our nebula model.

Figure 3: 2D Perlin noise on di�erent frequencies

2.1. Procedural noise

For the computer graphics community, the bene�ts of procedural

noise, such as the Perlin Noise [Per85] is that we can generate

2D or 3D textures that are both random and continuous, and we

can also control them. Such textures can be generated on the �y

and fairly fast. Noise functions are functions that take a vector of

dimension n as input and that return a scalar value. Generating a

random and continuous signal is good to give a coherant physical

aspect to our nebula. To produce a such signal, �rst we de�ne a

regular grid of dimension n. Then for each point of the grid, we

generate random gradients. Finally, we interpolate these gradients

between them. The interpolations give a smooth and continuous

signal.

In the veRTIGE/GALAXY ANR Project, the multiplicative noise

was introduced and experienced

2.2. Volume rendering

To obtain the light intensity and color that should reach a pixel

from the 3D density �elds of the scene in order to avoid as more

as possible cache and memory transfers. Therefore we don’t use

mesh nor any other set of data. In our case, to generate 3D

textures, we need to render volumes. We call each element of our

volume a voxel. In the interstellar environment all objects are not

fully opaque, and light comes from di�erent sources. Now, one of

the main problems in rendering is how to render e�ciently the

returned intensity and color of a pixel on a screen depending on

the 3D scene. We have to take in account the transparency of the

volume, the light intensity and the color. For each ray that start

from its associated pixel on a screen and that crosses the scene

where the volume is, we can solve a light transport equation to

get the �nal color and intensity of the pixel. This equation is also

known as the rendering equation.

Iλ(x) =
∫∞

0 e−σt dl · (σs) ·ψ ·∑si
0 Lsi · e−

∫ si
0 σt dldl , the accumulated

transparency in blue, the local color in green in the current

evaluated voxel, �nally in red, we have the light intensity.

Nevertheless, a such integral is not solvable as is on a computer.

Consequently, we discretize this integral in order that it becomes

usable. Irgb(x) = ∑
∞
0 ∏

l
0 e−σt ∆l · σs

σt
· Illumination

Finally from this we can deduce the following algorithm for the

associated color of the pixel, depending on the voxels crossed by

the ray starting from this pixel.

Cacc =Cacc +Tacc · (1−Tloc) ·Cloc · Illumination

2 | 10

Figure 4: Volume rendering schema with (red) the illumination,

(green) the local color and (blue) the transparency. The small circles

represent the sampling of the casted ray

Cacc is the accumulated color. This is the �nal color returned on

the screen one the ray is fully processsed. Tacc is the transparency

accumulated at each voxels, Tloc is the local transparency of the

current voxel, Cloc is the the local color of the current voxel, and

Illumination is the light intensity. An important point in real-time

rendering is the global illumination. In fact, computing all the

interactions between light and matter at each voxel would be very

expensive in computing time, and so is not a�ordable in a real-time

approach. That is the reason why we need to reduce the cost of such

calculations. To generate textures on-the-�y, the uses of o�ine

techniques to solve global illumination equations is not adapted.

2.3. Volume pre-integration

When rendering volumes, some artifacts due to the step size of rays

can appear. We can call them : slices, which in fact correspond to

a sort of aliasing on volumes. Slices occur when the sampling of

the volume is higher than the length of the step of the rays. Thus

some parts of the volume we want to render have discontinuous

shapes or colors which visually creates slices. However, the smaller

the step size is, the lower the performance will be because we

would need more iteration for one pixel. Indeed, a smaller step

size means to do more steps to cross the volume, and so, much

more evaluation for one pixel, which is expensive for real-time.

To correct this problem, K. Engel et al. [EKE01] suggests the

pre-integrated volume rendering. In addition, this techniques is

suited for high-quality volume graphics and video games. As we

want our virtual nebula to be high-quality, close to Hubble pictures,

pre-integration is the ideal solution to do it in real-time. It will be

used for to correct slices due to the function that modulate the

transparency.

This technique consists in computing the integral of a non-linear

density function, one of the parameters for the local transparency.

So it take in account the value of the previous and the next slice.

Thus we get a slab that interpolate smoothly between the two slices

attenuating the artifact visibility.

3. Our nebula model

At this stage, we have the tools that will help us to render

e�ciently and rapidly a nebula. Keep in mind that we want to

do real-time rendering. With the noise we can produce details

on-the-�y, with volume rendering we can generate 3D shapes and

with pre-integration we can do anti-aliasing on volumes. Now the

other part of our work is to de�ne parameters in order to control

the noise and to give it a good look through a 3D scene. We are

looking for a good visual nebula aspect.

3.1. Speci�cations

In our pragmatic approach, we need to de�ne guidelines create

our nebula model and to do protoyping with it. To summarize we

want to :

• generate a plausible shape of nebula

• have a lot of details

• do it in real-time

• implement and complete the di�erent existing tools that we

noted before

3.2. Dust cloud

The dust cloud of a nebula, is so vast that sometimes even a

picture can’t show it completely. The gas of the star, a�ects the

dust grains of the cloud and thus creates di�erent e�ects on it.

So we can see this cloud as a big volume. For the dust opacity,

we de�ne �rst a transfer function τ(x). This transfer function is

used as blackbox to modulate a the grain densities which in�uence

their opacities. This transfer function in the best case should follow

a physic equation to have good and coherent results. As we do

not want a �at distribution of density between our dust grains,

we use the procedural noise with the intention of picking random

values. The picked values from the noise make the density �uctuate

at each voxel. We can represent this function as τ(n(x)), n(x) is

the noise, v the current voxel. It is in this function where we

insert the multiplicative noise, to see its behavior when used as

a density parameters. With this, we are able to create di�erent

natural looking and detailed dust distribution in the cloud, tuning

the density. We do not use any input data for the shape of the dust

cloud, that is why, to give it a global shape we use a mask m(x).
This mask de�nes a shape complex or not. In our case, most of the

masks we use have a spherical shape which is more simple. The

mask enable to decide which region of the cloud is more or less

covered of dust. We use it in our transfer function to in�uence the

3 | 10

Figure 5: 3D dust cloud rendered in a grey background, the edges

are lighter because there is less dust concentration

Figure 6: 3D dust cloud rendered in a grey background with a

bubble at its center

area where the dust is. With the noise, the mask creates areas of

density disturbances.

For the cloud, we can �nally get the following formula for our

density function with the mask τ(n(x)) · m(x). Then, according

to the discretized rendering equation (section 2.2), the local

transparency of a voxel x can be written as :

e−τ(n(x))·m(x)∆l

3.3. Bubble

Once we have our dust cloud, we can focus on the part of the

center, the empty area. We call this area the bubble. The bubble

repels the dust cloud all around it. This phenomenon is due to

the gas compression. The bubble is then pushes the dust cloud in

all direction from the inside. This bubble, as its names says, has

a spherical shape. This spherical shape is determined by a mask

compress(x). If S is the star at the center of the bubble then, the

mask is compress(m(x)) = Gaussr,t(|v−S|), with r and t the mean

radius and the thickness respectively.

The bubble can be deformed by playing with its radius and its

thickness in order . For example, to deform the surface randomly,

we use again procedural noise. However the value of the noise

doesn’t have to be the same as the previous one. Thus we get for

the mask the following formula :

Figure 7: 3D dust cloud rendered in a grey background with a

deformed bubble at its center

Figure 8: 3D bubble without stretching

Figure 9: 3D bubble with stretching

4 | 10

compress(x) = Gaussr+nr(x),t+nt (x)(|v − S|), nr and nt are

respectively the noise associated to the radius and to the thickness.

We can then push the bubble in the cloud with the following

formula compress(m(x)), this mask acts on the previous one. It

indicates the region where the bubble is pushed. Then, to get the a

�lamentous look we propose to stretch the noise in all directions,

according to the axis of the scene (x,y, z). Our stretching is

su�cient to extend the anisotropic look of our nebula. It is very

di�cult to control the stretching in only one direction. Now we

can write the stretching as n(stretch(x)), so we have then :

e−τ(n(stretch(x)))·compress(m(x))∆l

For both the bubble and the cloud we de�ne absorption

coe�cients αrgb for each color component (red, green and blue).

These coe�cients a�ects the local transparency equation. These

coe�cients are used like an absorption spectrum of wavelength. If

we assume that ∆l is the step size of the ray that goes through the

volume, �nally for the local transparency at each voxel we have

this :

e−αrgb·τ(n(stretch(x)))·compress(m(x))∆l

which is �nally,

e−σt ∆l
,

where σt is the attenuation coe�cient.

3.4. Color and Illumination

The transparency of our dust cloud is de�ned using noise (see

section 3.2), through equation 3.2. We need to specify function

n() and τ() and tune their parameters so that they conform to

requirements: some dust �laments are (almost) totally opaque, but

some areas in between must sometime let the the light go through.

In fact, when the density function τ() = 0 then e−τ() = 1 which

means the transparency will be more present in the nebula when

the result of the function τ() is close to 0. On the other hand αrgb
is assumed to be an absorption coe�cient between 0 and∞ while

basic Perlin noise, used in the density function τ(), returns a signal

in [-1,1]. Note that negative values are not physical. Relying on

multiplicative noise do provide [0,∞[range, but if the histogram

peaks too high, near-zero values will be very rare, so that no

transparent areas will show up. So, we have to.

Each voxel has its own color. This color, annotated in green in

the formula is called the local color. We calculate the local color :

Cloc =
σs
σt

σs is a colormap. The color varies depending on the distance from

the mean shell to the current voxel.

We want to add light to our scene without computing all the

expensive part of light interactions, because we cannot a�ord . The

local material color 3.4, with αrgb and τ() considered as parameters

of σt . A reminder that each of these parameters is wavelength

dependent. In our implementation we consider (R,G,B) vectors

instead of wavelength. The previous paragraph already deals with

the density function τ(). We need to tune σs and α so that they

conform to requirements, either from astrophysical descriptions

or target images. αrgb depends on the dust cloud composition,

but it can also be tuned from images, looking at the chrominance

Figure 10: Histogram of the fractalized noise we use for density

function

Figure 11: Nebula in a spherical bounding box

shift on quasi-transparent parts. σs can have several origins. For

usual material as for re�ection nebulas, it is the intrinsic color of

the material. For the H|| nebula we are primarily interested in,

it is the strong emission due to recombination after absorption

of the central star strong UVs. In this case, theory as well as

observation tells that the �rst dust shell illuminated by the star

emit "blue" light (in fact, O||| emission peak that is usually mapped

as blue in images) , then the slightly deeper one emits "green" (Hα

emission peak usually mapped as green in images), then a last thin

shell emits "red" (�guring the S|| peak emission.) As explained

in section Bubble, our bubble model consists in an analytically

deformed spherical shell. So at any given location x in space,

considering the radial segment to the star we can easily obtain it’s

depth withing the dust star-wise, from its distance to the star and

the shell deformation along this segment. We rely on an analytical

LookUpTable to encode the color α corresponding to the o�set from

the minimum dust radius in this direction.

4. Implementation details

All the prototypes are done in fragment shaders. To do this, we

use Shadertoy, a webGL/GLSL website that allows users to directly

render fragment shaders.

5 | 10

4.1. Balancing the computation time

First, for the volume rendering we decided to use the ray marching

technique. We consider an uniform sampling for the steps of

the rays, the steps have the same through the process. However

processing a ray for each pixel of the viewport is really expensive

if some rays never cross any shape. We want to avoid rays which

never cross the nebula or the dust cloud because they would cross

nothing. Let ti,0≤ i < η be the i
th

step of the ray, k its length, and

η the the number of steps needed to reach the far plan of the scene

(or to cross completely the further object of the camera), from η

and k we get the maximal distance traveled by a ray of a pixel x :

dist(ray(x)) = η · k

We assume all the steps have the same size. When a ray is cast

from a pixel, the ray must to do at least η steps. However, to have

a quite good quality for our volume, if we take a step size which

is too big, the rendering will have a bad quality, the ray would

skip details and some important geometric parts of the volume

and create slices, however the ray will cross faster the scene. If the

step size is too small, the rendering will be more accurate thanks

to its sampling, but the ray will cross the scene very slowly. If we

only divide the step size by 2, then :

dist(ray(x)) = 2.η · k
2

then it is obvious to see that η would have to be two times greater.

So the ray would have to do more evaluations. Which lead to

more computing time, that decreases the performances. To have

a good quality for our nebulas, we render them into a spherical

canvas, which is a bounding sphere. With this technique, we end

earlier the rays that cross nothing. The choice of the step has to be

balanced between according to the hardware capabilities.

In our case here is no need to take a very small step because the

pre-integration smoothes the rendered shape.

4.2. Implementation of procedural noise

If we consider the computing time of the Perlin Noise, then it

would be judicious to use the Simplex Noise, a faster version

of his own noise proposed by Ken Perlin, in order to do only

n+1 evaluations at each element composing our texture, n the

dimension of the rendered image. A simplex is the smaller shape

of n + 1 vertices that can be make in n-dimensional space. Less

evaluations allows to make a faster rendering for real-time

rendering. We want to control our noise, giving it variations more

natural. So we use the procedural noise as input into a Fractional

Brownian Motion function, that is to say, in a simply way, a

function that fractalizes the noise [Mv68]. We add up the noise

on di�erent scale. In this way it enriches the result because it adds

details on the small scales. In addition of our nebula model, we

also try to experiment the insertion of multiplicative noise for the

generation of 3D textures. Multiplicative noise can be considered

as a multi-fractal noise where we multiply di�erent scales of

noise instead of adding them up. The advantage of multiplicative

noise, is that it keeps a constant mean no matter the scale. The

human eye perceives fractalized patterns as natural since most of

the natural objects and perturbations are non-linear. By using a

procedural noise, we intend to reproduce the realistic aspect of

nebulas.

4.3. Illumination calculations

The Illumination() term accounts from the incoming light reaching

the current location in space.

It results from the multiple paths through which the light

transport source light to this point, potentially via multiple

scattering. Multiple scattering simulation is out of reach of

real-time rendering, where only the direct illumination - with

some potential shadowing - from one of several light sources is

accounted. Still, in the ray marching integral computing the current

pixel value, this would yield a second integral to be evaluated at

each sample voxel, i.e. a complexity n2 for a volume n voxels wide,

which is not a�ordable. So we rely on an analytical estimation

of the shadowing, using the same principle as above: we know

the shape of the distorted bubble along the segment from star

to current location to be lighted, and the average density along

given my mask (since the multiplicative noise just shu�e details

in the local distribution). From that, we can analytically estimate

Illumination = Isource ∗ exp((l− l0)ρ)

5. Results and Evaluation

At this point, our model is ready. We want to compare our nebulas

with real pictures of nebulas.

5.1. Aspect of the shape

First, we are interested in the shape.

Figure 12: Zoom on Eta Carinae nebula

We can see that our model can reproduce the wavy surfaces of

real nebula (Figures 12 and 13). This cloudy look is done with the

mask of the bubble (see Figure 13). We can see it on a larger scale

(see �gures 14 and 15)

6 | 10

Figure 13: Reproducing the wavy pattern of a real nebula

Figure 14: Eta Carinae nebula

5.2. Color aspect

An other interesting point is the colorimetric aspect. The colors

and the lights are important because they give the more or less

realistic look. Here we propose di�erent tests to see how behaves

the nebulas.

On �gures 16 and 17 we play with the frequency of the noise in

input of the density function. We see that the frequency of the

noise a�ects the transparency.

Now, on �gures 18 and 19 we play with the absorption

coe�cients that are used to calculate σt . Here, we make varying

the red component of the absorption coe�cients. We see that

the frequency of the noise a�ects the transparency. The red is

absorbed in the �rst test, it is not in the second. We see that the

blue and green seems to remain when the red disappear. However,

remark that the shape doesn’t disappear, the colors with a bigger

red component are still strong enough to be visible.

On �gures 20 and 21 we can se how vary the nebula according

Figure 15: One of our nebulas made from our model

Figure 16: One of our nebulas made from our model

Figure 17: One of our nebulas made from our model

7 | 10

Figure 18: One of our nebulas made from our model with low

absorption coe�cient

Figure 19: One of our nebulas made from our model with high

absoprtion coe�cient

Figure 20: One of our nebulas made from our model with more light

Figure 21: One of our nebulas made from our model with less light

Figure 22: One of our nebulas made from our model with black

background

to the illumination.

Let’s take a look at our nebulas when the background has not

the same color. Indeed, we can obviously see that on �gure 23 the

background is white, in the center of the �gure, there is a nebula.

This nebula is the same than the one on 22, there is no modi�cation

of colors.

We can compare our two �rst prototypes with out last one.

Figure 23: One of our nebulas made from our model with white

background

8 | 10

Figure 24: First model prototype for nebula

Figure 25: Second model prototype for nebula

In our �rst prototypes, we had a lot of artefacts. It was mostly due

to the deformation we were applying, without using noise for it

(see 25. However, in �gure 24 the density of the cloud was heavier,

which was visually better, but there wasn’t this e�ect of �laments

as we can see on 26

Results are very encouraging. For a 800x400 window resolution,

our shader Nebula 16 has the following performances :

• 60 fps → Nvidia GeForce GTX 1080 Ti

• 27 fps → Nvidia GeForce GTX 770

• 27 fps → Nvidia GeForce GTX 1050

Figure 26: Last model prototype for nebula

Figure 27: Performances test shader

• 06 fps → Nvidia GeForce 920M

The performances test were done with the shader, rendered in

�gure 27.

9 | 10

6. Conclusion

After several prototypes of nebula models for real-time volume

rendering, we managed to get a better control and a better look

on our nebula volumes. So we have presented a nebula model

for real-time rendering. The noise proved to be very useful for

these kind of scenes to generate details. Volume rendering is very

e�cient. These powerful tools are really adapted for real-time

applications. We render non-existing nebula with our model. As

far as we know, such models for real-time volume rendering are not

common. Therefore there is no benchmarks to compare our model

with another one of this kind. Our nebula model is su�cient and

e�cient for real-time rendering.

7. Future works

The nebula model can be enhanced in order to achieve very high

performance graphics. A smart method for the volume rendering,

would be to predict when we will have an empty voxel, in fact if

we can predict this, then we could skip the empty areas instead of

computing them. It would cost less evaluations and improve the

performances.

Moreover, for the look of the dust cloud, we could have a

more �lamentous grains with multiplicative noise. We use the

noise as a parameter in the density function but it could be also

used in di�erent ways. The di�culty, that we still have, is to

stretch the noise towards a main direction as we can see with

the �laments on most of the nebula pictures. In �gure 28, the

�laments seems heading towards a principal direction. In addition,

we still have some problems on the color and the light transport,

as we want to do real-time, we do not have the guarantee to have

a good physic for both lights and in particular the shadows. It

can be due to the choice of approximating the illumination. The

light model and the color interactions can be improved. To have

Figure 28: Messier 17, credits : ESO ; in green : the annoted

orientations of the �laments

physical colors, it would be interesting to add a ionization system.

With this, the emission and absorption spectrums (colors) would

be more physical and so we could detect the areas that has to be

ionized.

For the motion of the nebulas, we could insert in our model a

physicaly based animation. The di�culty would be to animate the

noise with coherence. Finally, for future works, our model could

be integrated in the existing software of the previous collaborator

that co-work with INRIA on the ANR project veRTIGE/Galaxy

RSA Cosmos.

Références

[EKE01] Engel K., Kraus M., Ertl T.: High-quality

pre-integrated volume rendering using hardware-accelerated

pixel shading. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware
(New York, NY, USA, 2001), HWWS ’01, Association for

Computing Machinery, p. 9–16.

[Mv68] Mandelbrot B. B., van Ness J. W.: Fractional Brownian

Motions, Fractional Noises and Applications. SIAM Review. Vol.
10, Num. 4 (octobre 1968), 422–437.

[Per85] Perlin K.: An image synthesizer. SIGGRAPH Comput.
Graph.. Vol. 19, Num. 3 (juillet 1985), 287–296.

10 | 10

	Introduction
	Context
	Characterization of a nebula

	Previous Works
	Procedural noise
	Volume rendering
	Volume pre-integration

	Our nebula model
	Specifications
	Dust cloud
	Bubble
	Color and Illumination

	Implementation details
	Balancing the computation time
	Implementation of procedural noise
	Illumination calculations

	Results and Evaluation
	Aspect of the shape
	Color aspect

	Conclusion
	Future works
	Références

