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Abstract:
This paper presents a method for interactively rendering complex repetitive
scenes such as landscapes, fur, organic tissues, etc. It is an adaptation to Z-buffer
of volumetric textures, a ray-traced method, in order to use the power of exist-
ing graphics hardware. Our approach consists in slicing a piece of 3D geometry
(one repetitive detail of the complex data) into a series of thin layers. A layer is a
rectangle containing the shaded geometry that falls in that slice. These layers are
used as transparent textures, that are mapped onto the underlying surface (e.g. a
hill or an animal skin) with an extrusion offset. We show some results obtained
with our first implementation, such as a scene of 13 millions of virtual polygons
animated at 2.5 frames per second on a SGI O2.

1 Introduction
Visual complexity is part of the realism of a scene, especially for natural scenes like
landscapes, fur, organic tissues, etc. When represented explicitly with facets, these com-
plex -and often repetitive- details lead to very high rendering time and aliasing artifacts.
In some cases these details are flat enough to be represented with flat textures. However
in many case they are really three-dimensional, i.e. showing view-dependent appear-
ance and parallax motion (e.g. trees on a hill). Moreover, mesh decimation algorithms
are of no help on such complex objects. The situation is even worse in the scope of
interactive rendering, where only very low complexity scenes can usually be dealt with
in the available time.

The fact that a detail is not flat does not imply it has to be represented by a com-
prehensive - and costly - 3D representation such as a mesh. Indeed, the 3D impression
is a progressive notion: it includes several properties, such as view-dependent contour,
view-dependent apparent location, parallax motion, occlusion, shadowing, diffuse re-
flection and highlights, etc. Depending on the size of the object (or the detail) on the
screen, some of these properties can be sufficient to convey a 3D impression. A means
to do efficient rendering with few aliasing artifacts is thus to use a representation that
refers to the minimum amount of information that is sufficient to reproduce what can
be seen.

1.1 Related work
Volumetric textures, introduced in 1989 by Kajiya and Kay [4] and extended by us [8,
9], consider three different embedded scales to represent the information (see figure 1):
- large shape variations such as the surface of a hill or an animal skin are encoded

using a regular surface mesh,
- the medium scale such as grass or skin, which is concentrated in the neighborhood

of this surface, is encoded using a reference volume stored once and mapped several
times in the spirit of textures (instances are named texels),
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Fig. 1. Volumetric texture specification (cross-section).
- the small scale, consisting of the microscopic shape of individual objects, is encoded

by a reflection model stored in each voxel. In the multiscale extension of volumetric
textures, this scale also corresponds to the pixel size.

To relate this to the progressive 3D impression mentioned before, one can see that
explicit geometry is used only to specify the largest scale; volume data is sufficient 1 to
reproduce occlusions and parallax effects at middle scale (i.e. a few pixels), while the
illumination model stored in the voxels simulates the geometry below pixel size.

Texel rendering has some similarities with volume rendering, a previously costly
ray-tracing method family. In 1994 Lacroute and Levoy introduced a new approach [5]
adapted to graphics hardware, which makes volume rendering interactive. This ap-
proach consists of factoring the voxels by considering slices of the volume, that can
be encoded by textured transparent faces. Volume rendering thus consists of superim-
posing these transparent slices. Since common 3D graphics hardware can deal with
textures and transparency at no extra cost, rendering cost is now only proportional to
the number of slices.

1.2 Overview

This paper presents a method for interactive rendering of complex repetitive geometry.
The idea is to adapt the volumetric textures presented above [8, 9] to Z-buffer graph-
ics hardware, using the same sort of approach that was used for volume rendering by
Lacroute and Levoy [5]. We thus expect to obtain the same kind of complex scene as
the first, with the same kind of interactiveness as the second.

Contrary to volume rendering the size of the volumes used in our method is small.
We can thus render a relatively large number of such volumes interactively. For instance,
a volume encoded with 64 slices can be rendered with a cost of 64 quadrilateral faces
(i.e. 64�2 triangles), while the represented shape is built from a model that might have
at least a thousand faces (and often ten or a hundred times more). Moreover, this cost is
independent of the slice resolution.

On the other hand, using graphics hardware brings some limitations: with hardware
rendering one cannot compute shading nor shadows for each individual texture pixel
(i.e. for each volume cell), while ray-tracing can do this. Only color is stored in the
volume, so the shading and shadows - if any - have to be captured inside the pattern
at the creation stage, and will not be updated according to the main surface orientation
and light position.

1 Because of the concentration of the data complexity within the surface neighborhood, and the
small volume resolution necessary to provide 3D location effect, in our context a volume is an
efficient and compact way to store and render data.



The remainder of this paper is structured as follows. In section 2, we deal with the
basic representation and rendering of interactive volumetric textures, that will be ex-
tended in section 4. In section 3 we describe how to encode the shape of a detail into a
texel, in particular by converting existing representations. Animation approaches avail-
able for the ray-tracing method [7] are still usable for ours. We review these approaches
in section 5. We discuss the results in section 6.

2 Basic representation and rendering
In this section, we present our method to encode a complex object made of repetitive
details lying on a surface, and explain how to render the representation obtained. The
modeling of the content is the object of the next section.

2.1 Data structure

In the same way as ray-traced volumetric textures [8], the specification of an object
consists of a triangular mesh with (u; v) texture coordinates and a height vector at the
vertices, plus a volumetric texture pattern. The height vectors control the direction and
thickness of the third dimension of the texture (see figure 1).

The volumetric part of the model is different to the one used for the ray-traced
version: it consists of a set of RGBA textures, representing infinitely thin horizontal
slices of the volume. Empty parts have A = 0 (i.e. the slice is transparent there), and
opaque parts have A = 255.

Fig. 2. A texel is drawn using extruded textured triangles.

2.2 Rendering

The rendering is done using a standard hardware-accelerated 3D graphics library
(OpenGL [6], in our implementation), by drawing textured extruded facets above each
geometric facet of a “volumetrically textured” surface. The three vertices of an extruded
facet (corresponding to a slice) are obtained by linearly interpolating the position along
the three height vectors at the three vertices of the surface facet (as illustrated in fig-
ure 2). Hardware MIP-mapping [13] can be used to deal with aliasing at grazing view
angles and distant location. Notice that texture, transparency and MIP-mapping come
at no extra rendering cost2 on various 3D graphics cards.

It is known that transparency does not work well with a Z-buffer; correct trans-
parency would require storing several Z, alpha and color values per pixel. As long as
the alpha value A is 0 or 255, this is not a problem: transparent texture pixels are not
drawn, and opaque texture pixels hide what is behind them. However a problem occurs
when semi-transparent texture pixels exist, either because the content is smoothed or
the MIP-mapping feature is on. To deal correctly with this problem, one has to draw the
slices from back to front. This is easy to achieve within a single texel, but this would also
require to sort the faces with Z, which is costly. Thus, we do not allow semi-transparent
data in our implementation. However we do draw the slices from back to front, since
this avoid the artifacts that may occur due to the lack of resolution in Z between slices.

2 To a certain extent, beyond which hardware bottlenecks occur.



To choose the drawing order, it is sufficient to test the dot product of the normal to the
surface facet and the view direction, assuming that the texel is not too distorted by the
height vectors.

Each volume location is treated by the Z-buffer as a regular pixel fragment (i.e. it
has its own Z-value), thus the intersection of two texels is dealt with correctly, which
was not the case in the ray-tracing version. This important property is illustrated in
figure 10(right) in the results section 6.

3 Modeling the pattern
In this section we describe how to encode in a texel one repetitive detail of a complex
object. This detail is created using an existing modeling tool. However, using a textural
approach to repeat the detail brings some constraints to the pattern shape: the 3D texture
pattern, i.e. the reference volume of the volumetric texture, corresponds to the cubic
box between (u; v) = (0; 0) and (u; v) = (1; 1) in the texture space. The mapping will

Fig. 3. Left: Pattern with torus topology. Right: Isolated pattern.

generate the (virtual) copies of the detail according to the (u; v) texture coordinates
at the vertices. For the result of the mapping to appear continuous, the cubic pattern
content has either to obey torus topology, or to consist of a disconnected shape that
does not reach the borders of the reference volume, as shown in figure 3.

Once an appropriate shape has been chosen or modeled for the detail, it has to
be encoded in the volume (i.e. the set of texture slices) in such a way that the texel
reproduces the same visual effect. This leads to several stages in the encoding:
- slicing the 3D description,
- evaluating the shading at each location,
- filling the inside of the shape.

The last issue is a key point: if the description is a surface, and not a solid, each slice of
it is a contour (see figure 4(left) ), so gaps would appear between slices when the view
direction is not orthogonal to the surface. Thus the shape has to be solid, or to be turned
into solid if the description is a surface3. Some inside slice pixels are visible between
two contours4 as shown in figure 4(middle). We need to propagate the surface color
toward the inside, in such a way that the image appears as continuous as possible.

This approach is not sufficient for grazing view angles, because the gap between
slices appears, as illustrated in figure 4(right). This problem is solved in section 4.

Fig. 4. Left: Contours. Middle: Filled contours. Right: Gaps appearing between slices at grazing
view angles.
3 Of course, this does not concern shapes made of sparse polygons, e.g. foliage.
4 Here, we only deal with opaque solids.



3.1 Slicing and shading the pattern shape

In the case of a standard surface description (e.g. an OpenInventor database), one can
use a standard renderer (e.g. OpenGL) to do the slicing and shading at the same time.
The view point is set at the top of the 3D pattern, a bounding box is defined by the
user, then the front and back clipping planes are successively set around each slice (as
illustrated in figure 5). Each resulting RGBA image is stored as a texture slice (including
the alpha value, which is crucial), and the slices set is stored on disk.

slice i

back clipping planefront clipping plane

Fig. 5. Slices construction using a regular rendering tool.

A ray-tracer may be used as well for the rendering of the slices, which would allow
for shadows. However, as for the shading, one has to keep in mind that the considered
light directions will be fixed at this construction stage.

3.2 Filling the inside

For surface descriptions, the slices are empty contours, that need to be filled. Worse,
these contours are incomplete. Thus the filling comprises three stages:
- closing the contours,
- marking the inside (i.e. where to propagate the color),
- performing the color propagation within a slice.

current column

slices

object slicing

colored voxel

empty voxels

inside (uncolored) voxels

column segment

gap

Fig. 6. Cross-section of the slices. The contours are bold. Note that there is sometimes a gap of
several slices. This means that the intermediate slices have unclosed contours at this location.

The contours are generally not closed because the drawing of polygons viewed at a
grazing angle (typically on the shape silhouette) generates consecutive pixels that can
fall in very distant slices, i.e. their step in z is greater than the z interval between slices.
This results in the contour not being drawn on the intermediate slices (see figure 6). To
cope with this, we have to close the discretized shape surface by filling the gaps: let us
call a column the set of pixels at a given location (x; y) through the set of slices. We
now consider the volume as a set of columns. The segments in a column that fall inside
the shape are made of uncolored pixels marked ‘inside’ bounded by two colored pixels,
as shown in figure 6(right). A gap in the surface occurs when some of the uncolored
column pixels directly neighbor the outside, because one or more of the four neighbor
columns are empty at that position. Call exposed (i.e. to the outside) this part of the
column. The problem of closing the contours is thus equivalent to filling these exposed
voxels. Several algorithms are available for closing and the shape filling [10]. We have



implemented a basic algorithm for our tests, which we present in appendix. Note that
the contour completion process has also to get color values for the contour pixels added,
to be obtained by interpolating the surrounding colors.

Once the inside is marked and the surface is closed (i.e. there are closed contours
in every slice), we fill the contours by iteratively propagating the colors. If a pixel is
marked as inside and uncolored, and at least one pixel in its neighborhood is marked
as colored, then the pixel is painted. The used color is the average of the colored pixels
of the neighborhood (it is drawn in a separate buffer to avoid bias due to the order of
scanning).

3.3 Other kinds of shape specification
Implicit surfaces

Implicit surfaces [1] are easier, because they directly specify solid objects: a pixel
is inside if the implicit function is greater than one, and the shading is obtained using
the gradient of the function as a normal. Since the construction of the texture pattern
does not especially need to be efficient (it is a precomputation), we simply evaluate the
implicit function at each volume location along the slices, and thus no filling is required.
Hypertextures [12] can be handled exactly the same way.

Height fields
Height fields are a popular way of specifying the details of a surface. We consider a

2D grey-level image with [0; 255] range values. Each image (x; y) location corresponds
to a column in the volume: we set the pixel of the slice that fits the z value encoded by
the intensity of the image at that location. Thus, the slicing stage is trivial. The normals
can be computed from the height gradient in the neighborhood and used with the Phong
shading to get a color.

We have used Perlin noise [11] to produce grey-level images to be used as height
fields (see figure 12 in section 6). Since this function is continuous, we prefer to directly
use its gradient to get the normals, thus we provide directly to the height fields voxelizor
an image of the shading in addition to the image of depth. We also incorporate in this
image information such as color and darkness (proportional to the depth).

The filling is similar to the process done in section 3.2 (and detailed in appendix 7)
for shapes specified by their surface. It is simpler however, since each column has only
one segment, with the top given by the image and the bottom at the volume bottom. The
inside corresponds to all the voxels that are below the given z value. The contours have
to be closed as explained in section 3.2, with fewer special cases. The final color filling
of the slices is exactly the same.

4 Dealing with grazing view angles
When coping with grazing view angles, typically on the silhouette of the underlying
surface on which the texels are mapped, horizontal slices are no longer satisfactory
because the gap between slices appears, as illustrated in figure 4(right). In this section,
we introduce quality criteria to decide if the appearance of a texel is correct or not, and
we additionally store alternate directions of slice sets to get a correct appearance for
any view direction. This also provides some hints for optimizations.

4.1 Quality criteria
When the view direction has an large angle from the vertical (of a texel), one can may
be able to see through the sliced shape, because the projections on screen of two con-
secutive slices are not superimposed (see figure 4(right) ). This depends on the angle a,



on the length h between slices, and on the (horizontal) thickness of the filled contours
in the slices (call e the narrowest slice), as represented in figure 7(left). This provides
a first quality criterion, h tan(a)=e � 1 , that indicates when such an artifact does not
occur. This criterion can be used either to choose the number of slices to use to repre-
sent correctly a detail up to a given limit view angle, or to switch to an alternate slicing
direction as describe in subsection 4.2.

However, as stated in section 3, the image may look degraded even for smaller view
angles, because when the view direction is not orthogonal to slices one can see some
pixels that are inside the contours. At some point an inside color differs from that of
the surface. This provides for another quality criterion: if the user does not tolerate
that the inside can be seen “deeper” than a constant d (see figure 7), the criterion is
h tan(a)=d � 1. A maximum value for d is e=2: since the shading of two opposite
sides often has the opposite contrast, at some point (when closer to the other side of
the contour) the deepest visible inside pixel color is closer to the opposite contrast than
to the color of the border whose is should appear continuous (see figure 7(right) ). The
smallest contour thickness being e, this gives the limit of penetration e=2. Once again,
such a criterion helps in choosing a correct number of slices. E.g. if one wants to allow
view angles up to a = �=3 and the narrowest horizontal part of the shape is e = 3
texture pixels wide, then the distance between slices should be less than 0:9 times the
length of a texture pixel.

e

h

a

d

}h

d

Fig. 7. Left: Slicing characteristics. Right: Limit for the second criterion: half of the inside of the
narrowest slice is visible.

4.2 Alternate slice directions
To deal with grazing view angles (relative to the main slice set, called ‘horizontal’, i.e.
parallel to the underlying surface), we also store the same volume as a set of slices in
the two vertical slice directions (see figure 8).

Fig. 8. The three slicing directions.

At rendering time, the dot product c i of the three directions and the view direction
indicates which of the three sets to use (a classical solution when one has to draw objects
organized along a 3D grid or an octree [3]). As suggested in the previous subsection,
one should choose the slices direction that has the smaller quality criterion value. The
tangent of the view angle is

p
1� c2i =ci, so that the direction to use is the i for which

(1=c2i � 1) � h2i is minimum, with hi the slice density for direction i, i.e. the size Li of
one texel in this direction divided by the number N i of slices in this direction5. Thus, a
5 However in our early implementation, we simply choose the direction for which the absolute

value of ci is maximal.



volume can be visualized correctly from any direction. 6

4.3 Optimizations

Rendering a complex scene modeled with volumetric textures finally consists in draw-
ing several thousands of textured polygons. There are two aspects in the rendering cost:
- the number of textured polygons that are drawn,
- the efficiency of the rendering process.

The number of polygons
There are two ways of decreasing the number of polygons to render: not drawing

invisible texels (or slices), and using the minimum slice density for each texel.
The first issue is not easy to solve, since a texel lying on a back face can have some

parts that are visible, so that culling is not trivial in general. A possible improvement
would be to first draw (and temporarily) the bounding box of the texel, to check if at
least one screen pixel was affected (e.g. using the stencil planes), and to proceed the
rendering of this texel only in this case (quite like in [14] for visibility culling).

The second issue can be dealt with by deriving the minimum number of slices N i to
get a correct image from the quality criterion: h i tan(a)=d � 1, so Ni � Li tan(a)=d.
This provides at the same time the direction and the number of slices to get a correct
result with the lowest cost.

Another criterion can be used to decrease the number of slices with the distance:
if one wants that the apparent distance between slices be less than p pixels on screen
(p � 1), the criterion is h sin(a)

z=f
� p.

To avoid aliasing, we proceed quite similarly to MIP-mapping [13]: the number of
slices in each set is a power of two, and we precompute several sets of slices. The
criteria provide an optimal number of slices, which we round up to a power of two, that
gives the set number to use. (None of these optimizations were used when running the
tests presented in the result section.)

The efficiency of rendering
The effective rendering cost is strongly linked to the fact that the various graphics

system bottlenecks can be avoided. In our case, a crucial one is the saturation of the
texture cache. To minimize the potential texture cache faults, we use an alternate texel
rendering method, that first draws all the occurrences of a given texel slice (in order
to satisfy the back-to-front drawing requirement, the slices of front facing and back
facing texels are drawn separately). Notice that this is valid only as long as there is no
semi-transparent data, which would need to draw the back texels before the front texels.

5 Animating volumetric textures

Three ways of animating volumetric textures are mentioned in [7], that also correspond
to three scales (illustrated on figure 9):
- deforming the underlying surface (e.g. for a flag or the skin of an animal),
- deforming the texture mapping, particularly the height vectors orientation (e.g. to

simulate the wind on grass or fur),
- using several cycling volume contents along time, as for cartoons (e.g. for local

oscillations).



surface deformation

mapping deformation

texel content modification

Fig. 9. The three modes of animation, that also correspond to three scales.

These methods are still usable with our interactive rendering. Surface vertices or
height vectors modifications need to recompute few items at each frame, which can be
done using physical models (see [7]). Time constraints are the same as for any near
real-time animation of simple surfaces. Cycling a volume set has some consequences
on memory if different volumes of the set are visible in the same frame. Notice that the
texture memory on SGI O2 is the same as the main memory, so that this is not really
a limitation on the machine we use for our tests. However this can be a problem on
other platforms, thus the drawing of the instances of a given pattern has to be grouped
together, so that the texture cache changes only once per kind of pattern.

6 Results

Fig. 10. A single pear texel at resolution 64
3. Right: Surperimposition of two texels.

The first example is an Inventor database of a pear, having about 1000 faces. The
figure 10 shows a single texel at resolution 64�64�64 from various viewpoints (using
6 Notice that SGI has 3D texture facilities that also consist of a color volume, which can be

indexed more easily (a single set of slices is sufficient). We have chosen not to use this feature
because it is not available on most graphics hardware (in contrast to textures and Z-buffer), and
because we want to control the texture memory usage to avoid swapping.



different slices directions). On the right, the figure illustrates that the superimposition of
texels works correctly. In figure 11(left) we present the mapping of 96 pears on a sphere
mesh having 192 triangles. At video size, this scene is refreshed at 2 frames per second
on an SGI O2. Since one texel representing the pear is rendered with 64� 2 triangles,
while the geometric model contains 1000 triangles, the rendering gain is about 7.5 times
with equal visual complexity. Note that the pear is a simple model; the gain would be
more when using a more complicated model. Oppositely, it is clear that our method is
not interesting if the complexity of the pattern is less than 64 faces.

Fig. 11. Left: Mapping of 96 pear texels on a sphere. Right: Mapping of 16 bushes.

.The second example is based on an AMAP [2] generated bush of 3,500 triangles.
Since the data consists in sparse triangles, no filling is done. The texels have a 256 �
256� 64 resolution. The rendering of 16 instances shown in figure 11(right) is done at
6 frames per second. Note that because the number of instances is tuned at the mapping
level, the cost would be the same even with many more bush instances.

Fig. 12. Cyclical Perlin noise used to generate the height field, and the illumination computed
from its gradient.

The third example uses an height field created with a cyclical Perlin noise. The
noise and the illumination computed from its gradient are figured in 12. A single texel
at resolution 256 � 256 � 64 (i.e. with 64 slices) is shown on figure 13, with various
deformations obtained (in real-time) by modifying the height vectors. Such an height
field should be geometrically represented with 256�256�2 = 131; 072 triangles, while
using this texel it is rendered with 64� 2 triangles, with equivalent visual complexity.
Here, the gain in polygon drawing is about 1000 times. Note that some artifacts occur
on the top left of the deformed texel, where the quality criterion is not satisfied (by
evaluating the criteria at the facet center, one assumes the deformation is small).

Image 15 (see color section) represents the mapping of 96 texels on a sphere mesh



Fig. 13. Left: A texel at resolution 256�256�64 created from the height field. Middle and right:
Deformation of the texel by modifying the height vectors.

of 192 triangles. The frame rate is about 1.3 frames per second on an SGI O 2. The ren-
dering of this scene could be optimized a lot, as suggested in section 4.3: no back-face
culling is performed. Moreover, half of the texels appear on the sphere silhouette, thus
10% of the image represents 50% of the drawing, and 66% of the cost (because verti-
cal slicing that is more dense due to the texture resolution is used near the silhouette).
This is a waste, because on the silhouette keeping a lot of slices is useless considering
the criteria seen in section 4.1. We thus expect to multiply the frame rate by about 5
by doing these optimizations. The figure 16 (see color section) illustrates the mapping
of 100 texels on a jittered plane at 2.5 frames per second. This last scene has a visual
complexity of 13 million of triangles.

7 Conclusion
We have presented a way to considerably increase the visual complexity of scenes dis-
played in the scope of interactive rendering, by adapting the ray-traced volumetric tex-
ture method [8, 9] to the graphics hardware features typically available on today’s 3D
graphics cards. Each texel mapped on a surface is rendered by drawing a set of extruded
faces covered with transparent textures. The extrusion is controlled by height vectors
located at the vertices (which can be animated). We propose several ways to build the
texture content from various 3D descriptions (meshes, implicit surfaces, height fields).

Compared to the ray-tracing version, the rendering quality is of course lower (shad-
ows and illumination are fixed). But compared to the low complexity of the scenes
usually displayable at an interactive rate, our method brings a large improvement as
shown by our results: the apparent complexity can be of 13 million polygons. The re-
alism induced by the amount of visible details was previously totally unavailable for
virtual reality applications. Among possible applications, we aim at introducing these
apparent details in a surgery simulator we are working on. The main organ surfaces are
reconstructed from scanner data, and only these surfaces are taken into account in the
physical simulation of deformations. The 3D details added by the volumetric texture
simply enrich the image by “dressing” these surfaces.

As future work, we want first to improve the frame rate by implementing the opti-
mizations mentioned in section 4.3, and optimizing the OpenGL code, in order to get
closer to real-time. We are currently working on the algorithm which uses an adaptive
number of slices. Another issue is the development of a less naive filling algorithm to
deal with more complicated patterns. We are also investigating ways of generating local
illumination on the fly, possibly in the spirit of bump-mapping textures using high-end
graphics capabilities.
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Appendix: Filling the shapes

Marking the inside of the shape
This stage prepares the color propagation stage (and can also help the contour closing stage), by

indicating where to propagate. It is thus a regular filling problem. We simply consider the parity
of surface crossing between the current location and the top: for each (x; y) horizontal location,
we traverse the ‘volume’ along z (i.e. the successive slices) from top to bottom, assuming that the
top is outside the shape, and we flip a flag each time an opacity transition is found at a voxel (i.e.
a texture pixel of a slice). Thus the inside area of each slice is marked. This method was easy to
implement for our tests, but is known to fail for complicated shapes. A better filling method like
non-recursive connectivity filling [10] should better be used in general.

Closing the contours
We have seen in 3.2 that this is equivalent to filling the exposed part of a column. We interpolate

the color in the intervals defined by the top of the current column segment and the top of the
neighbor columns segments that start below it (and we do the same for the bottom). We compute
this interpolation for each direction in which the column is exposed to the outside (i.e. up to four),
and we store the mean of these, thus coloring the missed contour pixels (see figure 14(left) ). If
the surface is vertical, the column has no neighbor in one direction. Then we we interpolate the
color from the top to the bottom of the segment (see figure 14(right) ).

C1

C2

C3 interpolation C1−>C3

interpolation C1−>C2

average of
interpolations

uncolored
inside voxels

colored voxel

Fig. 14. Filling of the exposed part of the column. Right: Segment with one or two colored ends.



Fig.15. Mapping of 96 texels on a sphere. Fig.16. Mapping of 100 texels on a jittered
plane made of 200 triangles.
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Abstract

The frame of our work is the efficient realistic rendering
of scenes containing a huge amount of data for which an a
priori knowledge is available. In this paper, we present a
new model able to render forests of pine-trees efficiently
in ray-tracing and free of aliasing. This model is based
on three scales of shaders representing the geometry (i.e.
needles) that is smaller than a pixel size. These shaders
are computed by analytically integrating the illumination
reflected by this geometry using the a priori knowledge.
They include the effects of local illumination, shadows
and opacity within the concerned volume of data.

Key words: Shaders, levels of details, natural scenes, ray-
tracing

1 Introduction

Natural scenes such as landscapes and forests are ex-
tremely complex in term of the number of geometric
primitives that lies in the field of view. Trees belongs
to this category of objects that have no defined surfaces,
which makes most of the geometry inside the canope po-
tentially visible and potentially enlightened. Ray-tracing
such a scene is thus very costly and very subject to alias-
ing. On the other hand, geometric details like needles or
leaves are so small that they usually cannot be seen except
for the nearest trees. Boughs of leaves themselves merge
with distance. It is thus tempting to replace the indistin-
guishable data by a fuzzy primitive that would reproduce
the same photometric behavior that the group of geome-
try it represents. In this paper, we propose such primitives
at several scales for the particular case of the pine-tree or
fir-tree. This approach can certainly be extended to other
kind of trees, or to other objects for which an a priori
knowledge on the shape distribution exists.

� iMAGIS is a joint research project of CNRS/INRIA/UJF/INPG.
iMAGIS, INRIA Rhône-Alpes - ZIRST, 655 avenue de l’Europe, 38330
Montbonnot Saint Martin, France.

2 Previous Work

Which aspects matter in the photometric behavior of a
group of shapes ? The cumulated local illumination, the
cumulated shadows, and the cumulated opacity. An a
priori knowledge on the matter distribution will help to
compute them. Conversely, the exact shape and location
of single parts are unimportant as soon as they introduce
no correlation in the visibility of parts that is not already
captured in the a priori knowledge. We survey now the
existing models which purpose is to represent the effects
of the small scales and the rendering models of trees.

Surface shaders

Some primitives have been proposed early to figure small
surface details without rendering explicitly their geom-
etry: Blinn has introduced textures of Phong parame-
ters [3] and bump-mapping [4] in this purpose.

Kajiya has introduced the idea of hierarchy of models
[11]. In this paper, he suggests to switch from geome-
try to mapping of Phong parameters, then to reflectance
model1 according to the distance. Transitions from ge-
ometry to bump and from bump to reflectance have been
proposed in [1, 5, 7].

Several reflectance models based on the surface micro-
geometry have been developed [11, 24, 8, 17, 6, 10, 9].
Most of these models consist in proposing a representa-
tion of the matter distribution, then to integrate the local
illumination while addressing the visibility of the details
for the viewer and for the light (i.e. self-shadows).

Volume shaders

All the models above are designed for surface details. In
the scope of 3D matter distributions, Blinn has early pro-
posed a reflection model for volumes of dust [2] repre-
sented by micro-spheres. Stam has developed in [21] a
stochastic model which allows the analytical integration
of the stochastic distribution of matter to represent details
in clouds. Kajiya introduced the volumetric textures [12]

1reflectance models are also named shaders.



in the scope of fur rendering. A shader (i.e. a local illumi-
nation model) is derived to integrate the light reflected on
hairs represented by cylinders. This cylinder shader has
been improved in [8] and Neyret has extended the volu-
metric textures representation in [14, 15] by introducing
a shader able to integrate at one scale the shaders repre-
senting a thinner scale.

Contrary to the models of surface details, most of the
3D models presented above fail to address analytically
the visibility of the details from the viewer or from the
light. For instance the representation of the 3D micro-
geometry by a normal distribution in [14] cannot capture
the visibility (otherwise the normal distribution should
depend on the point of view), whereas the stochastic
model of [22] can.

Dedicated tree rendering models

On the other hand, several models dedicated to an ef-
ficient representation and rendering of trees and forests
have been proposed, using ray-tracing or real-time tech-
niques [16, 23].

Reeves introduced the particles systems [19, 20]. This
representation is dedicated to objects made of a huge
amount of small long primitives that are drawn as sim-
ple strokes, well suitable for modeling trees. In his paper,
the shadows are faked using a priori simple laws such as
proportionality with depth inside a tree.

Max proposed in [13] a hierarchical representation of
trees based on color-depth textures following the natural
hierarchy of trees.

Early conclusions

To conclude at that point, we can tell that:

� shaders based on a normal distribution function dif-
ficultly account for the shadowing inside the small
scale.

� shaders consisting in a sampled BRDF are more accu-
rate, but cannot easily be parameterized.

� shaders consisting in analytical BRDF can be both
visibility-compliant and parameterized but are not
easy to derive.

Our key idea is that such analytical BRDF can be de-
rived when strong a priori knowledge on the matter dis-
tribution is available. We think that the matter in trees
is structured enough to offer such a possibility. In this
paper we address needle-based trees such as pine-tree or
fir-tree, as the a priori knowledge on needles distribution
is strong.

φ

l

R

dh

R

l

2r

Figure 1: Our hierarchical description of a tree.

3 Contributions

3.1 Our model of pine-tree (see Figure 1)

� A tree is a set of branches and needles that we describe
using an L-system [18].

� Branches are classical geometry (i.e. cylinders).
� Needles are cylinders, whose angle φwith the branch,

length l, radius r, density (i.e. distribution) ρ change
slowly along a branch so that they can be considered
locally constant.

� The needles layer around the branch (i.e. the bough)
is thus a cylinder of radius R = l sin(φ).

� We assume that needles are spreaded on cones, with N
needles per cone. The distance between cones along a
branch is dh. As the gap between two needles end is
2πR
N and the gap between two cones is dh, it is reason-

able to chose dh =
2:π:R

N =
pρ. Whether it is the case

or not, we have the relation dh 2πR
N = ρ.

3.2 Multiscale rendering

Depending on the distance, the smallest primitive we con-
sider is either the needle (level 1), the cone (level 2), or
the bough (level 3). We render the scene using a simple
cone-tracing: the conic ray is used to estimate the ap-
parent size of primitives and to compute their coverage
alpha to the pixel. We also use this cones for the shadow
rays, assuming point light sources.

The main issue is to compute the global reflectance and
opacity of a considered primitive, including the internal
shadows. Since we use only conic rays, the rendering is
processed with no oversampling at all.

Thus the main contributions of this paper are the multi-
scale representation that we detail in the next section, the
three shaders we derive (detailed in sections 4, 5 and 6),
and the method we use to solve the illumination integrals,
in particular the geometric interpretation of the visibility
and shadows in the level 3 model.

3.3 What we need to compute

In this section we estimate the requirement for the ana-
lytical computation of the three shaders. The results and
the details of these successive integrations are the object
of the three next sections. The ~L and ~V vectors are con-
sidered constant because light source and the viewer are
far.



Figure 2: Left: the continuous cone model. Right: the continuous
bough model.
Level 1 (needles)
To shade a needle, we need the amount of diffuse and
specular light Id and Is reflected by a cylinder [12]. In
[17] the integral is correctly expressed in pixel space. We
use this form, with different bounds and a cheaper ap-
proximation for the specular integral.

We never compute explicitly the intersection of the
needles with the cone-ray. We compute instead the inter-
section of a cone of needles, and we consider the needles
that are on the visible part of the cone. Then we sum their
illumination.

Level 2 (cones)
We consider that shading a cone of needles is equivalent
to shading a continuous semi-opaque cone whose each
point reflects the light as a local needle would (see Figure
2 left). The opacity A is the amount of the cone surface
covered by needles, so is defined by A =

2Nr
πR . The illumi-

nation is A times the integral in pixel space of the cylinder
illumination on the visible part of the cone. The front and
rear part are considered separately, and only a portion of
these parts may be visible in a pixel. This integration is
not trivial and requires several approximations.

Level 3 (boughs)
We consider that a bough to be shaded is equivalent to a
semi-opaque anisotropic volumetric cylinder made of im-
bricated cones (see Figure 2 right). The illumination and
opacity of front and rear parts of the cones correspond to
the level 2 shader already derived (the front part of all the
cones are equal, same for the rear parts). The volume
model is both continuous and anisotropic: the opacity
has to reproduce the same effect as the number of cones
traversed by a ray while rendering at level 2, which is
strongly dependent of the angle of the ray. The difficult
part is the analytical volumetric integration of it, taking
into account the visibility and the shadows. Assuming
we can use a linear approximation 2 of the opacity com-
position law, i.e. (1�A)n � (1�n:A), we transpose this
integral into a geometric form.

4 Cylinder illumination

We have to integrate the diffuse and specular components
into screen space (i.e. we sum the contributions to the

2which is valid for nA� 1, i.e. if the bough is not too dense

cl
cv sv sl
V

L

αl-αv

Figure 3: A single needle.

pixel color and opacity). Either reflectance or illumina-
tion can be derived; one can trivially convert one into the
other since we also compute the opacity.

� The diffuse reflectance toward the viewer is

Rcyl
d =

R
cylinder (N:L)1I(N:L>0)(N:V )1I(N:V>0):dS

R
pixel (N:V )1I(N:V>0):dS

Let cv and cl be the projections of V and L on the
cylinder axis ~a, i.e. cv = (~a:V ) and cl = (~a:L) (see
Figure 3).
Let Vp and Lp be the projections of V and L on the plane
orthogonal to the cylinder, and sv and sl be their norm.

Rcyl
d =

R α1
α=α0

sl cos(α�αL)sv cos(α�αV )dα
R αV+

π
2

α=αV�
π
2

sv cos(α�αV )dα

with αV and αL the angles between a reference in the
plane and respectivelyVp and Lp. The bounds of visibility
α0 and α1 are αV � π

2 and αL +
π
2 if L�V has the same

direction than~a. We introduce ∆α = jαV �αLj and then

Rcyl
d =

sl
4 (sin(∆α)+(π�∆α)cos(∆α)) (1)

� The specular reflectance toward the user is

Rcyl
s =

R
cylinder (N:H)

n1I(N:H>0)(N:V )1I(N:V>0)dS
R

pixel (N:V )1I(N:V>0)dS

with the half-way vector H =
V+L
jV+Lj and n the specularity

exponent.
Let Hp, ch, sh and αV be defined like for L and V . Then

Rcyl
s =

R α1
α=α0

sn
h cosn

(α�αH)sv cos(α�αV )dα
R αV+

π
2

α=αV�
π
2

sv cos(α�αV )dα

It is well known that cosn
(x) is very similar to e�

n
2 x2

for n
large (which is the case). Moreover the density of this
function is concentrated on x = 0 (the standard devia-
tion is 1=

p
n, and n is generally greater than 100), so that

cosn
(x� x0) f (x)� cosn

(x� x0) f (x0)
Thus, we have
Rcyl

s � (sn
hsv cos(αH �αV )

R α1
α=α0

e�
n
2 (α�αH)

2
dα)=2sv

Since
R ∞
�∞ e�

1
2 (

x
σ )

2
=

p
2πσ, the integral above equals



q
2π
n if αH 2 [α0;α1] which is always the case. Thus

Rcyl
s � 1

2 sn
h cos(αH �αV )

q
2π
n (2)

� The opacity is the proportion of the needle apparent
rectangle that falls in the pixel. If the needle is totally
covered by the pixel, then

alphacyl
=

2r:svl
Spix

(3)

where Spix represents the surface of the ray-cone section
at the primitive’s distance. Thus the diffuse and specular
illumination are Id = alphaRd and Is = alphaRs.

5 Cone illumination

As discussed in section 3.3, we consider that the cone is
a continuous semi-opaque surface of opacity A, whose
each point of the surface reflects the light as a cylinder.
Thus, we need to integrate the cylinder illumination into
a cone of aperture φ for all the valid needle axis positions
~aθ. In the polar coordinate system associated to the cone,
we denote L = (θL;φL), such that φL is the angle between
L and the cone axis. Similarly we denote V = (θV ;φV ).

� The diffuse illumination is given by:

Icone
d =

lA
4

Z θV+
π
2

θ=θV�
π
2

slsv (sin(∆α)+(π�∆α)cos(∆α))

where lsv is the apparent length of a needle.

We cannot integrate analytically this formula. As such,
we approximate slsv(sin(∆α)+(π�∆α)cos(∆α)) by us-
ing the function

F = sl sv (1=2+ cos(∆α)=2)(2+(π�2)cos(∆α))

which has the same values and derivatives in 0, π
2 and π

and which maximum error is less than 1%.
Since cos(∆α) = (Lp:Vp)

(jLpj:jVpj)
=

(L:V)�cl cv
slsv

thenR
F = (L:V + slsv� clcv) :(2+(π�2)(L:V � clcv)=slsv)

Figure 4: Left: An example of F curve, for L = (0;1:2), V = (1;1:5)
and φ= :5. It is very smooth, despite its factors are quite more chaotic.
Right: the FFT of this curve. Notes that the energy is clearly concen-
trated on the frequencies 0, 1 and 2, thus the motivation to fit F with a
linear combination of 1, cos(θ�θA), cos(2(θ�θB)). NB: the values at
the extreme right are the mirroring due to the FFT.

When tracing this function with Maple for many val-
ues of the parameters L, V and φ, it appears that the curve
is very smooth (Figure 4 left), and looks like a linear
combination of 1, cos(θ� θA) and cos(2(θ� θB)). The
FFT evaluation on discretized curves shows that there is
practically no energy out of the frequencies 0, 1 and 2
(Figure 4 right). As such, we try to fit such a curve to
F from the location and value of its extrema. The first

factor capture most of the variations of F and is more
easy to analyze, so to fit the curve we approximate F by
(L:V ) + slsv � clcv which seems to have its extrema at
the same θ value than F .
The term clcv � slsv equals cos(cAL +cAV ) with cAL the
angle between the vectors ~a and L , and cAV the an-
gle between the vectors ~a and V . These angles vary
smoothly between a minimum and a maximum while ~a
rotates along the cone, so we model the variation of cAL
by the form AL +BL cos(θ� θL) with AL = max(φL;φ),
BL = min(φL;φ). We do the same for cAV .
If we develop cAL+cAV with this approximation we obtain
the expression AΣ+BΣ cos(θ�θΣ) with
AΣ = AL +AV , B2

Σ = B2
L +B2

V +2BLBV cos(θL�θV ),

cos(θΣ) = (BL cos(θL)+BV cos(θV ))=BΣ,

sin(θΣ) = (BL sin(θL)+BV sin(θV ))=BΣ

Figure 5: The two aspects for the curve cos(AΣ+BΣ � cos(θ�θΣ)),
depending whether AΣ+BΣ � cos(θ�θΣ) crosses π (right) or not (left).

We can now search for the extrema of F � (L:V )�
cos(cAL+cAV ). They correspond either to the extrema ofcAL +cAV or to the location for which cAL +cAV crosses
π. If cAL +cAV does not cross π, F looks like a cosine
function. If it does, F has a hat shape and looks like the
combination of a cosine and a cosine at double frequency
(see Figure 5). The similarity is high if φL and φV are not
very close to φ. Thus, we can now obtain explicitly the
extrema of the curve.
As we are precisely trying to fit F to the form
(L:V )� (λ0 +λ1 cos(θ�θm)+λ2 cos(2(θ�θm)))
we just have to set the parameters from these extrema:
let M = cos(AΣ�BΣ) and m = cos(AΣ+BΣ) .

Then θm = θΣ ; λ1 =
(m�M)

2 ; λ0 =
(m+M)

2 �λ2 , with
λ2 = 0 if no crossing of π occurs (both AΣ + BΣ and
AΣ � BΣ are in [0;π]),
λ2 =

λ1BΣ
4(2π�AΣ)

in case of crossing of π (AΣ +BΣ > π>

AΣ�BΣ), Now we can easily obtain the integral of F :

Icone
d =

l:A
4 (π(LV �λ0)�2λ1 cos(θV �θΣ)) (4)

where cos(θV �θΣ) =
BL cos(∆θ)+BVq

B2
L+B2

V+2BLBV cos(∆θ)
and ∆θ= θL�θV .

� The specular illumination is given by

Icone
s =

lA
2

r
2π
n

Z θV+
π
2

θ=θV �
π
2

sl s
n
h cos(αH �αV )

with lsv the apparent length of a needle. Once again, sn
h is

a function which density is concentrated on the location
where sh = 1, which occurs when ch = 0, i.e. when H
is orthogonal to the needle direction ~a. Such a location
θ?H only exists if φH 2 [

π
2 �φ; π

2 +φ], otherwise Icone
s = 0.



If θ?H exists, we have again that sn
h f (θ)� sn

h f (θ?H ).
Since slsh cos(αH �αV ) = (V:H)� chcv, we finally have

Icone
s � l:A

2
2π
n (V:H)ε (5)

where ε = 1 if φH 2 [
π
2 �φ; π

2 +φ] otherwise ε = 0.
Note that if both locations where H is orthogonal to ~a
occurs on the same face (front or rear), we have that ε= 2.

� The opacity is given by alphacone
= A

R θV+
π
2

θ=θV�
π
2

lsv

Since sv = sin(cAV ), we approximate cAV by
AV + BV cos(θ� θV ) in the same way that for the
diffuse component. That is,

alphacone
= l:A(πcos(φ)cos(φV )�2sin(φ)sin(φV )) (6)

6 Bough illumination
As stated in section 3.3, we consider that the bough is
a volume having a cylindrical shape and an anisotropic
opacity (as illustrated in Figure 6). We have to proceed to
the analytical volume rendering of this cylinder.

Since the opacity A is not constant along the ray and
the shadow ray, we have:

I =
1

Spix

Z
(x;y)2pixel

Z f ar

z=near
AIcyle�

R lz
0 σe�

R lshad
0 σ (7)

with e�σ
= T = (1� A) the anisotropic transparency,

lz the length of the ray within the volume and l shad the
length of the shadow ray within the volume.
We need now to explicit the opacity and to do some ap-
proximations to make the integral tractable.

6.1 Traversal of a 2D bough
Given an infinite 2D vertical field of parallel needles hav-
ing a direction φ relatively to the top (see Figure 7 left).
Let R be the field width, and dh the vertical distance be-
tween the needles. A ray in the direction φr relative to the
top crosses the field.
The length of the ray within the field is R=sin(φr)

The step between the intersections is δ= dh sin(φ)
sin jφr�φj

The average number of intersections is R
dh

sin jφr�φj
sin(φ)sin(φr)

We denote k(φr;φ) the quantity sin jφr�φj
sin(φ) sin(φr )

= j 1
tan(φ) �

1
tan(φr)

j

The opacity of the field along this ray is 1�T
R
dh k(φr ;φ)

Let denote for short kr = k(φr;φ) and kr = k(φr;π�φ)
kr corresponds to the traversal of a field which is sym-
metrical to the first relatively to the vertical.

A 2D bough is composed of two adjacent such fields,
the right one with needles of orientation φ, and the left
one with needles of orientation π�φ (as illustrated on
Figure 7 left).
The total number of intersections along a ray is
R
dh(kr + kr) =

R
dh

sin jφr�φj+sin jφr+φj
sin(φ)sin(φr)

=
R
dh

2
tan(min(φ;φr))

This means that as long as the ray remains outside the

Figure 6: Left : We model a bough by a semi-opaque volumetric
cylinder, which opacity is anisotropic in order to reproduce the vari-
ation of the number or intersection between a ray and the sub cones.

Right : Intersection of the plane Px with one cone. We approximate
the hyberbols by their asymptotes.

dh

R

δ

φ

φr
φπ-φ

Figure 7: Left: 2D field of parallel ‘needles’. Right: 2D bough.
Note the variation of the opacity with the ray direction (mostly on left).

cone aperture (i.e. φr 2 [φ;π�φ]) the total opacity along
the ray is constant, despite it is balanced differently be-
tween the front and the rear part. This is true either for a
ray or a shadow ray: similarly for the light, in such con-
dition the shadow casted by the bough is constant, while
the light enters more easily in one side than in the other.
If the ray is inside the cone aperture (above or below), the
opacity increases up to 100% for φr = 0 or π.

6.2 Extension to a 3D bough
Let us now come back to our regular bough. In 3D, if a
ray crosses the axis of the bough, the situation is equiva-
lent to the 2D situation above. But generally the ray does
not cross the axis. Let consider the plane parallel to the
cone axis and that contains the ray. Let x be its distance
to the axis, thus we name the plane Px. The intersec-
tion of the volume of the bough made of cones with the
plane gives a set of hyperboles. We approximate these
hyperboles by their two asymptotes (we can see on Fig-
ure 6 right that it is reasonable). In that way, the plane
contains ‘needles’ having the same orientation φand off-
set dh than in 3D, in a field of shrieked thickness 2Rx

with Rx =

p
R2� x2. So we can compute the number

of intersections using the 2D formulas. To estimate the
amount of light reaching a point on the ray, we consider a
shadow ray starting at that point. Similarly, we introduce
the plane parallel to the cone axis and that contains the
shadow ray (Figure 8). The number of intersections can
be obtained as for the main ray.

6.3 Traversal of a 3D bough
We can now come back to the volumetric integral 7. We
choose the (x;y) pixel-surface parameterization so that



the ~x axis is orthogonal to the cylinder. Thus x indexes
the plane Px (i.e. x is coherent with the previous section).
In consequence we no longer need to integrate along the
~y axis, since the cylinder is homogeneous in this direc-
tion. Note that the albedo A in the equation should be
corrected to A=δ, since no energy is gathered in the gap
between two cones. Similarly on a differential length dl,
the opacity is e�σdl

= T dl=δ. We proceed to a variable
change from (x;z) to (x;z0) in the plane orthogonal to the
cylinder. This means that we index a point on the ray by
its projection on the orthogonal plane. The Jacobian of
the transform is 1

sin(φ) . The opacity associated to a differ-

ential length dl 0 on the plane is T
dl0

sin(φ)δ = T dl0 k()
dh

6.4 Splitting the integral into regions

We know from the 2D case that the opacity along the ray
is constant on the front half and on the rear half of the
traversal ( These two halves correspond to the two orien-
tations of the needles in the plane Px).

The disk has been split into two regions FV and RV ,
the front and the rear relatively to V . On each region k()
is constant. In section 5 we have also split the cones into
a front face and a rear face, to evaluate the illumination.
Let assume that Icyl is constant in each of the two regions
of the volume and let approximate it by the mean value
Icyl

f ront and Icyl
rear. The integral becomes:

I= A
2Rdh

RR
x=�R

0
@kvI

cyl
f ront

R 0
z=�Rx

T
kv
dh (Rx+z)

T
R lshad
0

k()
dh + kvI

cyl
rear

RRx
z=0 T

(
kv
dh Rx+

kv
dh z)

T
R lshad
0

k()
dh

1
A

In order to get rid of the remaining integral in the expo-
nent, we are now going to split again the disk to separate
the front and the rear areas FL and RL relatively to L.
However the shadow ray length that will appear depends
on z on a complicated way, which makes the exponential
tricky to integrate analytically.
In order to make the integral tractable, we use the linear
approximation of the opacity composition law,
i.e. (1�A)n � (1� nA) which is valid if nA� 1, i.e. if
the bough is not too dense.
Then (1�A)n1(1�A)n2 � 1�n1A�n2A , which ensures
the separation of the factors. Thus the integral is defined
as I = IFV + IRV =

A
2Rdh

�
Icyl

f ront kvIF 0

V
+ Icyl

rearkvIR0

V

�
with

IF 0

V
=

R
FV

1�A
R

FV
kv
dh (Rx + z)�A

R
FV �RL

zshad
kl
dh �A

R
FV �FL

zshad
kl
dh

IR0

V
=

R
RV

1�A
R

RV
(

kv
dh Rx+

kv
dh z)�A

R
RV �RL

zshad
kl
dh �A

R
RV �FL

zshad
kl
dh

with FV �RL the region in RL covered by shadow rays
which origin is in FV , and so on for the other composed
regions (see on Figure 8 the representation of these
surfaces).

6.5 Geometric integration

We can arrange this as:
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The four remaining integrals sum the length of the
shadow rays starting in each point along the ray and in-
cluded in the region in subscript, for each ray. Let con-
sider for the moment only the integral along the ray. The
shadow-ray sweeps an area while its origin follows the
ray. The integral of its length value along the main ray has
a strong connection with this surface: it is proportional to
it, with a factor 1

sin(lv)
where lv is the angle between the

projections LP and VP of L and V in the orthogonal plane.
The proof is that if LP is orthogonal to VP, then the in-
tegral of the length is the regular surface measurement.
Otherwise one can come back to this case with a change
of variables, which the Jacobian is 1

sin(lv)
. So, to compute

the integral along the ray, we have to measure the surface
of each swept region S1;S2;S3;S4 using some geometric
and trigonometric relations. Then we have to integrate
the result for each ray. After some long and unpleasant
derivations showing quite complicated formulas in the in-
termediate stages, we surprisingly found very simple and
symmetric results (without any approximation):R

S1 = (1+ cos(lv)) R3

3 sin(lv)R
S2 = (1� cos(lv)) R3

3 sin(lv)R
S3 = (1+ cos(lv)=3)R3 sin(lv)R
S4 = (1� cos(lv)=3)R3 sin(lv)

The sin(lv) factors disappear when multiplying by the Ja-
cobian.

6.6 Resulting bough illumination
The opacity is derived trivially:
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We introduce similarly the opacity for the light
point of view: αFL = akl ; αRL = akl and finally have
I = IFV + IRV with
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We leave this formula into two separated parts, which
allows to render a branch between them.

7 Results
Some resulting images are presented of Figure 9 and Fig-
ure 10. We have also compute an animation of the forest
scene showing no aliasing artifact.

A major property of our model is the evolution of the
cost when the number of needles vary, i.e. the complexity
analysis in function of the number N of needles per cone
and of the number l

dh of cones on a branch per unit of
length (these two numbers are proportional to the square



root of the density of needles)3. The cost of one shadow
ray should evolve the same. However a classical ray-
tracer launches a shadow ray for each sample, while for
our model the part of the shadow ray that is outside the
bough is factorized.
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Figure 8: Left: The volume intersected by the vertical plane con-
taining the ray looks like a 2D bough. Similarly for the shadow ray.

Right: The volume of the bough cylinder seen in an orthogonal sec-
tion. The surface of the four regions (see left Figure) S1 = FV �RL,
S2 = FV �FL, S3 = RV �RL, S4 = RV �FL are proportional to the in-
tegral of the length of the shadow rays for each possible origin on the
ray (only the generic case is figured here). We have to integrate these
surfaces for all x.

We have compared the efficiency to a classical ray-
tracer, Rayshade. On Rayshade side, it is important to
know that there is a maximum amount of ray per pixel
(which is 64), so that when a tree is far (i.e. less than 100
pixels high), Rayshade does not launch enough rays. It
might seems efficient, but this is at the price of quality.
The fact is that for a image with a lot of high frequen-
cies as image of trees are, the aliasing is not very visible
on a single image because it is hard to distinguish noise
and information. But the aliasing is obvious during an
animation.

The test scene consists of 80 fir-trees that are about 127
pixels high for the closest and 64 for the farthest (Figure
11).

Figure 9: Three fir-trees, from a very close to a far point of view.

3if N is multiplied by 2, the number of intersections for level 1 and
the number of samples per pixel a ray-tracer should launch are multi-
plied by 2, while level 2 and level 3 are not affected at all. The same
deduction could be done if dh is divided by 2

Figure 10: Trees on a hill.

Figure 11: The scene used for the benchmark.

Figure 12: The colors represent the level that is used in our method:

red for level 1, green for level 2 and blue for level 3.



One fir generally contains 300 branches and about
28700 needles, thus the scene contains about 2 million
of needles. Concerning one bough, a cone is 3.94 high,
has a radius of 1.6cm, an aperture of π=8, and the offset
between cones is 0.9cm. There are only 12 needles per
cone for this tree, whose radius is 0.05cm and length is
4.25cm. On average 4.37 cones are imbricated, so that a
ray passing through the axis and orthogonal to the branch
would traverse on average 8.75 layers. We run our tests
on an SGI Onyx2. The rendering time is 65.3 minutes
with Rayshade and 8.1 minutes with our models. Thus
our method is about 8 times faster than Rayshade. For
landscapes, whose farthest trees are very small, rayshade
cannot avoid aliasing due to its 64 samples per pixel lim-
itation. If it could override this limit, the gain would
greatly increase in the favor of our method.

8 Conclusion

We have introduced a set of three shaders able to repre-
sent at various scales the cumulated effects of the smaller
scales without having to sample them, comprising the in-
ternal shadows, and taking the visibility into account. As
all the required integrations are analytical, this provides
at the same time efficiency and image quality (in partic-
ular, free of aliasing). However on the theoretical point
of view, we would like to improve some of the approx-
imations that have been done. Relaxing the low albedo
hypothesis would be interesting either, e.g. using a poly-
nomial law instead of a linear approximation.

The parameters of the shaders allow us to simulate
various kind of pine-trees and fir-trees, and to modulate
the characteristics inside a single tree (these modulations
could be driven in time as well, e.g. to simulate the ef-
fects of the wind in a tree). We were able to derive these
shaders because the objects we were interested in are
very structured. Due to the extended use of the a priori
knowledge, these three shaders can simulate nothing but
trees made of needles. However, many objects in nature
present one kind of structure or another, and even some
similarities of structure, so it should be possible for each
to derive shaders able to represent analytically each kind.
The next step for us will be the simulation of other kind of
trees, for which the structure is more stochastic (concern-
ing the distribution and orientation of the leaves). Then
it will be also interesting to handle larger scales, explor-
ing larger structures than boughs inside and outside the
trees...
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Interactive Rendering of Trees
with Shading and Shadows

Alexandre Meyer Fabrice Neyret Pierre Poulin
iMAGIS-GRAVIR/IMAG-INRIA LIGUM

Abstract. Our goal is the interactive rendering of 3D trees covering a landscape,
with shading and shadows consistent with the lighting conditions.
We propose a new hierarchical IBR representation, consisting of a hierarchy of
Bidirectional Textures (sort of 6D lightfields). To improve the performance of
shadow calculations, we associate to it a hierarchy of visibility cube-maps.
For a tree, the levels of the hierarchy may correspond to a small branch plus its
leaves (or needles), a larger branch, and the entire tree. A Bidirectional Texture
(BT) provides a billboard image of a shaded object for each pair of view direction
and light direction. We associate a BT for each level of the hierarchy. When
rendering, the appropriate level of detail is selected depending on the distance
of the tree. The illumination reaching each level is evaluated using the visibility
cube-map. Thus, we obtain very efficiently the shaded rendering of a tree with
shadows without loosing details, contrary to mesh simplification methods. We
produced a 7 to 20 fps animation of a scenery with 1,000 trees.

Keywords: Real-time rendering, natural scenes, forests, IBR, levels of detail, billboards

1 Introduction

Walk- and fly-throughs natural landscapes with the best possible visual quality have
been a continuous challenge since the beginning of Computer Graphics. In real-time
applications such as simulators and games, users want ever more convincing realism
(i.e., more trees, better looking trees). In off-line applications such as impact studies
and special effects, users want the rendering softwares to compute ever faster.

The rendering of tree covered landscapes is especially demanding, because of the to-
tal amount of details, the complex lighting situation (shading of small shapes, shadows,
sky illumination), and the inconvenient visibility situation (there are no large blockers
that can be efficiently exploited).

Fortunately, trees also show interesting properties: their complexity of appearance
lies on an intense redundancy of elements, and their structure is naturally hierarchical:
trees are composed of a trunk and main branches, which group small branches together,
whose boughs are made of leaves or needles; and leaves, needles, boughs, branches and
even trees resemble to each others. These properties allows many modeling simplifica-
tions: elements of a family can be represented as instances of a few base models, and
complex objects as a collection of similar simpler objects.

In this paper, we exploit further this notion by considering alternate and hierarchical
representations and techniques to efficiently render trees, including shading and shad-
ows. Our goal is to render with good image quality larger and larger landscapes covered
with denser and denser forests of trees.

To achieve this level of efficiency and quality, we introduce a hierarchical bidirec-
tional texture (HBT), inspired by recent image-based rendering (IBR) representations.
It encodes the appearance of a tree model using several levels of detail relying on the
hierarchy described above, for many view and illumination directions. This allows for
fast rendering adapted to the amount of detail required.
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The same hierarchical organization of a tree is also exploited for the visibility oc-
clusion occuring within the elements of a hierarchical level. Combining the occlusions
by traversing upwards the shadowing structure provides efficient and adapted soft shad-
ows within the tree itself, and also between different trees. This allows for the real-time
calculation of shadows while the light source is moving.

All these techniques have been implemented in hardware rendering under the cur-
rent API of OpenGL, and results are provided and discussed.

This paper is organized as following. We review in Section 2 various approaches
related to the rendering of natural scenes. We describe in Section 3 our representation,
the Hierarchy of Bidirectional Textures (HBT). We explain in Section 4 how to render an
object using it, then we provide in Section 5 the global algorithm for the rendering of the
scene. Once the use of the representation is clear, we detail in Section 6 how to built it
from an existing object (e.g., a polygonal tree model). We describe our implementation,
show our results, and give performance measures in Section 7, before concluding.

Contributions:

� The use of true Bidirectional Textures (BTF). The original paper (which scope
is out of the CG field) and database [3, 2] decreases in practice the amount of
degrees of freedom. Transparency is not considered either. In the CG field, the [4]
representation encodes a normal to be used with Phong reflection model, instead
of sampling the aspect when the light direction varies.
Moreover, we store separate BTF for several light types, namely a quasi-point
light source (the sun), and an ambient light source (the sky). This allows us to
handle at rendering time (i.e., in real-time) the separate changes in sky or sun
color or intensity (such as evolving sunset or sky getting overcast), and multiple
light sources (e.g., helicopter headlights).

� Hierarchical Bidirectional Textures (HBT). We propose a complete level of de-
tail representation based on BTF, which relies on the existing scene graph that
describes objects like trees, taking advantage of massive use of instancing.

� Visibility Cubes-Maps (VCM) are not really a contribution, since they are a natu-
ral and simple way to encode the visibility around a location, which is done more
precisely and in a more general scope by other representations such as [5, 26].
We use it for getting the shadows on trees in real-time, with a possibly moving
light direction.

� Hierarchical Visibility Cubes-Maps (HVCM). They separate the occlusion be-
tween levels, i.e., occlusions caused outside the object, and occlusions caused
inside the object, outside a sub-object (Figure 2.2(bottom)). The total occlusion
in one direction is obtained by combining the maps. In the context of massive
instancing, this allows to factorize the maps corresponding to internal occlusion.

2 Previous Work
Despite the complexity of the task, flight simulators were an early application of Com-
puter Graphics, running on dedicated machines. Trees and other objects (e.g., buildings)
were painted on the floor, represented by very simple polyhedrons (pyramids, cubes),
or using the very first IBR representation, the sprite. Sprites have turned to billboards
(another early IBR representation) living between 2D and 3D worlds, always facing the
observer but attached to a 3D frame. These are still used in nowadays simulators [17]
and off-line video productions with short schedule. Then games of the mid-eighties to
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the mid-nineties, i.e., before the arrival of 3D graphics boards, have extensively used
sprites and billboards to produce interactive fake 3D environments, e.g., for car races.
With the generalization of hardware-accelerated 3D and textures (coming with the in-
crease of computational power and available memory), workstations since the end of
eighties and home PC since the end of nineties have started using cross-trees, made of
2 to 3 orthogonal faces textured with a transparent image, thus behaving like 3D ob-
jects. This has been generalized in applications up to a dozen of textured faces or more,
figuring the foliage.

Several early papers have described methodologies to model the shape of trees.
These are not in the target of our review, which only deal with their efficient rendering.
Numerous methods have been progressively introduced to precompute polygonal levels
of details or simplify meshes on the fly. These are also out of our scope, as they do not
behave very well for trees, suffering numerous artifacts during a geometric simplifica-
tion (nonetheless, an hybrid solution dedicated to tree [32] did nice work, but is still not
sufficient for our quality and real-time goals).

The most interesting solutions have come with representations alternative to
meshes, proposing a way to get efficiently both quality and quantity. An early one were
particle systems [23, 24], consisting of replacing geometry by strokes, thus producing
the first dense forest images. Although originally too slow, the approach is now used in
real-time applications. Since 1995, the creativity in the field of alternate representations
has exploded, following different tracks:

� IBR reuse real or synthetic views of objects [10, 27, 29, 8, 1], and in particular
lightfields [9, 6], storing the color for the various possible rays hitting an object.
While it can capture and redisplay most views of a tree, even under a different
perspective view, the shading and shadowing remain fixed, and a lightfield occu-
pies at least several Mb of memory. It has been applied to surfaces [16, 34] to
incorporate some shading effects, however its memory requirements is still too
large to represent good quality trees.

� On a dual way, textures have expended to reproduce the view angle dependency
with birectional texture functions or relief textures [4, 20], or even to simulate ob-
jects in volume with layered impostors, volumetric textures and LDI [25, 15, 28].
Between these last techniques and the early cross-trees, Max et al. have combined
in various ways Z-buffers used as a representation [13, 11, 12], with different
orientations, organized in a level of detail hierarchy, or more recently with mul-
tilayers. Some of these methods have been use explicitly for trees: volumetric
textures [15, 19], and of course the Max’s work.

� A totally different approach lies in point-based rendering, such as surfels [21].
To date, it is not adapted to sparse geometry like foliage, but we think it might be
a promising technique.

Bidirectional reflection distribution functions (BRDF) [18] encodes the proportion
of reflected light given a pair of incident and reflected (view) directions. They are thus
used in quality rendering, and represent precisely the aspect lacking in usual IBR and
textural encodings. BTFs, and somehow surface lightfields, are a way to introduce this
missing dimension.

Our representation shares various aspects with the BTFs [4, 3], the hierarchical IBR
of Max et al. [12], billboards, and lightfields. Like Max et al. [12], we manage levels
of detail using a hierarchy of alternate representations: an alternate-type object encodes
a set of smaller objects, which can be themselves classical geometry or alternate-type.
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Depending of the apparent size, we consider either the large object or the collection of
smaller ones, and so on along the levels. Our alternate-type is a BTF, instead of layered
Z-buffer as for Max et al. [11, 12]. These BTFs are precomputed using multiple local
pre-renderings like in [4], but using the 6 degrees of freedom of [3, 2]: position on
texture, view direction, and light direction. Indeed, we really sample all these directions
because we want to encode 3D objects, while [3, 2] only sample only 3 of the 4 degrees
of freedom (their purpose is the encoding of surface materials, not 3D objects. In case
of anisotropy, they simply add a second samples set). As for lightfield and BRDF
representations, we have to manage the sampled representation of a 4D direction space.
However, our structure is much more compact despite its 6D nature, as we use it only
for distant objects that appear small on the screen. Using billboards, we share the
representation of 3D objects with textures which adapt to the point of view.

The auxiliary representation we introduce to accelerate the shadows was inspired
by horizon maps [14, 31] and visibility precomputed for cells [5, 26], in a more approx-
imative fashion. On the other hand it is 3D (all directions are valid) and hierarchical
again, being connected to the HBT representation. We detail this representation in the
next section.

3 Our Representation

There are 3 elements in our representation:

� The BTF encoding of an object, an alternate representation that produces similar
images of this object even when varying the observer and light locations. This is
explained in Section 3.1.

� The HBT structure associated to a complex object, treated in Section 3.2, which
extends the hierarchical scene graph of this object with level of detail informa-
tion: a BTF is associated to each level. Reciprocally, most of the objects con-
tained in a given level have an associated BTF. As this work focuses on trees,
these objects are generally organized as multiple instances of one similar base
object (e.g., a branch), plus possibly one mesh object (e.g., a piece of trunk). This
greatly reduces the total amount of different BTFs (3 in our implementation).

� The structure for shadows, i.e., the hierarchy of visibility cube-maps, that is
described in Section 3.3.

3.1 Bidirectional Texture Functions

The principle of the representation is to associate a billboard representing an object with
each pair of view and light directions (see Figure 1 and image 5), much like a BRDF
associates a color with a pair of such directions (i.e., we must manage 6D instead of
4D). If we limit ourselves to objects that are not pathologic shading-wise, only a small
set of directions will be necessary. Moreover, these billboards are targeted to replace
the detailed 3D representation of objects appearing small, and therefore their texture
resolution can be very coarse (e.g., 32 � 32 or 64 � 64 in our implementation). At
rendering time, we reconstruct an image for given view and light directions by interpo-
lating between the closest precomputed billboards. We detail the rendering in Section 4
and the BTF construction in Section 6.

It is better to avoid mixing in the same billboards the effects of sun illumination
and ambient light, otherwise it would not be possible to tune separately their colors and
intensities, or to consider several light sources. E.g., we would like to deal with the
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1.1: A billboard is recon-
structed from a given view di-
rection by combining the 3
closest images stored in the
sampled sphere of view direc-
tions.

1.2: A billboard is recon-
structed from a given light
direction by combining the 3
closest images stored in the
sampled sphere of light di-
rections.

1.3: The complete BTF allows to recon-
struct a billboard for given view and light
directions by combining up to 9 stored im-
ages (in our implementation), much like a
sampled BRDF allows to reconstruct an en-
ergy value by combining a set of sampled
values.

Fig. 1. The Bidirectional Texture Function representing a tree.

weather getting overcast, showing only the ambient term, the sun turning red while the
sky remains light blue, or extra light sources such as helicopter headlights... Thus we
store separately “ambient” billboards associated with each view direction. Note that
this “ambient light” differs from classical Phong ambient as it takes occlusions into
account.

In our implementation, we use either 6, 18, 66, or 258 samples for the view direc-
tions, evenly distributed on a sphere. For each sample direction, we associate a similar
sampled sphere for light directions1. A small color texture with transparencies is stored
for each pair of directions. To determine efficiently the closest 3 samples at rendering
time, a precomputed table gives the 3 closest sampled directions for any given vector.

The instances of the obtained BTFs are associated with a local frame of reference
and a scale factor, much like classical objects.

3.2 Hierarchy of BTFs (or HBTs)

A BTF is associated to each level in the hierarchy (Figure 2.1), representing its coarse
level of detail. A level consists in a set of objects. Each of them can be unique or an
instance of a given base object, located and oriented using its frame of reference. Most
base objects should have an associated BTF, excepted if their shape is very simple. At
rendering time, either the level’s BTF or the set of objects will be used, depending on
the distance.
NB: in this paper, we call “highest” the coarsest level, representing the whole object.

3.3 Hierarchy of Visibility Cube-maps for Shadows

A single shadow evaluation is used for a given object (i.e., for the current level of
detail). As we are using hardware rendering we cannot rely on it to compute shadows,
and because the scene is complex we cannot evaluate it on the fly using a shadow ray 2.

1The number of samples can be different on the 2 spheres. In practice, the quality of interpolation is more
sensitive to the view directions than to the light directions.

2A global shadowmap cannot be used either because the objects are partly transparent.
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2.1: Hierarchy of BTFs. Top: a typical tree
model, showing a natural hierarchy (leaves
or needles, small branches, main branches,
trunk). Bottom: the 3 BTFs associated to the 3
levels of the hierarchy. For instance, the main
branch (middle) is composed of instances of
small branches (left).

a
b
c
d

2.2: Hierarchy of visibility cube-maps. Top: a visibility
cube-map is associated to each instance, here a small branch
on a main branch. It registers the occlusion (figured in red)
generated by its environment in every direction. Bottom:
to obtain the total visibility in a given direction, one has to
combine the corresponding values in the cube-maps of the
higher levels, e.g., b; c; d for the small branch. Self-shadows
(a) are already encoded in the branch BTF.

Thus we want to do precomputations, but we still want the light direction to change in
real time.

Note that self-shadows are already represented in the BTF associated with the ob-
ject, thus we only have to account for shadowing caused by occluders outside the
object (i.e., the current level). We store the visibility around the current object (Fig-
ure 2.2(top)), using cube-maps. The idea is analog to the horizon maps [14, 31] (apart
that these are 1D while we need 2D), or to the visibility precomputed per cell [5, 26].
A cube-map represents the visibility at a given location. For each light direction, we
precompute the total amount of light reaching the location, which gives the amount of
occlusion in this direction, stored in the corresponding pixel of the visibility cube-map. 3

For an object, we sample the visibility at several locations (in our implementation, it is
at the 8 corners of the bounding volume), and the visibility at any location is estimated
by interpolating the cube-maps. In the following, the “visibility cube-map” associated
to an object refers to this set of cube-maps, and its value for a given direction refers to
the interpolation of the corresponding value in the cube-maps within the set. The pixel
values correspond to opacities (in the range [0,1]), and are used at rendering time to
modulate the color of the billboard in order to get the shadows. Note that the dynamic
of this occlusion value allows for transparent objects, antialiasing and soft shadows.

Computing and storing a different cube-map for every instance of objects in our
scene would be excessively costly (cf. the total amount of small branches in the forest).
Instead, we rely on a hierarchical structure following the HBT hierarchy, and separate
the occlusions occuring inside one level to the occlusions occuring outside: for a given
level in the hierarchy, a visibility cube-map is associated to each instance of the objects
in the set. It only represents the occlusions caused by the objects within the set. At
rendering time, the illumination received by an object from a given light direction is
modulated by combining the values of the cube-maps at the current and higher levels of
the hierarchy, as shown on Figure 2.2(bottom).

3The visibility cube-map is thus the dual of a shadow map, which encodes the visibility of every location
in the scene for one single light direction.
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The status of shadows is thus as follows:
� self-shadowing is encoded in the BTF (figured by a in Figure 2.2);
� a visibility cube-map encodes the blocking of light between its associated object and

the cube-map associated to the whole hierarchy level (corresponding to b and c in
Figure 2.2);

� the cube-map at the highest level of the hierarchy encodes the blocking of light
outside, within the whole scene (stored in d in Figure 2.2).
Therefore a different cube-map has to be stored for every instance of highest level

objects in the scene. Oppositely, for an intermediate hierarchy level, as the cube-maps
of objects handle only the visibility within this level (and not relatively to the entire
scene), we only need one cube-map per instance of an object in the level. For instance,
each main branch constituting a tree has its own cube-map, but as the trees in the land-
scape are instances of one single tree, we do not need to consider a new visibility cube-
map for each branch in the scene. In our implementation, the maps are 32�32�6, and
the highest level corresponds to a tree, so the total required memory is acceptable (see
Section 7). If necessary, we could add an extra level consisting of a group of trees.

We also precompute the average value of each cube-map, that gives the ambient
visibility (i.e., the sky occlusion); this will be used to evaluate the ambient illumination.

4 Rendering an HBT

To render an HBT, first we need to determine the appropriate level of detail according
to its apparent size in the image. Then all the objects in the ‘opened’ levels of the
hierarchy, either polygonal meshes or BTF, are rendered from back to front. To render
a BTF, we reconstruct a billboard for the current observer and light directions, and then
compute its illumination taking into account light color, sky color and shadows.

4.1 Reconstructing an Image from a BTF

Formally, the reconstruction problem is mainly the same than for a BRDF: we have to
sum weighted values of the closest samples. 3 classical issues are then: how to choose
the best samples and weights, how many samples, and how to find them efficiently.

3.1: Left: Given the observer direction, the 3 closest sam-
pled view directions must be found, and their ‘distance’ to
the current direction calculated. Right: The 3 tables giving
the precalculated 3 closest sampled directions (the colors
figure the sample ids).

3.2: The 2 projection strategies concerning
the 3 images corresponding to the closest
view directions: cross-tree like (middle), and
billboard-like (right).

Our implementation is quite naive regarding the classical issues. As we separate
the 4D table into a sampled sphere for view directions and another one for light direc-
tions, we simply have to find in which cell bounded by 3 samples a given direction falls
(Figure 3.1(left)). To be more efficient, we construct a precomputed table that directly
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provides the 3 sample directions for any given direction (Figure 3.1(right)). The blend-
ing coefficients correspond to the barycentric coordinates within the cell on the sphere.
As the 3 billboards corresponding to the 3 samples from the view direction result them-
selves from the blend of the 3 samples from the light direction, we get 9 billboards to
blend. The blending coefficients are the product of the barycentric coordinates relative
to the view cell and to the light cell. However 9 can be considered a bit high 4. To re-
duce this number, we do not consider samples associated to coefficients below a given
threshold (and we renormalize the other coefficients). It might be possible to reduce
even more this number using some similarity criteria, considering only the samples that
add enough information.

As we deal with images instead of scalars in BRDFs, there are 2 extra issues: how
to project each image on screen, and how to blend them together, knowing that we want
to use the hardware Z-buffer that is not totally compliant with transparent images.

Two main choices exist to address the projection on screen, depending whether the
billboard or the cross-textured philosophy is preferred for trees (Figure 3.2):

� considering each image as a projected slice, that should then keep its original
orientation;

� considering each image as a billboard, that are consequently mapped at the same
location, i.e., facing the eye.

The first solution provides more parallax effects especially if very few directions are
available. The drawback is that the bounding volume depends on the angle of view,
and that the opacity is poorly distributed (denser where the images superimpose). The
second solution is well adapted for objects having a cylindrical or a spherical symmetry:
as the image is always facing the observer, the bounding volume is more stable and the
opacity better distributed. Note that the more the sampled directions, the closer the
two solutions, so it is better to rely on the simplest one, i.e., billboards. For very small
sampling (e.g., 6 directions), it is probably better to choose the strategy depending on
the look of objects: in such case, we used the classical cross-images.

The last issue is the blending. The images have to be combined by weighted sum-
mation, and not blended together by alpha compositing, which would depend on the
order of operations. Oppositely, we need to blend (by compositing) the result with the
background image on screen.
C =

P
i;j �i�j BTFa(i; j) BTFrgb(i; j) ,

A =
P

i;j �i�j BTFa(i; j) =
P

i �iBTFa(i) ,
Cpixel = C + (1�A)Cpixel,
where �i and �j are the barycentric coordinates of the view and light directions.

Another problem is that we do not want the depth test of the Z-buffer to reject
fragments that might appear behind a transparent fragment, especially when drawing
intersecting billboards. A costly solution would be to process the reconstruction in a
separate buffer (without Z-test), and to use the result as a texture to be blended with
the image on screen. To simulate this process, although keeping the pipe-line compli-
ance, we first darken the background according to the cumulated transparency of the
billboards. As the same transparency occurs for the 3 images corresponding to one
view direction sample, we only have 3 transparency maps to consider. “Darkening” is
done using the ADD blending equation of the OpenGL API with (0,1-SRC ALPHA)
blending coefficients. The weight �i is encoded in the alpha of the underlying polygon.

4Especially when noticing that considering directly a 4D-sphere for directions would have yield 5-vertex
cells, i.e., the shape of a 4D-simplex.

8



Then we draw the weighted textures (the polygon alpha is set to � i�j), using
(SRC ALPHA,1) blending coefficients. Thus we have a total of 12 passes if all the
billboards are to be drawn. To avoid Z-interactions, the Z values are stored only in the
last pass5.

4.2 Shadowing an Object

An object has to be modulated by the received illumination before it is drawn. The
amount of light is simply obtained by combining the opacity values for the current light
source direction in the visibility cube-maps associated to the current object and all the
levels above (Figure 2.2). This value is multiplied by the light source intensity and
color, then used as the polygon color when drawing the billboards as described above.
We can also consider a cloud map to modulate the sun intensity.

illuminationL = CL

Q
level k 1� VCMk(L)

To handle multiple light sources, we iterate the process above, yielding a maximum
of 9 new passes per light source with our implementation. We could potentially exploit
the fact that any additional light source in a landscape should have a more limited visual
impact on the entire forest (e.g., helicopter headlights) and therefore treat it only for the
closer trees.

The last component is the ambient term: to consider diffuse illumination not directly
due to the sun, namely, sky illumination, we have to sum another image corresponding
to the ambient contribution. Since it does not depend on light direction, we only have
to combine 3 billboards, associated to the view direction sampled sphere. The “ambient
shadowing” is obtained by multiplying the average visibility associated to the cube-
maps and the average cloud transparency.

illuminationamb = Csky

Q
level k 1� average VCMk

So C =
P

light s HBT(V; Ls) illuminationL + HBTamb(V ) illuminationamb

where V is the view direction and Ls the direction of the light source s.

a b

c d
Fig. 4. The 4 kinds of shadow interaction between trees and terrain. Left: final aspect. a,b: The visibility
cube-maps of each tree take into account the presence of both the mountain (and ground) and the other trees
(self-shadows are included in the BTFs and in the cube-maps down in the hierarchy, see Figure 2.2). c: The
alpha-shadowmap accounts for the soft shadows of the trees on the floor. d: The Z-shadowmap (or depth
map) accounts for the self-shadows of the mountain (any of the numerous shadowing algorithms for terrain
could be used instead).

5As the objects are sorted, storing the Z values of trees is not very useful anyway, as long as possible extra
opaque objects are drawn first (the Z-test remains enabled).
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5 Rendering the Landscape

The global scene rendering algorithm is simple: first we render the terrain (and possible
extra opaque objects), then we consider all the objects at their highest level (i.e., trees)
from back to front, culling those that are clearly not visible (outside the view frustum,
and if possible behind the mountains, using a conservative occlusion technique [35, 5,
26], or extending techniques dedicated to terrains [14, 30, 31]). The rendering of HBT
objects is then processed as described in Section 4.

The last issue is the shading and shadowing of the terrain. We could use the same
principle described in Section 4.2, applied at the vertices of the terrain mesh. But the
resolution of the shadows would probably be too coarse, and a visibility cube-map
would have to be stored at each vertex which is probably too much. We prefer to
simply use shadowmaps [33, 7], recomputed when the light direction changes 6. In fact,
two different kinds of shadowmaps have to be combined: one dealing with transparent
objects (the trees), and the other with opaque objects (the terrain), as illustrated on
Figure 4(bottom). These shadowmaps are built by rendering the scene from the sun
location. For the first shadowmap, only the trees transparency is drawn, as a grey level.
The terrain is drawn invisible (i.e., white): it should not produce a shadow, but it should
hide the trees behind the mountains. For the second shadowmap, which takes into
account the terrain self-shadowing (e.g., the shadow of a mountain on the valley), a
depth map is used (any terrain shadowing technique such as horizon map [14, 30] could
be used instead). Note that SGI IR hardware provides this feature.

6 Building the Data

Our scenes are mainly composed of a terrain and many instances of one or more tree
models. We need to encode an existing tree model in our representation, as transparently
as possible for the user. Our only assumption is that instances are massively used to
design a tree: e.g., a tree is composed of numerous instances of a few branch models,
which are composed of numerous instances of small branches and leaves (or needles).
We rely on this hierarchy to organize our levels of detail.

We have two hierarchical structures to built: the BTFs encoding the appearance of
each subset of a tree (including the tree itself), and the visibility cube-maps encoding
how the environment modulates the received illumination of each element.

6.1 Building an HBT

A BTF is a collection of images of a shaded object from various view directions and
light directions (Figure 5). We proceed in the same spirit than [4], adding the loop for
light directions. We have two kinds of object:

� The bottom level of the hierarchy is composed of classical objects. We use a
ray-tracer to produce the views of mesh models despite the final rendering is a
Z-buffer. It allows us to easily get self-shadowing, antialiasing, transparencies,
and to use complex shaders (e.g., the shading of needles can be analytically inte-
grated, while the cylinders should be discretized if a Z-buffer were used).

� The higher levels of the hierarchy are mainly composed of BTFs, plus possibly
a few simple polygonal meshes (e.g., for the trunk). We use a Z-buffer to pro-
duce the views of these higher levels, in order to guarantee a consistent shading

6Here a shadowmap can be used because the terrain is opaque (while trees are not).
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whether the lower or the higher level of detail is used during the interactive ren-
dering. Indeed, we use the same rendering algorithm than used for interactive
rendering, which provides us with shadows casted between the elements thanks
to the visibility cube-maps structure.

In addition to the light-dependent BTFs, we also have to build the small set of light-
independent BTFs corresponding to the ambient term (used for the sky illumination).
They are currently produced by rendering the object with only the ambient term in the
shading, taking into account the ambient visibility. In our implementation, the views
are 32� 32 or 64� 64 RGBA images.

6.2 Building the Visibility Hierarchy

A visibility cube-map associated to an object encodes the light occlusion in every di-
rection due to the environment, but limited to the elements in the hierarchical level it
belongs to (or the entire scene for the highest level).

Thus for each pixel of the cube-map, the energy transfer between the light source
(the sun) in the corresponding direction and the bounding volume of the object (taking
occlusions into account) should be evaluated, and the amount of occlusion should be
stored. As a cube-map has to be computed for each instance of a tree model in the
scene, taking into account a complex environment, this precomputation can be costly.

We implemented an approximative, yet very efficient simplification, using our
OpenGL-based rendering algorithm. We place the camera at the center of the cube,
and render the appropriate environment (in fact, only its transparency, as a grey level)
in the 6 directions. This corresponds to the illumination received at the center, instead
of the average value received by the object.

Once the cube-map is built, we need to compute its average value, that is used to
evaluate the sky illumination. Note that the cube-map is a generalization of the horizon
map [14], while the average value is equivalent to an accessibility (or exposure) map.

7 Results

In our implementation, billboard images are 32� 32 or 64 � 64 RGBA textures. Ob-
server and light directions spheres are discretized with 6 or 18 evenly distributed sam-
ples. Thus regular BTFs are 32� 32� 4� 6� 6 (144 Kb), 32� 32� 4� 18� 6 (432
Kb), or 32� 32� 4 � 18� 18 (1.3 Mb), and ambient BTFs are 32� 32� 4� 6 (24
Kb) or 32� 32� 4� 18 (72 Kb). Our tree models are produced by an L-system [22];
we used for our tests 2 kinds of pine-trees and a prunus tree. We consider 3 hierarchical
levels: a small branch with leaves or needles, a main branch made of instances of small
branches, and a tree made of main branches. The pine-tree has 30 main branches, 300
boughs, and 30,000 needles. The whole HBT thus consists of 3 BTFs (0.5 to 4 Mb),
plus the same scene graph than the geometrical tree.

The scene contains 1,000 trees, so there are 8� (1; 000+ 30 + 10) visibility cube-
maps. The cubes are 32�32�6 luminance textures (6 Kb), thus the visibility structure
represents roughly 8 � 6 � 1; 000 Kb = 48 Mb. If this should be considered as too
much7, one could easily introduce a fourth hierarchical level consisting of a dozen of
trees, which would divided the memory expense by the same amount.

Precalculation time is about 75 minutes, 2/3 for visibility and 1/3 for the HBT.
7However, note that this data structure lies in main memory, and is never loaded on the graphics board.
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Our global rendering algorithm is quite naive: we cull only the trees outside the
view frustum, we sort the trees, then the parts of the trees for ‘opened’ levels of detail.
We consider sun and sky illumination (i.e., one light source plus the ambient). Our
billboards combining optimization requires on average 5 images instead of 9. In the
worst case we have to draw 15 billboards per object 8, which requires a high fill rate.
The SGI we use has no multitexturing ability. However recent graphics boards such
as Nvidia or ATI do have this feature, which allows to decrease the number of passes
down to 5 (or 3, if the billboards of low contribution are eliminated).

We produced a 640 � 480 animation, using a Onyx
2
IR, showing a fly over a

scenery covered by 1,000 trees. The frame rate is 7 to 20 fps. We observed a 20%
gain using an Nvidia board on PC, without using multitexturing. Using this feature, we
should gain another factor of 2 to 3.

A pine tree represented by a polygonal mesh is about 120k polygons. Using the
lowest level of detail (i.e., maximum resolution) yields a gain of 8 in the rendering time.
Switching to the middle level gives an extra gain of 18. With the highest (i.e., coarsest)
level, we have an other gain of 30.

8 Conclusion

We have introduced a new IBR representation for trees, which allows for very efficient
quality rendering with complex effects such as shading, shadows, sky illumination, sun
occlusion by clouds, and motion of the sun. Our naive implementation runs at 7 to 20
fps on an Onyx2 IR on a scenery containing 1; 000 trees (it could be 2 to 3 times faster
using a graphics board with multitexturing ability).

The HBT representation consists of a hierarchy of bidirectional textures, which pro-
vides a billboard for each given observer and light directions, plus a visibility hierarchi-
cal structure for the shadows (self and casted). Despite the 6 degrees of freedom of the
BTF, the required memory of a few Mb is acceptable.

Specularities, BRDF and transmission are also handled by our method, but precision
is limited by the sampling density of view and light directions. Sampling directions or
cube-maps locations potentially yield artifacts, as linear interpolation does not recon-
struct perfectly the data. This issue disappears with higher sampling, at the price of
memory. Thus there is a trade-off between visual quality vs memory used. However,
results show that nice real-time fly-over can be produced with reasonable memory, even
when using several kinds of trees.

A far more efficient global rendering algorithm could be implemented, using grids
and smart culling methods, thus allowing the interactive visualization of much larger
landscapes. Various different implementation choices could be made on the HBT ren-
dering and construction. For instance, a more exact visibility evaluation could be pre-
computed.

It would be interesting to see how the future graphics boards will include features
easing the rendering process: SGI Infinite Reality implement 4D textures; Nvidia chips
should do the same soon. Once 4D textures will be treated like any texture interpolation,
filtering and compression wise, lightfields will be directly available in hardware. If 6D
textures are also managed some day, BTFs will be directly available as well...

8 3 for darkening the background, 9 for the direct illumination, 3 for the ambient (i.e., sky) illumination.
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Fig. 5. The BTF associated to the highest level (horizontal axis: 18 view directions, vertical axis: 6 light
directions, 64� 64 resolution per billboard, with colors and transparencies).

Fig. 6. Top: a pine tree with shadows, without shadows; amount of shadow. Middle: the pine with only
ambient, the ambient visibility coefficient; the billboards used at the lowest level of detail. Bottom: a prunus
tree drawn at 3 levels of detail.
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Fig. 7. 4 views in a forest (1,000 trees on a landscape, with shading, shadows and fog). The frame rate is
7 to 20 fps on our test machine. Note the detailed trees on the foreground.
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