# Ocean Surface Simulation



### **List of the Content**

- Simulation Algorithm
- Rendering
- DirectX Compute Implementation
- Performance

### **Simulation Overview**

- Based on Jerry Tenssendorf's paper "Simulating Ocean Water"
  - · Statistic based, not physics based
  - Generate wave distribution in frequency domain, then perform inverse FFT
  - Widely used in movie CGIs since 90s, and in games since 2000s
- In movie CGI: The size of height map is large
  - Titanic, 2048x2048
  - Water World, 2048x2048
  - And more...
- In games: The size of height map is small
  - Crysis, 64x64
  - Resistance 2, 32x32
  - And more...
  - All simulated on CPU (or Cell SPE)

### **Performance Issues**

- The simulation require to generate the displacement map in real-time
- Computing FFT on CPU becomes the bottleneck when the displacement map gets larger
  - Larger texture also takes longer time on CPU-GPU data transfer
  - However, large displacement map is a must-have for detailed wave crests
- GPU computing is really good at FFT
  - Multiple 512x512 transforms can be performed in trivial time on high-end GPUs
  - Multiple 1024x1024 transforms are affordable for high quality real-time rendering

### The Algorithm: Wave Composition

- The ocean surface is composed by enormous simple waves
- Each simple wave is a hybrid sine wave (Gerstner wave)
  - A mass point on the surface is doing vertical circular motion

$$\mathbf{x} = \mathbf{x}_0 - (\mathbf{k}/k) A \sin(\mathbf{k} \cdot \mathbf{x} - \omega t)$$
$$y = A \cos(\mathbf{k} \cdot \mathbf{x} - \omega t)$$



### The Algorithm: Statistic Model

- The distribution of wave length, speed and amplitude are following several statistic models
  - Phillips spectrum is one mostly used practical model: Gauss function modulated by wind direction

$$P_h(\mathbf{k}) = \frac{A}{k^4} |\mathbf{k} \cdot \mathbf{\omega}|^2 e^{-\frac{1}{k^2 L^2}}$$

 Generated in frequency domain at the initial time

$$\widetilde{H}_0(\mathbf{k}) = \frac{1}{\sqrt{2}}\widetilde{\xi}(\mathbf{k})\sqrt{P_h(\mathbf{k})}$$



## The Diagram of Generating Initial Spectrum



### The Algorithm: Displacement Map

- Update three spectrums for each displacement direction at runtime
  - · Z for "height" field

$$\widetilde{H}(\mathbf{k},t) = \widetilde{H}_0(\mathbf{k})e^{i\omega t} + \widetilde{H}_0^*(-\mathbf{k})e^{-i\omega t}$$

XY for "choppy" field

$$\widetilde{\mathbf{D}}(\mathbf{k},t) = i\frac{\mathbf{k}}{k}\widetilde{H}(\mathbf{k},t)$$

- Perform inverse FFT on three spectrums
- Surface normal and other data are generated from displacement map







# The Diagram of Updating Displacement Map



# Rendering



### Screen Space vs. World Space

### Screen Space

#### Pro

- Minimal mesh wastage
- Can be extended to horizon easily

#### Con

- Distracting alias at distance due to undersampling
- Require huge off-screen mesh chunks to cover gaps along the screen edges

### World Space

#### Pro

- Can be mapped to displacement map straightforwardly
- No undersampling alias

#### Con

- Need more complicated way extending to horizon
- Produce many sub-pixel triangles at distance

### **World Space Rendering**

- We use world space rendering in the demo
- The mesh is created at half resolution of the displacement map
  - In the demo, 256x256
- Quad-tree is employed for frustum culling and mesh LOD



## Tiling Artifact Removing (1)

- FFT only produce periodic pattern
  - The repeated pattern becomes a major distraction at distance
  - But looks okay at near sight



# Tiling Artifact Removing (2)

- Perlin noise composed crests yield no tiling artifact
  - But lack of details at near sight



## Tiling Artifact Removing (3)

- Solution: blend Perlin and FFT generated crests
  - Effective and simple
  - We do tried texture synthesize based method, but which works poorly and not worthy to do in real-time





The result of blending FFT and Perlin noise

### Ocean Shading (1)

- The demo only rendered for deep ocean water
  - Shallow water rendering is much more complicated
- Shading components
  - Water body color: using a constant color
  - Fresnel term for reflection: read from a pre-computed texture
  - Reflected color: using a small cubemap blend with a constant sky color
  - Vertical streak: computed from a modified specular term

# Ocean Shading (2)

• Fresnel term (left) and sun streak (right)



### **DirectX Compute Implementation**

- Use DX Compute to
  - Update three spectrums each frame
  - Perform three 512x512 inverse FFTs each frame
- Use Pixel Shader to
  - Read the results from FFT and interleave the data into displacement map
  - Generate normal map

### **Details on DX Compute code**

#### Inverse FFT

- Currently, only 512x512 transform is implemented in the SDK sample
  - Higher than 1024x1024 will produce visible artifact due to FP precision
- Using CS4.0 to run on DX10 level GPU (G8x and later)
- Using complex-to-complex transform for better coalescing performance

### UAV usage (Unordered Access View)

- CS4.x only supports 1 UAV per compute shader
- To output to three buffers for the three spectrums, just allocate one big buffer and manage the offsets for each buffer
- A pixel shader is employed to read the transformed data from the UAV and interleave them into a FP32x4 texture

### **Performance**

- The performance is bound by texture
  - FFT takes trivial time to complete on most GPUs.
  - Increasing AF level can help the image quality, but decrease the framerate steeply



### Acknowledgement

 Thanks for Victor Podlozhnyuk for providing FFT code, Simon Green for various suggestions, Cyril Zeller and Cem Cebenoyan for supporting doing this demo