Ocean Surface Simulation

T




List of the Content

Simulation Algorithm

Rendering

DirectX Compute Implementation

Performance



Simulation Overview

- Based on Jerry Tenssendorf’s paper “Simulating Ocean Water”
- Statistic based, not physics based
» Generate wave distribution in frequency domain, then perform inverse FFT
» Widely used in movie CGils since 90s, and in games since 2000s

* In movie CGl: The size of height map is large
- Titanic, 2048x2048
. Water World, 2048x2048
 And more...

« In games: The size of height map is small
» Crysis, 64x64
* Resistance 2, 32x32
 And more...
« All simulated on CPU (or Cell SPE)



Performance Issues

« The simulation require to generate the displacement map in real-time

« Computing FFT on CPU becomes the bottleneck when the
displacement map gets larger

 Larger texture also takes longer time on CPU-GPU data transfer
- However, large displacement map is a must-have for detailed wave crests

 GPU computing is really good at FFT

« Multiple 512x512 transforms can be performed in trivial time on high-end GPUs
- Multiple 1024x1024 transforms are affordable for high quality real-time rendering



The Algorithm: Wave Composition

 The ocean surface is composed by
enormous simple waves

- Each simple wave is a hybrid sine
wave (Gerstner wave)

« A mass point on the surface is doing
vertical circular motion

x=X,—(k/k)Asin(k -x—ar)
y=Acos(k-x—ax)



The Algorithm: Statistic Model

* The distribution of wave length,
speed and amplitude are following
several statistic models

* Phillips spectrum is one mostly used
practical model: Gauss function
modulated by wind direction

- Generated in frequency domain at
the initial time

Flo<k>=%5<k>a<k>




The Diagram of Generating Initial Spectrum

~ 1 =
A, k) =?§<k)P,,(k>

£(k) = Gaussian(




The Algorithm: Displacement Map

« Update three spectrums for each
displacement direction at runtime
. Z for “height” field

Hk,1)=H,K)e + H, (-k)e™™

« XY for “choppy” field

DK, 1) :i%ﬁ(k,t)

 Perform inverse FFT on three
spectrums

- Surface normal and other data are
generated from displacement map




The Diagram of Updating Displacement Map

A,(K) =%5<k>f:,<k)

D, (k1) :i%ﬁ(k,t)

H(k,1)=H,(k)e'™" +
[_"I'i“(_k)e—ia)t

15},(k,t):i¥l-l(k,r)

AIE L ¥ fj”/';
/7 7

Normal

Folding




Rendering




Screen Space vs. World Space

« Screen Space
Pro

« Minimal mesh wastage
« Can be extended to horizon easily

Con
» Distracting alias at distance due to undersampling
» Require huge off-screen mesh chunks to cover gaps along the screen edges
« World Space
Pro
« Can be mapped to displacement map straightforwardly
« No undersampling alias

Con

 Need more complicated way extending to horizon
* Produce many sub-pixel triangles at distance




World Space Rendering

« We use world space rendering in
the demo

« The mesh is created at half
resolution of the displacement
map

* In the demo, 256x256

« Quad-tree is employed for
frustum culling and mesh LOD




Tiling Artifact Removing (1)

* FFT only produce periodic pattern
« The repeated pattern becomes a major distraction at distance
- But looks okay at near sight




Tiling Artifact Removing (2)

* Perlin noise composed crests yield no tiling artifact
« But lack of details at near sight




Tiling Artifact Removing (3)

« Solution: blend Perlin and FFT generated crests
- Effective and simple

 We do tried texture synthesize based method, but which works poorly and not
worthy to do in real-time



The result of blending FFT and Perlin noise



Ocean Shading (1)

 The demo only rendered for deep ocean water
« Shallow water rendering is much more complicated

- Shading components
- Water body color: using a constant color
* Fresnel term for reflection: read from a pre-computed texture

+ Reflected color: using a small cubemap blend with a constant sky color
 Vertical streak: computed from a modified specular term



Ocean Shading (2)

* Fresnel term (left) and sun streak (right)




DirectX Compute Implementation

* Use DX Compute to
« Update three spectrums each frame
* Perform three 512x512 inverse FFTs each frame

« Use Pixel Shader to
* Read the results from FFT and interleave the data into displacement map
- Generate normal map



Details on DX Compute code

* Inverse FFT

« Currently, only 512x512 transform is implemented in the SDK sample
» Higher than 1024x1024 will produce visible artifact due to FP precision
« Using CS4.0 to run on DX10 level GPU (G8x and later)

« Using complex-to-complex transform for better coalescing performance

« UAV usage (Unordered Access View)
« CS4.x only supports 1 UAV per compute shader

- To output to three buffers for the three spectrums, just allocate one big buffer
and manage the offsets for each buffer

A pixel shader is employed to read the transformed data from the UAV and
interleave them into a FP32x4 texture



Performance

* The performance is bound by texture
* FFT takes trivial time to complete on most GPUs.

 Increasing AF level can help the image quality, but decrease the framerate
steeply




Acknowledgement

* Thanks for Victor Podlozhnyuk for providing FFT code, Simon Green
for various suggestions, Cyril Zeller and Cem Cebenoyan for
supporting doing this demo




