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Abstract

When working with oceans in the visual effects industry, it is not always very prac-
tical or even possible to use real live footage, especially if extreme weather con-
ditions are required. A common scenario is computer generated objects crashing
into an ocean generating splashes and foam that should stick to and integrate well
with the real ocean surface. Making a shot like that look realistic is very difficult,
this is where a fully computer generated ocean surface comes in handy.

Creating high resolution computer generated sequences of an ocean surface
with interacting objects is difficult using today’s available commercial 3D pack-
ages. I have therefore implemented a VFX ocean toolkit, which is a system built
for generating the ocean surface, Kelvin wakes and interaction with objects. The
ocean toolkit was built with the artist in mind and the need for real time preview to
produce results quick and easy in order for the system to remain cost effective.

The ocean toolkit is tightly integrated directly into the procedural 3D animation
package Houdini1 as several plug-ins and shaders that can be combined to create
numerous ocean surface effects.

1http://www.sidefx.com
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Chapter 1

Introduction

An ocean is a common nature phenomenon and therefore an important element in
motion pictures. Capturing live footage with that perfect ocean look can be very
difficult if not impossible due to weather conditions or simply because it does not
exist. Integrating splashes and foam with a real ocean surface is also a very diffi-
cult, but common task, since it is almost impossible to track the surface and make
the foam stick to it. When creating a computer generated surface it is important
that it looks very similar to the captured reference footage or story board since that
is what the director is aiming for.

The need for a digital ocean system to create visual effects is obvious. Several
articles and papers have been published describing how to create ocean like effects
but none of them are implemented in the commercial 3D animation packages avail-
able today. The most common approach when generating ocean surface waves is
described in [1] and has been used successfully in various projects for several years
producing very realistic results.

This thesis describes how to implement a VFX ocean toolkit, using previously
published literature combined with our own techniques to create a very flexible and
controllable ocean generation tool that can be used in a production environment. To
achieve our goals large efforts have been put towards enabling real time previews
in all the system components.

The reader is expected to have strong knowledge of computer graphics. A good
starting point is to read [5].

1.1 The ocean toolkit

The obvious approach to generate waves would be to simulate the whole ocean in
3D as a full scale fluid [6]. Because ocean surfaces can stretch for several hun-
dred kilometers a fluid simulation would not be very practical and also a waste
of computational resources when we are only interested in the large scale surface
motion. Fluid simulations produce very realistic results and could perhaps be used
for local object interaction on the surface. In this thesis I have chosen not to use
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3D fluid simulations at all since they are to slow and also several very functional
implementations already exist in commercial 3D animation packages.

The ocean toolkit is completely 2D grid based where a flat surface grid is dis-
placed in three dimensions and animated with time to create realistic wave motion
and allow for waves with sharp peaks to appear.

Figure 1.1: The steps to create an ocean surface. Flat grid (left), displaced
grid(middle) and final displaced and shaded surface.

The ocean toolkit is built from several different methods to be able to simu-
late the most important features of an ocean. Three key components exist which
are referred to as "Ambient Waves", "Kelvin Wakes and Turbulent Wake" and fi-
nally "Object-Water interaction". The reason for splitting up the system into three
components is simply because it is not a full scale fluid simulation which would
handle all types of effects at once. The "Ambient Waves" component generates
the characteristic ocean waves but suffer from the limitation of being very difficult
to interact with. The "Object-Water Interaction" component was therefore intro-
duced to enables surface interaction with floating or stationary objects. Generating
wakes from boats proved to be difficult and unnecessarily slow using the previous
described components because wakes stretch for several kilometers when the wind
is calm. Therefore a third component "Kelvin Wake and Turbulent Wake" was
introduced.

1.2 Houdini

The ocean toolkit is tightly integrated directly into the procedural high-end 3D an-
imation package Houdini1 as several plug-ins and shaders that can be combined to
create numerous ocean surface effects. Houdini was chosen because of its node
based structure and purely procedural nature. Houdini is also a very flexible sys-
tem designed with the more technical artist in mind which suits a system like this
perfectly.

1.2.1 Operators

The procedural nature of Houdini is found in its operators which can be connected
into networks and create highly detailed geometry in relatively few steps compared

1http://www.sidefx.com
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to other software packages. It is possible to build custom operators using C++ and
the HDK, Houdini development kit. The ocean toolkit consists of custom made
surface operators (SOPs) and VEX operators (VOPs). VEX (Vector Expression) is
one of the internal languages of Houdini and is similar to the RenderMan shading
language. The SOPs are used for displacing the low resolution geometry used
when doing previews while VOPs are used to achieve the same results but with
much higher detail at render time. The real power of Houdini is the possibility to
use our custom made nodes together with the native Houdini nodes and push the
system beyond its own limits.

1.2.2 Mantra and shader networks

Mantra is the name of the internal Houdini renderer which is a production class
renderer. It has many similarities with RenderMan2 and supports both micro poly-
gon renderings as well as ray tracing. Shaders are scripted using the VEX language
or by using VOPs in the node based interface and are converted into VEX code at
render time. Building VOP networks instead of writing code is extremely bene-
ficial when it comes to overview of writing very complex shaders. Thinking in a
node based manner is actually very similar to programming but with a much better
overview and scalability. There are also simple scripting nodes that can be used
since some operations are just easier to do by writing code. Programming using
nodes is not only applicable to shaders but can also be used directly on geometry
by transforming the vertices in VOPSOP networks.

1.2.3 Point clouds

Houdini supports point clouds which are similar to RenderMan brick maps. Point
clouds are points in space with assigned attributes. They allow more complex light
interactions such as subsurface scattering and ambient occlusion. It is also a great
storage format for point data that can be evaluated at render time. We often store
foam in point clouds since they provide resolution independence and are attached
easily to the surface using uv coordinates. Making lookups and finding the closest
points during rendering is relatively fast and therefore very usable.

2http://renderman.pixar.com
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Chapter 2

Ambient Waves

2.1 Overview

An almost infinite amount of sin-waves traveling in all directions with different
amplitudes and wave lengths is what gives a characteristic ocean surface look.
Simulating a large ocean using fluid dynamics equations is not only impractical
but impossible due to calculation costs. We have to cheat and only generate the
actual surface of the ocean without underwater activity. The goal is to be able to
displace a flat 2D surface into something that looks like an ocean.

Several papers and articles have been presented in this field over the last couple
of years and even though results are very promising the main method used [1] has
some major limitations and drawbacks. Despite that I use the very same method as
the foundation for the ambient wave system. Major efforts have been put toward
improving and getting around these limitations making the method even more suit-
able for production.

2.2 Mathematical background

When simulating fluids [6] of any kind the incompressible Navier-Stokes equa-
tions often come in handy, but as stated previously it has to be simplified when
simulating a large ocean surface.

My intention is not to fully explain the reduction of the incompressible Navies-
Stokes 2.1 equation but rather give the reader an idea of the mathematical back-
ground used for generating the ambient waves. A full explanation can be found in
[11] and in [1].

∂u
∂ t

+u•∇u =−∇p
ρ

+ν∇
2u+F (2.1)

∇•u(x, t) = 0 (2.2)
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The Bernoullie’s equation can be derived as a nonlinear reduction of the Navier-
Stokes equations where the degrees of freedom of the flow is reduced from three
to a single one by introducing a velocity potential instead of the velocity u(x, t).

∂Φ

∂ t
+

1
2
(∇φ)2 =−p−U (2.3)

∇
2
φ(x, t) = 0 (2.4)

The Bernoullie’s equation is still quite complex since it is capable of simulating
breaking waves and has to be reduced even further. This reduction is described
more in depth by [1] where linearization is done by removing the quadric term
1
2(∇φ)2 and therefore removing the most complicated wave motion. The equation
is also restricted to evaluating only the quantities on the actual surface being a
height field function that only depends on horizontal position. The energy term U
is

U = gh (2.5)

where g is the gravity constant 9.8m/sec2 and h is surface height. Because we are
restricting ourselves to the surface, pressure can be seen as a constant which we
choose to be 0. This means that Bernoullie’s equation has been linearized to

∂Φ(x⊥, t)
∂ t

=−gh(x⊥, t) (2.6)

where x⊥ is a label of horizontal position. The mass conservation equation 2.4 has
also been restricted to the surface by converting it into two components, one that
labels horizontal position and one that is pointing down into the water volume.{

∇
2
⊥+

∂ 2

∂y2

}
φ(x⊥, t) = 0 (2.7)

To fulfill 2.7

∂

∂y
=±

√
−∇2

⊥ (2.8)

must hold. Combining these equations using the time derivative of the velocity
potential we get a single equation describing the evolution of the surface height.

∂ 2h(x⊥, t)
∂ t2 =−g

√
−∇2

⊥h(x⊥, t) (2.9)

This equation transforms into a two dimensional Laplacian equation after taking
two more time derivatives.
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2.3 Dispersion relation

The previously described and quite complex math ends up in a small and very
simple equation, describing how wave propagation varies with the wavelength or
frequency of a wave, called the dispersion relation. More details on how to find the
solution of 2.9 can be found in [1] where research to verify the dispersion relation
using motion from real ocean waves is discussed.

ω
2(k) = gk (2.10)

where k is the wave number, g is gravity and ω is the frequency. Equation 2.10
holds for deep water where the water depth can be ignored. If the bottom is shallow
compared to the wave length the depth is accounted for by using the dispersion
equation

ω
2(k) = gk tanh(kD) (2.11)

where D is the water depth.

2.4 Ocean wave spectrum

If we look at an open ocean, we notice that the surface consist of a large number
of waves with various length and period travelling in all directions. Describing this
surface using sinusoids is simply not an option due to its complexity. Instead we
look at the concept of a spectrum that is based on work by Joseph Fourier. Using
Fourier transform, any surface can be represented as an infinite series of cosine and
sine functions oriented in all possible directions. Finding the series representing
an ocean surface is, if not impossible, then extremely difficult. The frequency
spectrum can, on the other hand, be found quite easily. It is simply a matter of
measuring ocean height at a sample point for a certain amount of time, calculate the
Fourier transform of the time series and generate a periodogram. The periodogram
is usually very noisy and therefore an average of several periodograms should be
used. The average periodogram is called the spectrum of the wave-height and gives
the distribution of the variance of surface height at the sample point as a function
of frequency. More about the ocean wave spectrum can be found in [7]. There are
several analytical semi-empirical models for calculating the wave spectrum. The
most commonly used is the Phillips spectrum [9] which produces waves driven
by the wind. Other models include the Pierson-Moskowitz Spectrum [10] and the
JONSWAP spectrum [7].

2.5 Creating waves using fourier transform

Generating waves using Fourier transform was introduced to the computer graphics
society by Mastin et al.[8] who transformed white noise from the spatial domain
to the Fourier domain where it was filtered using the Pierson-Moskowitz spectrum
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and then inverse transformed, resulting in a realistic looking ocean height field.
The waves where animated by shifting the phase each frame. A few years later
Tessendorf [1] described a similar approach to the problem where he started in
the frequency domain, using the Phillips [9] spectrum together with Gaussian dis-
tributed noise, and transformed it to the spatial domain using an inverse FFT. The
approach described by Tessendorf has been used in production several times and is
still the main preference when it comes to creating renderings for films and com-
mercials. I have therefore used it as the foundation when creating ambient waves.

As stated in [1], a wave height field h(x, t) can be represented as the sum of
sinusoids with complex and time-dependent amplitudes

h(x, t) = ∑
~k

h̃(~k, t)exp(i~k · x) (2.12)

where h̃(~k, t) is the height fourier amplitudes that define the surface structure, t
is time and ~k is the wave vector which is a horizontal vector that indicates the
direction of wave propagation.

The wave vector is calculated as ~k = (kx,kz) where kx = 2πn/Lx and kz =
2πm/Lz, n and m are integers with bounds −N/2 ≤ n < N/2 and −M/2 ≤ m <
M/2. N and M are the resolution of the FFT while Lx and Lz are used for scaling.
From the wave vector~k we get the wave number k

k =
∣∣∣~k∣∣∣ (2.13)

and the wave length λ

λ =
2π

k
(2.14)

The wave number k also gives the frequency ω using the dispersion relation from
equation 2.10. The fourier amplitudes are generated to be consistent with oceano-
graphic phenomenology and I generate the coefficients using Gaussian distributed
random numbers together with the Phillips wave spectrum as suggested by [1].

h̃0(k) =
1√
2
(εr + iεi)sqrtPh(k) (2.15)

where εr and εi are random numbers from a Gaussian random number generator
with mean 0 and standard deviation 1. The Phillips wave spectrum is used to make
it look like waves on a real ocean.

Ph(k) = A
exp( −1

(kL)2 )

k4 exp(−k2l2)
∣∣(k̂ · ω̂)d

∣∣a (2.16)

where A is the Phillips equilibrium constant defined as 0.0081 [9] or it can be
a user defined amplitude constant which is the case in my implementation. k is
the wave number, L is the largest possible wave due to wind speed and gravity
L = V 2/g where V is wind speed and g is gravity. k̂ is the normalized wave vector,
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ω̂ is the normalized wind direction and l is the smallest possible wave length.
a is the wind-wave alignment term and d is an artificial damping term used to
damp reflections caused by the Fourier Transform. Now I can calculate the Fourier
amplitudes for the wave height field at any given time t using the dispersion relation
and the previously defined coefficients as

h̃(~k, t) = h̃0(~k)exp(iω(~k)t)+ h̃∗0(−~k)exp(−iω(~k)t) (2.17)

Algorithm 1 Generating waves using fourier transform
1: for all grid cells do
2: Calculate~k
3: Calculate coefficients h̃0 and h̃∗0 using gaussRand(),~k and Ph(k)
4: Calculate fourier amplitudes h̃ using h̃0 and h̃∗0
5: end for
6: displacementmap = IFFT(h̃);

The waves generated using Fourier transform are very smooth with rounded
peaks that work well in fair-weather conditions or as building blocks for larger
waves. When the wind strength increases, natural waves are often sharply peaked
at the tops or as referred to in [1], choppy. The waves are made choppy by introduc-
ing a horizontal displacement together with the already defined vertical displace-
ment. The horizontal displacement is generated using an IFFT and the previously
calculated fourier amplitudes as described in [1].

Displacement in the horizontal plane generates waves with sharp peaks and
also introduces the circular effects often seen when an object is floating on the
surface and moving in circles as described by Gerstner [12]. Choppy waves are
added to the height field and controlled by a constant λ that can be user defined
to set the amount of choppiness. When the constant is high, waves tend to self
intersect which not only ruins the illusion but should also generate spray and foam.
Tessendorf [1] introduced the jacobian of the horizontal transformation which is a
measurement of its uniqueness. Zero displacement means the jacobian is 1 and a
value less than zero indicates self intersection.

8



Figure 2.1: Demonstration of choppy waves (right image) compared to smooth
waves (left image).

2.6 Repetition removal system

The resulting wave height field is periodic and will therefore tile perfectly, making
it possible to create an infinite ocean with just one small tile generated by a simple
Fourier transform. Repetition is hardly noticeable if the size of the tile is kept
large and the camera angle selected with care. For production renderings, high
detailed oceans are required and make even the largest tile quite small. Giving
artists full control and freedom to move the camera around as they choose is also
important. Therefore I have introduced a tiling removal system which transforms
(warps) and blends the surface making every part of an almost infinite ocean look
unique. The tiling removal is based on transforming the world coordinates using
noise before the displacement lookup in the ocean tile. Doing this will result in
every tile looking slightly different but still fit together perfectly. The noise used
is somewhat arbitrary, but a simple trick to make it behave nice is to use the x-
coordinate of the shader sample to warp in the z-direction and vice versa. It is
also important to be able to control the scaling of the warp because it can very
easily create strange artifacts where noise patterns become visible instead of the
wave characteristics. Depending on the wave shapes and camera angle, one warp
is usually not enough and therefore a double sampling was introduced which is
the mean value of two tile samples where one is shifted in space. Simplified a
double sample can be described as two unique ocean surfaces blended together.
To remove tiling artifacts even further in extreme conditions one can mix several
double samples using noise. I use Catmull-Rom spline interpolation for all lookups
which is not for free and it is therefore a good idea to keep the number of samples
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as low as possible.
World coordinates are warped using fractal noise and a scaled based on the

FFT resolution
Pxwarp = Px ∗ scale∗ f noise(Pz,0,Px) (2.18)

Pzwarp = Pz ∗ scale∗ f noise(Px,0,Pz) (2.19)

before a lookup is made in the previously generated ocean tile. Px is the x-coordinate
of the current shader sample and Pxwarp is the new x-coordinate which has been
warped/transformed and will be used for finding out the displacement of the cur-
rent shader sample. f noise() is a function used to generate fractal noise. Several
lookups warped individually are combined

~D = snoise
(S1 +S2)

2
+(1− snoise)

(S3 +S4)
2

(2.20)

where ~D is the final displacement, S1_4 is a uniquely warped lookup and snoise()
is a function used to generate simplex noise.

Figure 2.2: Demonstration of the repetition removal system. Left image has repe-
tition removal applied and right image is the original.

2.7 Realtime preview

The system is built to be used in production and therefore the ability to preview the
surface while searching for that perfect ocean look is important. On modern work-
stations a multi threaded FFT-library runs very fast even at extreme resolutions
such as 40962, but still not in real time. Therefore I have introduced the possibility
to preview the surface using anything from 322 to 40962. The lower resolutions are
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simply low pass versions of the high resolution and therefore result in a smoother
surface which looks the same but can be animated in real time. Making this work
is simply a matter of scaling and of course making sure the Fourier coefficients
represent the same frequencies even if the resolution is changed. This is done by
generating small frequencies first and to ensure the same random number is always
used to generate a certain frequency.

Figure 2.3: Demonstration of different resolutions producing the same results.

2.8 Huge Ambient waves

The system was developed with a special project in mind and we needed to be
able to simulate extremely rough weather conditions with giant waves. Generating
really large waves while also achieving high surface detail needed for closeups, is
simply not possible because I would like to keep the FFT resolution at a maximum
of 40962 to not loose precision or use to much memory. Wavelengths have to be
smaller than the resulting tile for realistic wave motion. Larger waves require larger
tiles which is possible at a cost of surface detail. This can be thought of as having a
2D texture with a certain resolution. It is not possible to increase the scale without
loosing the fine detail. We need to be able to do this and I have therefore introduced
the possibility of placing several independent tiles and ocean wave spectrums on
top of each other which I refer to as stacking. Stitching the surfaces together is
possible by using a UV-space which also prevents them from sliding on top of
each other. The UV-space is simply uv-coordinates attached to the points of the
surface. When the flat grid is beeing displaced I use the uv-coordinates instead of
world coordinates for finding out what displacement to do. The reason for using
uv-coordinates instead of world coordinates is that they stick to the surface and do
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not change even if the surface is transformed (displaced). The same uv-space is
then used when displacing the surface even further using another wave spectrum.
The latest displacement will therefore stretch to and follow any motion of the first
displacement.

Figure 2.4: Small waves combined with a larger wave using stacking.

2.9 Mastering the waves

Absolute control is essential when generating digital images for motion pictures.
Simulations are great to a certain extent but will always need tweaking and fixing
in the end. I have therefore added several scaling and shifting parameters for the
time and the spatial domain. Scaling and shifting is far from enough because they
modify the overall wave shapes and not the individuals. I therefore also added
the possibility to tweak certain waves using the built in Houdini paint tools and
gain even more control. Modifying a single wave shape is simply a matter of hand
painting directly onto the ocean surface mesh. Also, as a result of the previously
described UV-space which enables stacking it is possible to use a hand animated
mesh as the base building block for very specific motion or wave phenomenas. The
ability to stack surfaces together proved very useful when creating a specific look
using real footage as reference. Not only did it improve results but also decreased
the time needed for the initial setup.

2.10 Whitecaps and foam

Foam is one of the most important components when making a digital ocean look
realistic. For ambient waves, foam appears when waves fall over and break or
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simply when they become choppy enough. The wave spectrum approach is not
suitable for real breaking waves but when wave peaks become sharp, whitecaps
and foam should appear. One way to determine when this happens is by using the
jacobian of the horizontal transformation and this works fairly well but becomes
very unreliable if used together with the repetition removal system. This is because
we sample the surface several times which can make self intersecting waves very
smooth if merged with a wave similar to its inverse. Therefore the jacobian might
tell us to generate foam where the surface is perfectly flat and ruin the illusion.
Another drawback with this approach is how to make foam stay on the surface
for a while before fading away. Each frame an ocean patch is generated and the
jacobian tells us where the patch is self intersecting. Keeping track of the foam
in the time domain to make it fade away smoothly is simply a matter of keeping
the foam from the previous frame. Unfortunately our repetition removal system
makes every point on the surface unique and keeping foam data from one frame
to the next is therefore not as trivial anymore. Foam generated using the jacobian
is referred to as JacobiBreaks. The solution to the problem of generating foam at
the right place is a matter of finding out where waves are self intersecting after
the repetition removal system has been applied. This can be done using standard
collision detection and could be extremely slow. I use an indexed grid as the initial
surface and intersections can therefore be found very quickly since I always know
the indexes of the neighboring points. Self intersections are found by comparing a
point to its neighbors and verify if it has been moved past any of them.

A point cloud is generated from the intersections and is basically points in
space with certain attributes attached to them such as birth time, amount of self
intersection, UV-coordinate and so on. The point cloud is used at render time
in a foam shader. I refer to this method as GeoBreaks. Point clouds are very
practical compared to attaching attributes directly to a surface since they provide
resolution independence but still stick to the surface using its uv coordinates. I uses
both methods when generating foam. The JacobiBreaks method is quite useful for
adding very small detail and breaking up homogeneous surface patterns. I deal
with the time domain problem by loading several old patches into memory each
frame. This works well, is quite fast for less than 50 frames and enables a two
second life span. Two seconds is plenty for small detailed waves and I therefore
rarely use more than 25 frames. The GeoBreaks method is the preferred approach
when generating whitecaps and foam from larger waves.
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Chapter 3

Kelvin Wake and Turbulent Wake

3.1 Overview

The idea with a boat wake system is to be able to generate the typical patterns
from boats traveling on the open sea. The optimal solution to this problem would
be a system that can handle any type of object interaction with the water surface.
The objects can be anything from a floating bottle generating ripples to a full size
battleship traveling at high speed across the surface. The characteristic v-shaped
ship wake would be generated automatically by simply moving the ship around.

3.2 Interaction system

A full fluid simulation in 3D is out of the question since the surface covered by
a ship wake can be enormous, stretching several kilometers before it fades away.
There are two methods previously described in the computer graphics literature
which both rely on deforming a 2D surface. The IWave by Jerry Tessendorf [2] and
the Wave Particles by Cem Yuksel [3]. Both methods aim for real time performance
such as in computer games. I have implemented them both and will give a short
introduction to each one and also why i decided not to use either of them when
generating wakes.

3.2.1 IWave

IWave has been used in several motion pictures with very realistic looking results.
The method was suggested by Jerry Tessendorf back in 2004 [2] and is aimed at
real time applications. The idea is based on a 2D convolution and some masking
operations. A vertical derivative is calculated using the surface height grid and
then used to propagate the surface over time. I found the IWave method quite
attractive when dealing with objects moving randomly across the water surface.
Unfortunately artifacts start showing up looking like waves traveling in the oppo-
site direction to what is expected from certain object movements. The artifacts are
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hardly noticeable if the object is moving around quite randomly or if the resolu-
tion of the simulation grid is increased. Unfortunately, ships often travel along a
relatively straight path and wakes could stretch for several kilometers making this
method unusable.

3.2.2 Wave Particles

The Wave Particles method by Cem Yuksel [3] is a fairly new idea and it has there-
fore not been used in production yet as far as I know. It aims for real time applica-
tions and uses the graphics processing unit to increase the performace. The idea is
based on individual particles unaware of each other but together form wave fronts.
They are subdivided into more particles as distance between them increases during
wave propagation. The results I achieved with the Wave Particles implementation
were similar to when using the IWave method except for the artifacts.

Even though I can handle several hundred thousand particles without trouble,
several millions are needed to cover the area of a ship wave. Therefore the Wave
Particles method is not suitable for generating wakes either but it is still a very
attractive method and will be described more in depth later.

3.3 Ship wakes

One reason why none of the previously mentioned methods are suitable for gener-
ating ship wakes is because of their low detail. Ship wakes are extremely complex
even though they all have a very similar look. Wakes produced by ships or any
similar object consist of two parts, the turbulent wake and the characteristic Kelvin
wave. The turbulent wake trails the ship and is generated by the propellers of the
ship. The surface of the turbulent wake is often almost flat since the turbulence
caused by the propellers damps the ambient waves. The v-shaped Kelvin wake
named after Lord Kelvin (William Thomson) trails the ship as long arms (Kelvin
arms). The most significant parts of the Kelvin wake are the divergent waves and
the transverse waves.
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Figure 3.1: The major components in wakes generated by boats.

3.4 Generating the Kelvin Wake

Finding an equation that describes the Kelvin wake is a quite complicated task that
involves solving a boundary value problem for the moving pressure point [13]. The
result on the other hand is simple and consists of two parametric equations

x =−Y (2cos(t)− cos3(t)) =−(1/4)Y (5cos(t)− cos(3t)) (3.1)

y =−Y (cos2(t)sin(t)) =−(1/4)Y (sin(t)+ sin(3t)) (3.2)

plotted for −π

2 < t < π

2 generates the following patterns

Figure 3.2: Mathematically generated wake.

where Y is the current phase.
Using equations 3.1 and 3.2 with several phases and some other modifications it

is possible to generate the divergent and the transverse waves that together compose
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the heart of the Kelvin wake pattern. When looking at reference footage it appears
as if the wake is stationary to the moving ship and we can therefore get away with
making the ship drag a texture along its path. Generating such a wake displacement
map is easy and just a matter of creating a large enough texture using a modified
version of the Kelvin wake equations 3.1 and 3.2. The texture will be kept the same
during the simulation due to long calculation times because of the trigonometric
functions. Usually the size and wave length differs depending on speed which is
something we can fake by fading the texture instead of regenerating it between
frames. As always when dealing with rendered images for motion pictures it is all
about the looks and cheating/speed is often preferred before physical accuracy.

3.5 UV-space

Making the displacement texture follow a boat is quite simple and doing shader
lookups is just a matter of shifting the coordinates correctly. Unfortunately we
would like the system to support boats traveling along a spline which in many cases
will need to be curved. To support splines the texture will need to follow the curve
and bend properly. Such operations are not trivial and bending a texture introduce
lots of operations that are almost impossible to store without aliasing effects or
need for higher resolutions. The solution to this problem is as suggested by Mårten
Larsson [4] to use a uv-space. Along the spline we will generate polygon segments
until we have generated a polygon surface that covers the area where our wake
should appear. The resolution of the surface is based on curvature or user defined
settings.
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Figure 3.3: The generated geometry rendered with uv coordinates as colors.

UV-coordinates are assigned to each vertex while generating the polygons and
rendered above as colors.

During the rendering we use simple collision detection to find out if the shader
sample point is situated inside one of our polygons. In case of a collision the exact
uv-coordinates can be interpolated from the vertices using barycentric coordinates.
Finally the uv-coordinates are used to do a lookup in the previously generated wake
displacement texture. The resulting displacement is a wake that looks as if it bends
along the spline. To make this work in reality a few tests are made on the polygons
to make sure coordinates are valid and overlapping or self intersection does not oc-
cur for extreme conditions. Also the segments may have to be tesselated further to
remove artifacts caused by stretching in the direction perpendicular to the spline.
Tesselating will result in triangles with similar size and also reduce the number
of segments needed along the spline even when curvature is relatively high. The
polygon surface is generated every time step at render time but is a relatively quick
procedure unless the number of boats is very high. The displacement lookups on
the other hand can generate quite a render hit since collision detection is involved
and highly depends on the number of boats. The collision detection can be im-
proved considerably by only taking into account boats close enough to the shading
sample or introducing level of detail.
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Algorithm 2 Generate UV-space
1: Get boat animation path
2: Define number of segments using curvature, LoD or user settings
3: Divide path into segments with start and end points
4: for all segments do
5: Calculate perpendicular vector at start and end point
6: Use vectors to generate a polygon
7: Assign UV-coordinates to polygon vertices
8: Triangulate polygon using curvature, LoD or user settings
9: end for

3.6 Turbulent wake

The turbulent wake generated by the propellers and the boat hull will follow the
path of the boat until broken apart. Since I have already generated the uv-space
which is stationary to the boat, the foam covering the turbulent wake can be cal-
culated at render time independently of previous frames. The uv-space tells us
how far behind the boat a sample point is and the rest is only a matter of user
controlled parameters. Combining the uv-space coordinates with real world coor-
dinates makes it possible to warp the wake and give it a characteristic turbulent
look. I use turbulent noise based on time, real world coordinates to make foam
appear stationary, and the u coordinate (width) of the uv-space. Then a cosine
function is modulated with the noise and scaled using the v-coordinate (length) to
give a turbulent marble looking pattern that increases as we move away from the
vessel.

unew = cos(2π ∗TURB(u,s, t))∗ ( v
vmax

) (3.3)

where unew is the warped u coordinate used to generate foam, s and t are the uv
coordinates of the ocean surface used instead of world position to prevent foam
from sliding on top of the ocean surface.
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Figure 3.4: Kelvin wake and turbulent wake generated with the ocean toolkit.
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Chapter 4

Object-Water Interaction

4.1 Overview

Ambient waves and boat wakes are both very static systems that can be combined
easily but lack the possibility to affect each other and be affected by objects. There-
fore an interaction system generating waves using the other systems as input is
necessary. When dealing with Boat Wakes we discussed the possibility to use the
IWave system presented by Tessendorf [2] or the Wave Particles approach by Cem
Yuksel [3]. Both of them had limitations and where not suitable for generating
large wakes but worked well in restricted regions and perform much faster than a
full 3D fluid simulation. The IWave method suffers from artifacts unless the reso-
lution is increased quite a lot and is also restricted to a height map while the new
Wave Particles aimed for real time performance is very smooth even at low reso-
lutions. After several empirical tests and performance considerations I decided to
use the wave particles.

4.2 Wave Particles concept

The wave particles method is based on a height field representation where the
height at a certain point is the sum of a set of local deviation functions. Each
local deviation function is associated with what is called a wave particle. Particles
are individuals and have nothing to do with other neighboring particles. Waves
are formed by several wave particles traveling next to each other forming what is
called a wave front.
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Figure 4.1: Single wave particles compared to a wavefront formed by several
waveparticles.

The deviation functions are described in [3] as a wave length based waveform
function

Wi(u) =
1
2
(cos(

πu
li

)+1)∏(
u
li
) (4.1)

multiplied with a blending function

Di(x, t) = aiWi(u)Bi(v) (4.2)

which makes blending neighboring wave particles into wave fronts easier. li
is the wave length,u is a vector pointing from the current sample point toward the
current particle and ∏ is a rectangle function. The Cem Yuksel decided to use a
radius based deviation function instead where the wave form function is used as a
blending function on itself

Di(x, t) =
ai

2
(cos(

π |x− xi(t)|
ri

)+1)∏(
|x− xi(t)|

2ri
) (4.3)

making each wave particle represent a small circular bump on the height map in-
stead of being shaped as a rectangle. ai is the particle amplitude and ri is the
particle radius. The reason for using the later approach is the real time aspect, and
if wave particles are represented as round bumps they can be rendered efficiently as
smoothed points using modern graphics hardware. Because I am not using graph-
ics hardware the use of rectangular wave particles is certainly appealing and would
require less particles.
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Figure 4.2: Ripple composed of round particles compared to rectangular ones.

Unfortunately rendering rectangular wave particles proved much slower and
not as smooth looking as using the circular ones. Wave particles carry birth time
and birth position making it possible to find their current position without having to
update them each and every frame. They can also carry additional information such
as an angle making it possible to figure out when the distance to particle neighbors
is getting to high. Keeping these distances within certain limits is important to keep
wave fronts intact. When the distance become larger than a predefined threshold
a subdivision is performed introducing 3 new particles for each subdivided old
particle. Amplitudes and angles become one third of the old particle but the radius,
birth time and birth position stay the same.

Figure 4.3: Particles are subdivided once they are unable to cover their angle.

The only time particles need to be updated is when a subdivision is required,
the particle reaches a boundary or it has been alive long enough to face its death.
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Updating particles is a task that should be avoided if possible because our simula-
tion might contain millions of particles. Therefore as suggested by [3] the particles
could be associated with buckets that are associated with frames. When a wave
particle is generated I calculate subdivision time as

psubdiv = pbirthtime +
pradius

2

pspeed ∗ sin(2
3 pangle)

(4.4)

and also time of death and time when it hits a boundary. The shortest time gives
us what task needs to be performed next and the particle can be ignored until that
time. When that time comes I perform the task and do the same thing all over
again which is repeated until the simulation stops or the particle is killed. This
optimization removes the direct connection between number of particles and up-
dating them, making it possible to use an even larger total number of particles. A
major performance issue when using an enormous amount of particles is obviously
writing them to disk each frame and disk storage. Disk storage might not sound
like a big issue and with today’s hard drives it is not, but network traffic can be and
disks are usually network disks.

4.3 Choppy Wave Particles

When generating ambient waves using the linear Fourier transform, waves ended
up very smooth and not as choppy as one would expect. Waves are made choppy
by adding an extension to make them behave more like waves should, as stated
by [12], where a floating object will move in circles as waves are passing by. An
extension generating a similar result when using wave particles was suggested by
[3] where the previously described deviation function is divided into two parts, one
vertical deviation (the old deviation function eq. 4.2) and one horizontal deviation

DL
i (x, t) = Li(ûi · (x− xi))Di(x, t) (4.5)

where

Li(u) =−sin(
2πu

li
)∏(

u
li
)ûi (4.6)

which is a displacement in the horizontal plane just as when making ambient waves
choppy.
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Figure 4.4: Figure describing how a wave is generated from vertical and horizontal
displacement.

4.4 Generating wave particles

An object which is part of the simulation must consist of triangles since every
triangle represents a force pushing or dragging the liquid [3]. The amount of liquid
displaced is given by

V = A f ace(U ·N)δ t (4.7)

where A f ace is the face area given by the half the length of the face normal (unnor-
malized), U is the relative velocity of the face, N is the face normal and δ t is the
time step. If V is positive it means the liquid is pushed and a negative sign means
it is dragged. The relative velocity U is given by

U = Vo +Vw (4.8)

where Vo is the object velocity and Vw is the velocity of the water surface. Object
and water velocity can be calculated using time and space derivatives. If the face is
placed on the top of the object and still is submerged it will generate a ripple on the
surface which is done automatically by creating a wave particle with 2π dispersion
angle. If the face is not on the top side of the object the displaced volume is added to
a 2D grid representing the contour of the object seen from above. When all volumes
are calculated and added to the grid we redistribute them to their closest contour
grid cell. Then volumes are smoothed along the contour by keeping half the volume
and redistributing the other half to neighboring contour cells. We also calculate a
travel direction at each contour cell given by the direction pointing as far away from
the neighboring cells as possible. Directions are also smoothed by summing each
of the neighboring directions with the current cell and dividing the results by 2. The
angle between the new directions is the angle which the current cell is responsible
of as described in 4.5. Both smoothing procedures can be repeated until the result
is good enough for its purpose. These operations are extremely quick even with
high resolutions since only the contour cells are considered. When the smoothing
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is done, it is time to generate wave particles from the result. I generate one wave
particle from each contour cell and it has one mission, to cover its angle until death.

Figure 4.5: Figure describing how to generate wave particles.

26



4.5 Rendering Wave Particles

The Wave Particles should be rendered as small bumps, based on trigonometric
functions, that together form moving wave fronts. The by [3] proposed method
is based on using the GPU and the Particles are therefore rendered as points on a
grid which is blurred using 4.3 as a kernel. The system we are building is tightly
streamlined with Houdini and our first rendering approach was based on using
a point cloud to represent the Wave Particles. Point clouds can be loaded into
a displacement shader and the closest points accessed quite efficiently for many
purposes. When the amount of Wave Particles increased, the point clouds became
a huge bottleneck with rendering times of almost a minute for a simple surface
displacement. Instead I decided to generate a displacement texture similar to the
real time approach. Each particle is added to a texture using 4.3 which involves
trigonometric functions. The use of these functions can be eliminated by a lookup
table to increase performance even with an enormous amount of particles. The new
approach made the same renderings real time. I also render two more textures for
the horizontal displacements which will be used along with the height map in the
displacement shader.
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Chapter 5

Shaders

5.1 Displacement

One of the most common bottlenecks during rendering is high resolution geome-
tries. The system is flexible enough to be able to reuse the same functionality in
a displacement shader as when doing view port previews. This enables extremely
high detailed surfaces even when feeding low resolution geometry to the shader
and also assures the same results with or without the displacement shader. Huge
waves will usually be feed to the shader as geometry while the finest details are
generated at render time.

5.2 Surface

5.2.1 Fresnel

The most important render pass to make a surface look like an ocean is the Fresnel
pass that implements the Fresnel equations.

R =
[

sin(θt −θi)
sin(θt +θi)

]2

+
[

tan(θt −θi)
tan(θt +θi)

]2

(5.1)

T = 1−R (5.2)

where R is the reflected light and T is the refracted (transmittance) light.
These equations describe how light is reflected and refracted when moved from

a medium with refractive index n1 into a second medium with the refractive index
n2. The relationship between the angles of incoming light, reflected light and re-
fracted light is given by the law of reflection

θ1 = θ2 (5.3)

and Snell’s law (law of refraction)
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n1 sinθ1 = n2 sinθ2 (5.4)

5.2.2 Diffuse

The diffuse pass is used to brighten the surface and thereby be able to adjust to any
weather conditions or time of day. The diffuse light is mostly the refracted part of
the Fresnel equations which is scaled and colored.

5.2.3 Diffuse2

Another diffuse pass but this time generated from light sources to handle special
lighting conditions or simply break up the surface even further.

5.2.4 Occlusion

The occlusion pass is based on an ambient occlusion shader that tries to find out
where waves are occluded by other waves or objects. This is an approximation to
full global illumination.

5.2.5 Environment map

Most of the light in an outdoor environment is indirect sun light that comes from
the atmosphere. An environment map is therefore used to simulate the atmosphere.
The texture used is a standard high dynamic range (HDR) image and can be modi-
fied to simulate different weather conditions or time of day.

5.2.6 Sub Surface Scattering

Subsurface scattering (SSS) is a mechanism of light transport in which light pen-
etrates the surface of a translucent object and is scattered around inside it before
exiting the surface at a different point. It is used to make the waves translucent at
their peaks where they are thin. The SSS makes light shine through the surface and
introduces a more dynamic look. Computing SSS is usually quite expensive but I
have found that for an ocean surface it works well even at row resolutions.

5.2.7 Fake Subsurface Scattering

The sub surface scattering is expensive to calculate and obviously not practical
for a very large ocean. I therefore only calculate the SSS where distance to the
camera is small. To also achieve realistic waves further away from the camera I
generate a fake SSS render pass which is based on wave heights. This pass can be
used in compositing to brighten the waves near their peaks and make them look
translucent. This is a cheat but it works quite well.
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5.2.8 Turbulence layers

Several layers with turbulent noise can also be rendered and used for post process-
ing to break up parts of the surface even further if needed.

5.3 Foam

Foam proved to be the most difficult and time consuming shader to write. The
shader is fully procedural and therefore based on positions in space and UV-coordinates
used to generate noise. The UV-space is used to prevent the surface from sliding
in the same way as when stacking several surfaces on top of each other, but also to
enable internal stretching of the foam.

The foam shader is split up into three different parts or layers to enable a very
flexible system. The foam layers are generated using several types of noise includ-
ing Simplex noise, Voronoi and Alligator noise. Turbulence is generated using a
large span of frequencies and everything is mixed together using various scaling
and blending functions. The hardest part is not to make it look like foam but to
remove the traces of noise. The only way to do this is by mixing even more noise
patterns and choosing frequencies that make repetitions visible only at a larger
scale than our camera distance to the surface. Animation of the foam as it dis-
solves is also an important aspect to keep in mind which unfortunately does not
make things easier. Using only noise to create large chunks of realistic looking
foam is almost impossible. Therefore another approach which introduces a great
amount of flexibility and control together with the possibility to create extremely
unique foam patterns is used. I call it PaintedFoam and it will be described later in
this thesis.

5.3.1 Components

The first layer is called BumpFoam and is a thicker looking foam where I also
generate normals used for light calculations to make it more alive and also thicker
than surface noise pattern. This layer is used to simulate fresh foam from a very
recent splash or breaking wave.

The second layer is called TopFoam and is very similar to BumpFoam except
for being in 2D and with a slightly longer lifespan.

The third and final layer is something I call UnderFoam and it is used to sim-
ulate the very small bubbles created from splashes and breaking waves. These
bubbles make the surface a little bit brighter and will be visible long after the top
layers have disappeared. In the wake after a boat those bubbles can be visible for
several kilometers if the surface is calm enough.
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5.3.2 Painted Foam

Painted foam is actually as trivial as the name suggests. I have simply made use of
the built in painting tools in Houdini and connected them to our shaders. This en-
ables the user to paint directly on to the ocean surface by using a pressure sensitive
digital pen and is thereby able to manually adjust the amount of foam at certain
places. Painting by hand makes it possibly to create extremely unique patterns at
the correct spots while also giving artists great control over our foam system. The
painted foam is mainly used to generate large chunks of foam and make it look
like waves have been breaking at certain places but also to create certain charac-
teristics such as the foam bands often visible on large waves. Painting can be done
in several layers that are connected to different shaders. I also combine painted
foam with point clouds making foam appear only at spots where there is paint and
points.

5.3.3 GeoBreaks

GeoBreaks are as discussed earlier used to generate foam from waves that are
falling over. A point cloud was generated when simulating the GeoBreaks and
includes a point for each sample on the surface where self intersection occurred.
The points have attributes such as birth time, amount of self intersection and UV-
coordinates that will be used when generating foam. The shader loads the point
cloud during rendering and locates all points closer than a certain distance to the
current render sample in UV-space. A blending function is used to merge values
from all neighboring points based on distance. The final values are fed into our
foam system which calculates the different foam layers and opacity based on birth
time and amount of foam at the current sample.

5.3.4 JacobiBreaks

JacobiBreaks used to generate fine detailed foam from small waves falling over.
They are not very well suited for larger waves since waves might appear at the
wrong places as a direct result of the surface repetition removal system. Other
difficulties include how to keep information between frames in memory where
solutions once again are limited because of the repetition removal system and the
wave spectrum method. These are the reasons for not using the JacobiBreaks as
our primer foam generation system but merely as a complement. The JacobiBreaks
introduce very fine surface details and enables foam from even the smallest of
waves. It is also great for breaking up the surface to make it less homogeneous.
The problem with keeping data in memory between frames is not really an issue
anymore since the JacobiBreaks are very small and will fade away after only a
second. It is therefore possible to load cache files into memory all at once without
using too much memory or network resources.
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Figure 5.1: Some of the most common shaders used to create a realistic looking
ocean surface.
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Chapter 6

Results

6.1 Performance

The overall performance of the system is very good even though there is room for
lots of improvements. The bottleneck is not the system itself but rather the render-
ing process which has to do with shading. The time it takes to calculate the surface
displacement is hardly noticeable compared to the shading even with the simplest
of shaders. The performance of the system while working with it and when do-
ing previews is also quite fast but it is easy to hit the roof when adding several
wave spectrums together or increasing the resolution of the grid or simulation ob-
jects. The problem when increasing the resolution is mostly because it takes time
to update the geometry and the viewport which is taken care of by houdini.
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6.2 Example 1

This is a test shot created for a film project where extreme weather conditions were
needed and therefore making it impossible to use real action footage. We really
tried to push the system to its limits by stacking 5 different wave spectrums on
top of eachother. The shot required almost 50 separate render passes where 15 of
them where different foam layers. This sequence was rendered in a resolution of
2K and is 10 seconds long. It took about 20-30 minutes per frame on a standard
workstation. Since we stacked 5 spectrums on top of each other using a huge grid
with over half a million polygons, the preview also ran quite slow with everything
turned on. By turning off everything except the layer I was currently working on it
ran smoothly.

Figure 6.1: Example 1: Pushing the system to the limit by stacking 5 layers on top
of each other.
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6.3 Example 2

A commercial created for the German power company RWE. Ambient waves were
used together with the interaction system. The simulated objects move around very
rapidly and therefore subframes (see page 37) had to be used for the simulation.
For this project several shots were made in a resolution of only 1K and therefore
rendered very fast. They all rendered on a single workstation with an average per
frame time of only a couple of minutes. Simulation of the interactions ran almost
in real time since low resolution spheres where used instead of the high resolution
character.

Figure 6.2: Example 2: Project using ambient waves together with the interaction
system.
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6.4 Example 3

A shot created for a film project where real footage was used as reference. The idea
was to generate a splash with foam and composite it together with the captured
footage. Making the splash and foam integrate well with a real ocean is a very
difficult task. We therefore generated a very similar surface using 2 wave spectrums
stacked on top of each other. Creating a splash with foam that sticks to the surface
proved to be much easier using a computer generated surface. The surface was
rendered in a resolution of 2K and took about 15 minutes per frame on a standard
workstation. Since it is only two wave spectrum layers and the fine detail was
added in a displacement shader the grid resolution could be kept low which made
it easy to work with.

Figure 6.3: Example 3: A computer generated ocean surface compared to real
footage.
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Chapter 7

Conclusion

This report presents how to build an ocean system for visual effects out of recent
research combined with own ideas to fulfill the requirements of a very flexible and
usable system. The VFX ocean toolkit is designed to integrate seamlessly with
Houdini and has adopted its procedural nodebased operators. My operators can
therefore be combined with native Houdini operators to push the results far beyond
its own limits.

The idea of stacking several layers with different scales and ocean wave spec-
trums has proved to be very useful. It not only decreases setup times but also takes
the system to a whole new level where very specific surfaces can be generated quite
easily out of reference footage. One of the other key features is the repetition re-
moval system which makes, the otherwise quite limited approach of using an ocean
wave spectrum, very useful for generating very large ocean surfaces.

Building the object-water interaction system based on ideas from the Wave
Particles method proved not only to be flexible but also very efficient. Results are
visible directly with hardly no simulation time which makes it possible to spend
more time on finding the perfect wave look instead of waiting for the simulation to
end. The use of subframes when simulating proved to be necessary when dealing
with fast moving objects, which is the case most of the time. The interaction system
is also very easy to modify and extend beacuse it is based on physics that have been
simplified to the extent of not being very physical anymore. Simulations are great
but in the visual effects industry the final images are much more important than
physical accuracy.

The main strength of the toolkit is in its ability to quickly produce great results
in a cost effective manner together with its flexibility when it comes to directing and
controlling the result. The reason for this is mostly thanks to the tight integration
with Houdini and the possibility to use existing production tools such as paint
nodes to modify surface and foam directly. The toolkit has already been used
in several projects with great success and therefore proven itself as a very useful
visual effects ocean toolkit.
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Chapter 8

Future work

The VFX ocean toolkit is not a complete system, actually far from it and there is
much room for improvements and development of new features. The three main
components work very well but could of course be optimized and developed even
further. The main interest for improvements is in extending the whole system by
introducing new operators to be able to handle other types of water effects. Some
of the most interesting examples are

• 2D geometry based beach breaks

• Real breaking waves with foam and spray for closeup shots

• 3D fluids simulated using the graphics processing unit

The first two are interesting and certainly useful but most appealing is extend-
ing the system to handle 3D fluids simulated using the graphics processing unit.
This would enable simulation of even more violent splashes and interaction with
objects without the simulation times associated with 3D fluids.
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