
Ocean Wave Simulation in Real-time using GPU

Chin-Chih Wang
Department of Computer Science and Information Engineering

National Taiwan University
Taipei,Taiwan

Email: r98922125@ntu.edu.tw

Jia-Xiang Wu
Graduate Institute of Networking and Multimedia

National Taiwan University
Taipei,Taiwan

Email: taco.wu@gmail.com

Chao-En Yen
Graduate Institute of Networking and Multimedia

National Taiwan University
Taipei,Taiwan

Email: twelalic@gmail.com

Pangfeng Liu
Department of Computer Science and Information Engineering

National Taiwan University
Taipei,Taiwan

Email: pangfeng@csie.ntu.edu.tw

Chuen-Liang Chen
Department of Computer Science and Information Engineering

National Taiwan University
Taipei,Taiwan

Email: clchen@csie.ntu.edu.tw

Abstract—Ocean wave simulation is a popular topic in
computer graphics. We often use Fast Fourier Transforms to
simulate ocean wave in a statistical model. In order to make
ocean wave more realistic we use choppy wave to generate
sharp wave, a particle system to simulate wave breaking, and
a cube map to shade the ocean wave. We have implemented
our simulation program on a GPU, and the implementation
can simulate ocean wave in real time.

Keywords-Wave simulation; FFT; GPU; CUDA;

I. INTRODUCTION

This paper reports our implementation of ocean wave
and spraying simulating using various computer graphic
methods. In the last ten years we have seen more and more
computer graphics water scenes in movies and games. As
the performance of graphics hardware becomes increasingly
powerful, and GPU programming becomes much easier than
before, we can compute mass information and reach real-
time rendering performance.

Our implementation uses CUDA[1] to reach ideal frame
rate. In our implementation we do not concern about the
interaction of light between water surface and clouds or

air, so we simply use cube map [5] shading to reduce
the computation load. We do not concern about the water
volume under the waver surface either. Our implementation
focuses on spray position detection and production, because
it is crucial to show the spray produced by wave so that the
wave will look realistic.

The rest of the paper is organized as follows. Section II
introduces related work about ocean simulation. Section III
introduces the algorithms we use to generate the basic
wave surface. Section IV describes choppy effect which
makes basic wave move horizontally to generate sharp
wave. Section V introduces how to detect and produce
spray (breaking wave). Section VI describes system flow
chart in our implementation. Section VII describes results
from profiling our implementation and analyzes possible
performance bottleneck, and Section VIII concludes with
observation and future works.

II. RELATED WORKS

There have been many efforts of ocean simulation in the
literature. A. Fournier, W. T. Reeves [6] presented a simple
ocean wave model. J. Tessendorf [10] introduced a off-line
FFT-based ocean wave simulation which used choppy effect
to form the dramatic wave shape and particle system to per-
form breaking wave. FFT-ocean in [2] which implemented
basic FFT-based ocean wave in CUDA, and it demonstrate
GPU parallel computing power on FFT. T. Nishita and
E. Nakamae [11] introduced a way to render under-water
optical effects but it takes minutes to generate a frame. L.
S. Jensen and R. Goliáš [7] rendered foam by texture-based
method which provided a deep water animation. S. Premoze

419

cdclab
打字機
978-1-4244-7638-1/10/$26.00 ©2010 IEEE

and M. Ashikhm [9] used physical-based method and a non-
real-time light transport to render water surface.

III. BASIC OCEAN WAVE

In this section we focus on the main algorithms used
in our implementation. J. tessendorf [10] described that
Oceanographic literature tend to used statistical ocean model
for realistic purpose. Statistical models are also based on
the ability to decompose the wave height field as a sum of
sine and cosine waves. Therefore we can use inverse FFT
to composite many sine and cosine waves to form the wave
surface. The following is a description of FFT-based ocean
wave.

A. FFT ocean wave

J. Tessendorf [10] provides Equation 1 to composite sin
and cosine wave by inverse-FFT.

h(x, t) =
∑
k

h̃(k, t) exp(ik · x) (1)

Equation 1 is explained as follows. h(x, t) and h̃(k, t)
represent wave amplitude at time t in spacial and frequency
domain respectively. x = (x, z) stands for wave position
and k = (kx, kz) stands for wave direction, kx = 2πn

Lx
, kz =

2πm
Lz

, and m, n are both integers with bound −N
2 ≤ n < N

2

and −M
2 ≤ m < M

2 . We can use inverse FFT to generate
the height field at each discrete point x = (nLx

N , mLz

M) for
corresponding n, m.

J. Tessendorf provides an efficient method to get
h̃(k, t) [10]. First, we consider this model for spatial spec-
trum, called Phillips Spectrum [8]:

Ph(k) = A
exp(−1

(kL)2)

k4

∣∣∣k̂ · ŵ
∣∣∣
2

(2)

Where L is the maximum waves height which is related
to speed of wind and constant of gravity, and ŵ is the wind

direction, and A is a constant. The term
∣∣∣k̂ · ŵ

∣∣∣
2

removes
those waves that move vertically to the direction of wind.
Then, we compute the Fourier amplitudes of a wave height
field with Phillips Spectrum:

h̃0(k) =
1√
2
(ξr + iξi)

√
Ph(k)) (3)

Where ξr and ξi are 2 Gaussian random variables with
mean 0 and standard deviation 1. Finally, after given a dis-
persion relation ω(k), we can compute the wave amplitudes
at time t as follows.

h̃(k, t) = h̃0(k) exp(iω(k)t) + h̃∗
0(−k) exp(−iω(k)t) (4)

We now describe our algorithm that generates FFT ocean
wave. At the beginning of simulation we compute h̃0(k)
on CPU because it just needs to be calculated once per

simulation. In each frame, we use N ×M CUDA threads to
compute h̃(k, t) for each k in parallel, and use inverse-FFT
library provided by CUDA to transform h̃(k, t) to h(k, t).

IV. CHOPPY WAVE

Figure 1. Choppy effect

Now we have a wave simulation without storm, but the
shape is too regular to be realistic. Therefore we add choppy
effect into our simulation. J. Tessendorf [10] used choppy
effect to make the wave peak sharp and the wave bottom flat,
as shown in Figure 1. We move x to x+λD(x, t) at time t
in order to obtain sharper wave instead of sine wave, where
λ is a coefficient to control choppy effect. The movement
function D(x, t) is as follows.

D(x, t) =
∑
k

−k

k
h̃(k, t) exp(ik · x)) (5)

From Equation 5 the equation of the horizontal movement
is similar to FFT but shifts phase forward 3π

2 . Consequently
the horizontal movement become smaller when the original
FFT wave moves near the peak or trough, but becomes
larger when the wave moves near the base, which makes our
simulating waves much sharper. We can still use CUDA FFT
library to compute choppy intensity. Figure 2 and Figure 3
show simulation results with and without choppy effect.

Choppy waves do have problems. When we increase λ,
choppy wave causes “overlapping” on the wave simulation.
That is, the external force is so huge that waves cannot keep
their shapes, so we can see the effect in Figure 4. When
wave breaks, it generates spray in real situation, so we will
introduce how to detect the overlapping and produce the
spray.

V. SPRAY

We describe the problem when the peaks of waves over-
lap. Now we can use this property of breaking waves to
generate spray.

A. Detecting Spray Positions

According to [10], J. Tessendorf provides a simple method
to detect overlapping by using the Jacobian, which has the
following form.

420

Figure 2. original fft ocean wave

Figure 3. choppy wave

J(x) = JxxJyy − JxyJyx (6)

where

Jxx(x) = 1 + λ
∂Dx(x)

∂x
(7)

Jyy(x) = 1 + λ
∂Dy(x)

∂y
(8)

Jxy(x) = λ
∂Dx(x)

∂y
(9)

Jyx(x) = λ
∂Dy(x)

∂x
= Jxy(x) (10)

D = (Dx, Dy) is a function of the coordinate (Dx, Dy)
on the horizontal plane. The Jacobian is less than zero if the
x is in the overlapping region. The Jacobian is zero when
there are points that will transform to the same position (the
transform is not invertible), so when Jacobian is less than
zero then region of overlapping appears.

As a result we can now find positions of overlapping
region by the Jacobian. We can also use the Jacobian to
compute the initial velocity of the spray. To determine the
velocity, we have to compute the eigenvalues and the eigen-
vectors from the Jacobian matrix. According to J. Tessendorf
in [10] eigenvalues and eigenvectors can be computed as
follows.

J± =
Jxx + Jyy

2
± ((Jxx − Jyy)

2 + 4J2
xy)

1
2

2
(11)

Figure 4. overlapping

ê± =
(1, q±))√
1 + q2±

(12)

and

q± =
J± − Jxx

Jxy
(13)

J+ and J− are the larger and smaller eigenvalues and
J+ × J− = J(x). J(x) is less than zero if and only if J−
is less than zero and J+ is larger than zero. As a result we
can check J− < 0, instead of J(x) < 0, and the eigenvector
corresponding to J− is the direction of spray velocity.

B. Generating Particle Spray

In our implementation we use a particle system to repre-
sent spray from breaking waves because CUDA programing
model is very suitable for particle system computation. In
each frame we generate new particles on the overlapping
wave surface. The direction of the velocity of the particle is
determined by the eigenvector corresponding to the smaller
eigenvalue, and the magnitude of the spray velocity is a
random number between 0 and (JT − J−), where JT is a
fixed threshold. After we initialize new particles, we update
the information of all living particles, including velocity, po-
sition, and age. We just consider the effect of gravity because
it is much more significant than other forces generated by
the interaction between particle and wave surface. When a
particle dies, we stop updating its information and make it
invisible until we recycle it as a new spray particle. After
these optimization we can achieve a frame rate 30 frames
per second using 131072 particles at the same time.

VI. RENDERING

Our rendering has seven steps.

1) We use inverse FFT to generate height map at time t.

421

2) We calculate choppy effect to form wave on the (256×
256) original grid mesh.

3) We detect overlapping regions to determine spray
positions

4) We generate new particles on these positions as sprays,
assign eigenvector of Jocobian as their velocities.

5) We update all the information of living particles,
including age, velocity, and position.

6) We draw six pictures on the sky box that surrounds
the scene.

7) We sample colors from the cube map and use them as
the reflection on the water surface. We also render the
particles of spray with a point sprite, which simplifies
water particle simulation without complicated calcu-
lation. All the rendering work is done by OpenGL[4]
shader.

Figure 5. flow chart

Figure 6. choppy wave with spray

VII. EXPERIMENT

Our experiment platform consists of one Intel Duo core
2.0GHz CPU, one NVIDIA Geforce 9800GT video card that
contains 112 CUDA cores and 512 MB device memory, and
4 GB host memory.

Figure 7. percentage of GPU time

We use CUDA Visual Profiler [3] to profile our im-
plementation in order to determine possible performance
bottlenecks.

Figure 8. system performance

Blue bars in Figure 7 indicate the breakdown of GPU
execution time before optimization, and red bars indicate
those after optimization.

Before the optimization we observe memory transferring
between host and device consumes most of the GPU execu-
tion time.

There are two reasons for this high data transfer time. First
we transfer data from CUDA memory to OpenGL shader
memory through the host memory. Second we generate
new particles in CPU but the computation requires J− to
determine whether to generate the particles or not. The
particle generation also requires h(x, t) and D(x, t) to
decide the locations of generated particles. All these data are
in GPU memory so the data transfer demands tremendous
communication time between host and device, for each
frame we want to render.

CUDA provides a memory mapping mechanism that
maps CUDA device memory to OpenGL[4] shader memory.
Therefore OpenGL can directly accesses the data to be
rendered on GPU memory without transferring through the
host.

We tried to generate new particle on GPU to avoid redun-

422

dant data transferring, but we encountered a synchronization
problem. When GPU generates new particles in parallel, they
will compete for particle buffer, therefore they do not know
which particle buffer segment are safe to use.

To address this synchronization problem we design a lock
mechanism to control access to the particle buffer. We use
A CUDA function atomicInc that guarantees to add 1 to
a memory location without interference from other threads.
We use this lock to protect the index of particle buffer so that
threads can access the particle buffer safely and concurrently.

Recall that red bars in Figure 7 indicate the breakdown
of GPU execution time after optimization. After we remove
the redundant data transferring we observe that the memory
transferring in Figure 7 reduces from 30 percent (blue bar,
before optimization) to 3 percent (red bar, after optimiza-
tion). The system performance improves about 30 percent
in Figure 8.

VIII. CONCLUSION

We implement an FFT-based ocean wave simulator that
has choppy effect and detect regions that need to spray
particles, and spray particles at those regions. We implement
this large scale (512×512 grids) ocean wave simulator with
GPU, which achieves real-time (more than 30 fps) particles
spraying performance for 131072 particles.

We conclude that GPU does provide significant computing
power that enables complicated Nature phenomenon simula-
tions in real-time. However, the memory bandwidth between
host and device could become a performance bottleneck.
As a result how to avoid communication between host and
device is a crucial issue while using CUDA [1] together with
OpenGL shader.

REFERENCES

[1] Cuda. http://developer.nvidia.com/object/gpucomputing.html.

[2] Cuda sdk. http://www.nvidia.com/object/cuda get samples.html.

[3] Nvidia compute visual profiler.
http://developer.nvidia.com/object/cuda 3 1 downloads.html.

[4] Opengl. http://www.opengl.org.

[5] Opengl cube map texturing.
http://developer.nvidia.com/object/cube map ogl tutorial.html.

[6] A. Fournier and W. T. Reeves. A simple model of ocean
waves. In Computer Graphics, Vol.20, No.4, 1986.

[7] L. S. Jensen and R. Golias. Deep-water animation and ren-
dering. In Gamasutra article on real-time water, September
2001.

[8] O.M.Phillips. The equilibrium range in the spectrum of wind-
generated waves. February 1958.

[9] S. Premoze and M. Ashikhmin. Rendering natural waters.
In PG ’00: Proceedings of the 8th Pacific Conference on
Computer Graphics and Applications, pages 23–30. IEEE
Computer Society, 2000.

[10] J. Tessendorf. Simulating ocean water. In SIGGRAPH course
notes, 1999.

[11] N. Tomoyuki and N. Eihachiro. Method of displaying optical
effects within water using accumulation-buffer. In Proc. of
ACM SIGGRAPH, August 1994.

423

	S5-W8-17

