Real-time Breaking Waves for Shallow Water Simulations

Nils Thiirey! Matthias Miiller-Fischer? Simon Schirm? Markus Gross'

'ETH Zurich, Switzerland. thuereyn@inf.ethz.ch, grossm@inf.ethz.ch
2AGEIA Technologies, Switzerland. mmueller@ageia.com, sschirm@ageia.com

Abstract

We present a new method for enhancing shallow water
simulations by the effect of overturning waves. While full
3D fluid simulations can capture the process of wave break-
ing, this is beyond the capabilities of a pure height field
model. 3D simulations, however, are still too expensive for
real-time applications, especially when large bodies of wa-
ter need to be simulated. The extension we propose over-
comes this problem and makes it possible to simulate scenes
such as waves near a beach, and surf riding characters in
real-time. In a first step, steep wave fronts in the height field
are detected and marked by line segments. These segments
then spawn sheets of fluid represented by connected parti-
cles. When the sheets impinge on the water surface, they
are absorbed and result in the creation of particles repre-
senting drops and foam. To enable interesting applications,
we furthermore present a two-way coupling of rigid bodies
with the fluid simulation. The capabilities and efficiency of
the method will be demonstrated with several scenes, which
run in real-time on today’s commodity hardware.

1 Introduction

The field of fluid simulations has seen significant
progress in the past years, particularly with respect to visual
accuracy and application to various scenarios, such as inter-
actions with different materials, phase changes and multi
phase behavior. However, most of the advancements are
not available for interactive environments, such as games.
The major barrier is the extensive amount of computations
necessary for solving a full 3D fluid motion, and tracing the
free surface for rendering.

An effective way to increase the performance of the sim-
ulation of large bodies of liquids is the reduction of the
problem from three to two dimensions. Instead of using 3D
grid cells, the liquid is represented by a two dimensional
height field. For calm situations, e.g., with smooth waves,
this representation can still capture the main visual proper-
ties of the free surface fluid. Other situations, like overturn-

ing of waves at the shore line can, however, not be captured
with such a reduced model. We propose a new technique to
enhance efficient height field liquid simulation with particle
based sheets, in order to create the effect of breaking waves.
As a breaking wave is a highly turbulent process that is still
not fully understood, we do not aim to fully simulate this
phenomenon in real-time, but to capture its most important
visual features.

Our approach consists of the following steps: the detec-
tion of potentially overturning wave regions, the generation
of a fluid sheet to represent the wave, its advection and, fi-
nally, the coalescence with the 2D water surface. We rep-
resent the breaking wave with connected particles, which
allows for the efficient and seamless creation of a surface
mesh for rendering. In order to allow further interaction of
the fluid with the environment, we apply two-way coupling
of the shallow water simulation with rigid bodies. The ca-
pabilities of our method will be demonstrated with several
test cases, from simple setups of single waves to more real-
istic environments such as breaking waves at a submerged
shelf, or waves generated by rigid body interaction.

2 Related Work

In the early years of fluid animation, procedural surface
generation was used to represent breaking waves as de-
scribed, e.g., by [6], [18] and more recently by [10]. For the

Figure 1. Example of a game character surf-
ing along a breaking wave in real-time.

wave line

/\7 :>%?:>

height field from
shallow water simulation

line detected along
steep wave front

wave patch

-

connected particles generated
from line vertices at wave crest

resulting surface mesh
with thickness

Figure 2. Here an overview of our wave simulation approach can be seen.

simulation of open water surfaces, such as the ocean, spec-
tral methods are often used, see [21], [8] and [14], among
others.

Two-dimensional water simulations based on height
fields offer more flexibility while keeping computational
cost low. The capabilities of a simplified shallow water
discretization for computer graphics were first presented in
[11]. Furthermore, [17] extended a shallow water simula-
tion with particle based splashes. [5] and [2] cover the ba-
sics of floating objects on the water surface. More recent
work on shallow water simulations for real-time applica-
tions can be found in [12], where the authors apply noise
textures for increased surface details, or [7] and [15], where
wave simulations using the GPU are demonstrated.

Full 3D simulations became popular with the methods
developed in [19] and [4], and have by now been extended
in numerous ways. Studies of breaking waves have like-
wise first been performed in 2D [1]. [16] on the other
hand presented a full 3D treatment of breaking waves with
a Volume-of-Fluid simulation. In [20] the visual impact
of breaking waves has been improved by adding particles
for sprays and foam. Similar to [16], an approach to use
slices of 2D simulations for wave simulations in real-time is
demonstrated in [23]. Recently, Full three-dimensional sim-
ulations have been combined with two-dimensional tech-
niques to speed up simulations of large volumes. In [9], a
2D simulation is performed beneath a layer of full 3D sim-
ulation for the fluid surface, while [22] couple the 3D simu-
lation region to a 2D shallow water simulation. While these
approaches significantly lower the simulation time, they are
still not suitable for real-time applications.

Breaking waves have been simulated in the context of
various computational fluid models. In the following we
present a method for extending height field based simula-
tions, such that the motion of breaking of waves can be
computed. In particular, we will focus on shallow water
simulations, as they yield a full velocity field for the fluid
surface. In contrast to the spectral methods, they can, on
the other hand, not handle the wave dispersion of deep wa-
ter waves. It is, however, possible to apply our method to
other simulation models that yield a height field and veloc-
ity vectors at the surface. Our simulation algorithm consists
of the following steps: first, a normal shallow water sim-

ulation step is performed, as will be explained in the fol-
lowing section (3). Afterwards, the rigid body coupling of
Section 7 is performed. In the next step the detection of
overturning waves is handled (as will be explained in Sec-
tion 4), and, finally, the advection of the generated particles
is computed (Section 5).

3 Shallow Water Simulations

The motivation to use shallow water (SW) simulations
is to reduce the complex three dimensional description of
a fluid to a simplified representation: a two dimensional
height field. The corresponding equations are derived from
the equations describing a full three dimensional fluid flow,
the Navier-Stokes (NS) equations, by several simplifica-
tions. Note that, in the following, we will assume a grav-
ity force along the z axis, so the plane for the 2D wave
simulations corresponds to the x-y plane. One simplifying
assumption is that the velocity does not vary significantly
along the z axis, and that we have a constant pressure gra-
dient from the water surface to the bottom. The only two
forces driving the fluid are pressure and gravity. We fur-
thermore make the assumption that we want to simulate lig-
uids such as water, which effectively have a zero viscosity,
and work with the simpler Euler equations. Thus, we can
neglect the viscosity term of the NS equations.

To simplify the notation, f,, will denote the partial
derivative of the function f along n, where n can be a spa-
tial axis or time. In the following h(x,t) is the height of the
water above ground, o(x) describes the bottom topography,
and H (x,t) = h(x,t)+o0(x) is the total height of water and
terrain. The vector u = (u,v)T is the horizontal velocity
of the fluid, and g is the gravitational force perpendicular
to the 2D simulation plane. The simulation region consists
of N, grid nodes with size Az, and NN, grid nodes with
size Ay in x and y direction, respectively. The simplified
shallow water equations can now be written as

H, = —u-VH—H(uy +vy) 1
ug = —u-Vu-—gh,, and 2)
vy = —u-Vu—ghy. 3

We use a staggered grid together with a semi-Lagrangian

advection step [19] to solve these equations, as desribed by
Layton et al. in [13]. As the height in a shallow water sim-
ulation is varying, and can be related to the pressure of a
normal incompressible fluid solver, solving the SW equa-
tions does not require a pressure correction step, such as
velocity projection. In comparison to solving only the wave
equation for a water surface, a SW simulation, as described
above, has the advantage of directly yielding a full velocity
field for the surface. It can be used to, e.g., trace objects
floating on the surface, and we will make use of it for cou-
pling the SW and the rigid body simulations in Section 7.
Moreover, SW simulations can be easily extended with a
variety of boundary conditions, e.g., for flows through ter-
rains, and can capture interesting effects, such as vortices
behind obstacles in the flow.

4 Wave Simulation

The following section will describe our approach to sim-
ulate breaking waves within the shallow water framework.
We detect lines of steep wave fronts, and track these with
a robust advection scheme. These wave lines generate
patches of connected particles representing the fluid of an
actual breaking wave. The wave lines adaptively track the
original wave, and can merge with others in their neighbor-
hood. An overview of our approach is shown in Figure 2.
Detection: Typically, a wave breaks when an initially
smooth wave approaches a region of shallow water, e.g.,
a beach. The decreased height of the water causes the
braking influence of the ground to become stronger. The
wave steepens, and, at some point, overturns. Especially at
beaches this effect is reinforced by the backward current of
previous waves, causing a stronger difference between the
forward movement of higher fluid layers, and the slower (or
backward) movement of fluid layers near the ground.

The steepening of waves in regions of decreased fluid
height can be reproduced with the shallow water equations.
However, The effect of a breaking wave can naturally not
be captured within a 2D simulation. The goal of the algo-
rithm described in the following is to construct a line £ of
connected points along each wave front that is a candidate
for overturning. To actually detect the front of a steep wave,
the gradient of the fluid height has to be larger than a given
threshold ¢z. Moreover, the velocity of the fluid needs to
be taken into account, otherwise not only the front, but also
the back side of a wave will be detected. At the wave front
the fluid velocity opposes the gradient of the height field.
Hence, as a first step we identify a set of points x € Py in

the shallow water grid, that fulfill the criterion:
IVH(x)| >ty and VH(x) -u(x) <0. 4)

Here, the gradient of the fluid height V H is computed with
finite differences from the height field of the shallow wa-

Nodes fulfilling

crlterlon of Eq. (4) 3) Next line point (n+1) with

steep helght gradient

2) Next point
along tangent

) Last wave
I|ne point (n)
P T i
] 1
] 1
:_/_— :\\ Gradlent

Broattened Zoomed view
detection region I—»
X

Wave line construction

Figure 3. Here a top view of the wave front
region and line construction is shown.

ter simulation. The threshold ¢y is determined from the
actual discretization of the shallow water equations, and a
user defined parameter py. The discretization influences
the resulting shape of the waves by the gravitational force
applied during each time step, while the parameter py can
be used to select the overall amount of waves to be gener-
ated. In the following we use py = 1/4, and compute ¢z
as

ty = pugAt/Az.)

The points of P, usually do not form a closed single
layer along the wave front. To generate a sequence of con-
nected points for £ along the wave front, we enlarge P,
by adding all points that have a distance of less than p4 to
one of the points in P,. We have found that a distance of
pq = 2Ax yields good results by closing gaps of this scale
along the points fulfilling Equation (4). As multiple wave
regions can be present at a single time step, this broadened
set of points is segmented with a flood filling algorithm to
identify disconnected regions. In the following, P, will de-
note such a single set of connected points of the broadened
region. We select a random point from P, and construct a
line by following the tangent vector of the height field. On
overview of this process is given in Figure 3.

This line construction is repeated for both tangent di-
rections. With VH = (g1, g2), these are given by t; =
(g2,—¢1) and t; = (—g2, g1). The following procedure is
first applied for one tangent direction, until the next point
along this direction is not part of P;,. Then the second part
of the line is constructed along the opposing tangent direc-
tion. Given a point xy, in Pp, the next point x/, is computed
as

x, =x, +Azt, (6)

where t denotes the current tangent direction. Due to the
scaling of the tangent with Ax, the line £ is constructed of
points with a distance of the grid size of the simulation. To

ensure the relatively large steps of Equation (6) do not by
accident leave the region Py, the next point of £ is given by
centering x/, to the point of the steepest gradient as

Xnt+1 = X" € Ly with maz(|[VH(x"))]) . @)

Here the line £, = x), + tVH(x],) consists of all points
along the height field gradient at x/, that are in Pp. The
point x,, 1 is added to £ and connected to x,,. These steps
are repeated until x,,;1 is not part of Py. In this case, the
process of the line construction is restarted with the second
tangent direction if t = t;, or the line is complete for t =
to. Likewise, if x,,+; has a distance less than p, to the first
point of the line, the line is completed by connecting the
two points, resulting in a closed loop.

As the points in Py might also fulfill Equation (4) at a
subsequent time step, all points of P, that are within a dis-
tance py to an existing line are removed from the set. This
prevents another line from being initialized right next to an
existing one. Note that this approach does not deal with
branches in the wave front region, but such a case will be
handled by the construction of two lines, that might eventu-
ally merge (as explained below).

Advection: The wave speed for the shallow water equa-
tions is given by
c=+/gH . ®)

However, for the interactive applications that we are target-
ing, the shallow water simulation can be distorted by a va-
riety of factors, e.g., rigid bodies (as explained below) or
other breaking waves. To accurately track the front of a
shallow water wave with wave line £, we combine an ad-
vection with the wave velocity, and a projection along the
gradient direction onto the line of the steepest gradient on
the wave front. The projection is performed with the bisec-
tion method, and an initial step size of length c¢. Usually,
2-4 steps suffice to find the desired target point.

The direction of movement for a point p of £ is given
by the gradient of the height field from the last time step, at
time t — At. At this point in time p was located at a correct
position on the wave front, either from an initialization of
the wave line, or from a previous advection step, and thus
u, = —VH(p) is used as the movement direction of p at
time ¢.

As the wave crest might have passed p, we first perform
a projection along u,, onto the maximum of the fluid height
field. Once this maximum is found, we perform another
forward projection onto the point of the steepest gradient on
the wave slope at position p’. We now ensure that this new
point is valid with respect to the original wave speed c. If
|p’” — p| > 2c we remove the point from the line. Likewise,
we ensure that this region of the wave is still steep enough
to produce a wave. Thus, if |u,| < tz/2, the point is also
discarded.

Forward projection

Point on the / onto wave crest
wave line
at time (t)
~ Forward projection

to the steepest
/ gradient on the

wave slope, new
position at time (t+At)

By |

Fluid height field at time (t+1)

Figure 4. This picture shows a side view of
the wave line vertex advection.

inserted point

N A NA

points to merge

Wave line at
time (t+At)

Wave line at
time (t)

Trivial case Refinement, Coarsening,
direction point inserted two points merged
connection

Figure 5. Connection shapes for the mesh
generation from refined and coarsened wave
lines.

During its movement, the length of the wave front can
change significantly. We thus adaptively resample the wave
line by introducing new points when the distance between
two neighbors is larger than 2Az. Similarly, points with
a distance of less than Ax/2 are merged. A folding of
the line can also be prevented by merging segments where
(Pnt1 — Pn) - (Prn—1 — Pn) > 0 holds. In both cases the
new points are initialized by averaging the properties of the
neighboring points. Hence, the resulting wave line consists
of segments that have a similar scale as the grid size of the
simulation throughout its lifetime.

5 Wave Patch Generation:

The fluid sheet of an overturning wave is represented
with a wave patch that is built from connected particles gen-
erated at the wave line. In time intervals ¢4 a set of particles
along the wave line is spawned for each point of the line,
adding another layer of quads to the patch. Amongst each
other, the particles have the same connectivity as the wave
line. If a previous set of particles exists, the new set is con-
nected to the previous one. If the same point on the line
existed at the generation time of both particle sets, this is

trivial. From these one-to-one connections, quads can be
easily generated to form a closed surface of the wave patch.
If points were added or removed from the wave line, these
are marked, and corresponding connection shapes are in-
serted to guarantee a closed surface, as shown in Figure 5.
To ensure that these three cases are sufficient, we only al-
low a single merging or insertion for a point within the time
interval ¢,.

For the computation of the velocities of the wave patch
particles, we use the velocity of the source point on the line
u;. The actual overturning of a wave results in a signifi-
cantly higher velocity at the top of the wave than at its bot-
tom. We assume that this forward acceleration is propor-
tional to the potential energy, in relation to the initial fluid
height H;. Thus, the velocity of a wave sheet particle at
position x is given by

u, = (14 pog(H(x) — Hi))u . ©)

Here, p, is a parameter to control the strength of the height
influence. As the wave line tracks the steepest point of the
wave front, the generated particles have to be positioned at
the wave crest to correctly give the impression of an over-
turning wave. The particle generation would be simplified
if the crest of the wave was tracked instead of the front, as
is done in our approach. However, the line of the wave crest
is not as clearly defined, e.g., for saddle points and saddle
lines of the height field. Thus, upon creation, the particles
of the wave patch are moved to the crest along the inverted
wave line velocity —u;. We furthermore subtract ,u, from
the particle position at the top of the wave, to ensure an
overlap of the wave patch and the shallow water surface.
This allows a smooth transition from the height field values
to the wave mesh, as explained below in more detail.

Once the fluid represented by the wave patch is detached
from the fluid below that represented by the shallow water
simulation, its motion is primarily determined by its initial
velocity and gravity. Thus, Euler steps are sufficient to inte-
grate velocity and position over time. After the update, we
perform a collision detection of the particle with the fluid
surface of the shallow water simulation. When a collision is
detected, we distort the shallow water simulation at the par-
ticle position x with H(x) = H(x) — p,,, while the eight
neighbors of the shallow water node at x are displaced by
Pm /8. Note that we do not explicitly transport fluid with
the wave patches, as a modification of the height field along
the wave front would distort its motion. This leads to noise
within the shallow water simulation, unless the modifica-
tion along the whole region of the wave is very smooth. As
mentioned below, correctly performing this mass transport
and smoothing is a topic of future research.

Task Duration
Shallow water simulation 39.6 %
Breaking waves & particle simulation 21.7 %
Mesh generation (vertices & normals) 18.9 %
Rendering & graphics engine 19.8 %

Table 1. Computational requirements of the
different parts of our algorithm.

Test case Resolution | Frames per Second
Single waves 1402 43.6
Box interaction 160 - 100 51.8
Submerged shelf | 150 - 80 75.2
Surfer 200 - 100 40.6

Table 2. Frames per second measurements
for the different test cases.

6 Rendering the Waves

For the rendering of a wave patch, its particles with their
connectivity can be directly reused as vertices. The wave
patches already represent a close surface, which, however,
does not have a thickness. Thus, we create two instances
of this surface for rendering, and displace the second one
downward along the normal direction. To get a closed mesh,
the sides of these two meshes are connected with quads.
As mentioned above, the intial position of the particles of
the wave patch ensures an overlap with the shallow water
surface. It correctly represents the top of the wave, while
the displacement of the lower side is chosen to represent
the mass of the fluid according to the parameter p,,. Given
a particle x on the wave patch that is used as a vertex for
the upper mesh, the position of the corresponding second
vertex X’ is given by x’ = x + p,,n.

By observing real breaking waves it can be seen that a
wave does not break as a whole at once, but the breaking
process starts at a given position. It then spreads outward
along the wave front due to the viscosity of the water. To
achieve this effect, we select a the mid point of the wave
line as the tip of the breaking wave. The wave patches are
then generated from an enlarging region centered around
the initial point. This is visible in, e.g., Figure 6.

In contrast to full 3D simulations, it is furthermore easy
to generate texture coordinates for the fluid surface of the
wave patch. For a point on the wave line £, it’s texture
coordinate is given by its lifetime, and its position in the
line. We, e.g., use these texture coordinates to blend in a
foam texture at the tip of the wave patch.

Finally, to give the impression of a larger scale, we use
standard particles. These are generated when the particles

Figure 6. Different types of waves created by
our method.

of the wave patch hit the shallow water surface. Moreover,
particles are spawned along the tip of the wave patch. Here,
in reality, the drag of the air causes disturbances of the fluid
sheet, resulting in the formation of drops. For the pictures
shown in this paper, we furthermore use a small scale bump
map to distort the reflective shallow water surface, which
gives the impression of smaller surface waves.

7 Two-Way Rigid Body Coupling

A straight forward approach for simulating the interac-
tion of rigid bodies with the water surface is to have each
body push down the water columns beneath it in order to
remove all overlaps. To conserve the water volume, the vol-
ume that is added or removed from each column has to be
compensated for in other parts of the domain. This method
yields nice waves for bodies dragged through the water. The
major drawback of the approach, however, is the fact that it
cannot handle the situation when a body is pulled beneath
the surface and gets fully submerged. In that case, the water
does not collapse above it leaving a hole of the size of the
body in the surface.

The method we propose here is similar but solves the
problem of submerged bodies. In addition to the height
value h(x) we store a value b(x) at each cell, which repre-
sents the water volume that is displaced by one or more rigid
bodies. This value does not influence the simulation di-
rectly. At the beginning of a time step the area of each body
is projected onto the x-y plane. For each cell at position x
that is covered by the projection we compute the new value
b(x) as the length along the column at x that is covered by

Figure 8. A user interacts with several boxes
that were thrown into a simulated basin.

rigid bodies. The difference Ab(x) = b(x,t) — b(x,t — 1)
indicates the change in volume covered by bodies between
the current and the last time step. This change is distributed
to the four direct neighbor cells, similar to algorithms for
changing ground depth. Hence, for a grid cell at position x
with a neighbor cell at x’

Ab(x)

h(x',t+1) =h(x',t) +a 1

(10)
The positions of the four neighboring cells are given by
x + (£Az,0) and x + (0, £Ax), respectively. This way,
the water surface closes nicely above the body. The scheme
conserves volume even for 0 < o < 1. By changing « the
amplitudes of waves generated by bodies can be adjusted.
Pulling bodies down or out of the water results in plausi-
ble increase and decrease of the water level. The value of
Ab(x) can be positive or negative and give rise to both, the
bow wave in front and the wake at the back of a body that
is dragged through the water.

For a coupling in the other direction, we add a force F'
of the water displacement and fluid velocity for each of the
grid nodes at position x covered by the rigid body:

F = hpu(x) + gAzAy b(x) p , (11)

where p is a constant to set the density of the fluid. Integrat-
ing these forces over the region of the rigid body and over
time, will cause the rigid body to float or sink depending on
its mass, and swim along with the fluid velocities.

8 Results

The capabilities of our wave simulation approach are
demonstrated with the test cases shown in Figure 6. Each
of the three rows of pictures show a breaking wave gener-
ated from an initial pulse, which has a height of 3/2H; in
comparison to the overall height H;. The breaking wave of
the upper row of Figure 6 was generated with a box profile
aligned with the grid boundary. The wave front is correctly
detected and tracked throughout its motion. To demonstrate
that our method works regardless of the alignment of the
wave, the middle row uses an initial height profile that is

Figure 7. A smooth wave approaches a submerged shelf, which results in a steepening of the wave
and, eventually, overturning. The ground topography is visible below the shallow water surface.

rotated by ten degrees. The lower row of pictures was gen-
erated with a square elevation initialized in the middle of the
simulation grid. This results in a circular wave that spreads
outward. Note that the sharp edge of these three profiles re-
sults in the detection of several smaller waves in the region
behind the main wave front. They are, however, quickly re-
moved from the simulation once the steepness criterion of
Equation (4) is not met anymore.

Images from one of our test simulations with rigid
body interaction can be seen in Figure 8. Several boxes
are thrown into a basin of fluid, become submerged, are
dragged along with the fluid, or float on the surface. A
user can interact with the simulation by moving around the
boxes. The simulation remains stable even during quick
movements.

A simulation of a breaking wave at a submerged shelf
is shown in Figure 7. Test cases with a submerged shelf
are common in coastal engineering, and represent the typ-
ical topology of a shore area. A simulation of a break-
ing wave at a submerged shelf in 3D was demonstrated
in, e.g., [3]. With our algorithm we can recreate this phe-
nomenon in real-time. Here, an initially smooth wave, that
would not break on even ground, is approaching the sub-
merged shelf. The decreasing fluid height causes the wave
to steepen within the shallow water framework. Eventually,
the wave is steep enough to fulfill Equation (4), and trig-
gers the creation of a breaking wave. Note that the shelf is
not fully aligned with the simulation grid, which causes the
wave to start breaking further towards the viewer.

Finally, we have recreated a game scene of a surfing
character in Figure 9. Our algorithm yields sufficient de-
tail even when the camera is very close to the breaking
wave. The details of the breaking wave can be controlled
by changing the point distances on the wave line, as this
also results in a change of the mesh resolution.

A limitation of our approach is that it doesn’t properly
handle cases with chaotic waves in the shallow water sim-
ulation. This causes the detected breaking waves to be re-
moved before they can fully develop. Thus, the algorithm is
not suitable for handling situations that would require many
small splashes or drops, but targeted towards larger entities
like a whole wave. Likewise, small scale waves caused by

moving objects, can only be simulated with breaking if they
are properly represented within the shallow water simula-
tion.

The results discussed in this section where calculated on
a common PC with an Intel Core 2 Duo CPU (2.13 GHz),
and a Nvidia Geforce 7950 GPU. As our implementation is
not yet parallelized, it only makes use of one of the cores
of the CPU. The actual frame rates of the different cases
are given in Table 2. All test cases use between 160k and
200k grid points, and run with 40 to 75 frames per second,
including rendering. The distribution of the computational
time for the different parts of our algorithm can be found
in Table 1. For this measurement a typical wave, as shown
in Figure 6, was simulated. Overall, the fluid simulation
amounts for 80% of the run time, while the rendering and
overhead introduced by the graphics engine require the re-
maining 20%. Roughly half of the simulation time is spent
on the shallow water simulation itself, while the wave sim-
ulation algorithm requires circa one fourth of the time. The
creation of the surface mesh and the computation of the nor-
mals again requires roughly one fourth of the computations.

9 Conclusions

We have presented a new method to perform real-time
simulations of open water scenes with breaking waves. It is
based on detecting and tracking the wave front with line
segments. The breaking wave itself is represented by a
patch of connected particles. Our model for coupling a rigid
body simulation with the shallow water simulation more-
over makes it possible to create interesting interactive ap-
plications, and can handle cases such as submerged bodies.
Overall, the algorithm performs with high frame rates, and
without causing noticeable slowdowns during the course of
the simulation. It furthermore allows the efficient and seam-
less creation of a textured surface mesh. These properties of
the algorithm make it especially interesting and suitable to
be used in computer games. Although it is aimed for real-
time applications, the algorithm is also interesting for high
quality off-line animations. It could, e.g., allow the efficient
simulation of large open water shore scenes, while giving

Figure 9. A scripted character is moved along the wave front, giving the impression of surf riding.

animators real-time feedback during their work.

In the future we would like to extend our algorithm by,
e.g., detecting collisions between different wave patches,
and performing a full smoothed particle hydrodynamics
simulation of the splash and foam particles. This would al-
low the correct handling of more chaotic or quickly chang-
ing scenes. The plausibility of the simulations could also be
increased by a model for transporting fluid volumes from
the shallow water simulation with the breaking wave and
particles. Furthermore, it would be interesting to combine
our technique with an adaptive algorithm to create detailed
triangulations of the fluid surface and the drops. This would
be especially interesting for the off-line simulations men-
tioned above.

10 Acknowledgements

We thank AGEIA for funding this research project.

References

[1] G. Chen, C. Kharif, and S. Zaleski. Two-dimensional navier-
stokes simulation of breaking waves, 1999.

[2] J. X. Chen, N. da Vitoria Lobo, C. E. Hughes, and J. M.
Moshell. Real-time fluid simulation in a dynamic virtual
environment, 1997.

[3] D. Enright, S. Marschner, and R. Fedkiw. Animation and
Rendering of Complex Water Surfaces. ACM Trans. Graph.,
21(3):736-744, 2002.

[4] N. Foster and R. Fedkiw. Practical animation of liquids. In
Proc. of ACM SIGGRPAH, pages 23-30, 2001.

[5] N. Foster and D. Metaxas. Realistic Animation of Liquids.
Graphical Models and Image Processing, 58, 1996.

[6] A. Fournier and W. T. Reeves. A simple model of ocean

In SIGGRAPH ’86: Proceedings of the 13th an-
nual conference on Computer graphics and interactive tech-
niques, pages 75-84, New York, NY, USA, 1986. ACM
Press.

[7] T.R. Hagen, J. M. Hjelmervik, K.-A. Lie, J. R. Natvig, and
M. O. Henriksen. Visual simulation of shallow-water waves.
Simulation Modelling Practice and Theory, 13, 2005.

[8] D. Hinsinger, F. Neyret, and M.-P. Cani. Interactive Anima-
tion of Ocean Waves. July 2002.

waves.

(9]

(10]

(1]

[12]

(13]

[14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

[22]

(23]

G. Irving, E. Guendelman, F. Losasso, and R. Fedkiw. Effi-
cient Simulation of Large Bodies of Water by Coupling Two
and Three Dimensional Techniques. ACM Trans. Graph.,
25, 2006.

S. Jeschke, H. Birkholz, and H. Schmann. A procedural
model for interactive animation of breaking ocean waves,
2003.

M. Kass and G. Miller. Rapid, Stable Fluid Dynamics
for Computer Graphics. ACM Trans. Graph., 24(4):49-55,
1990.

T. Klein, M. Eissele, D. Weiskopf, and T. Ertl. Simula-
tion, modelling and rendering of incompressible fluids in
real time, 2003.

A.T. Layton and M. van der Panne. A Numerically Efficient
and Stable Algorithm for Animating Water Waves. The Vi-
sual Computer, 18/1:41-53, 2002.

J. Loviscach. Complex Water Effects at Interactive Frame
Rates. Journal of WSCG, 11:298-305, 2003.

M. M. Maes, T. Fujimoto, and N. Chiba. Efficient animation
of water flow on irregular terrains. In GRAPHITE, pages
107-115, 2006.

V. Mihalef, D. Metaxas, and M. Sussman. Animation
and Control of Breaking Waves. Proc. of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation,
pages 315-324, 2004.

J. F. O’Brien and J. K. Hodgins. Dynamic simulation of
splashing fluids. In CA ’95: Proceedings of the Computer
Animation, page 198, 1995.

D. R. Peachey. Modeling waves and surf. In SIGGRAPH
'86: Proceedings of the 13th annual conference on Com-
puter graphics and interactive techniques, pages 65-74,
New York, NY, USA, 1986. ACM Press.

J. Stam. Stable Fluids. Proc. of ACM SIGGRAPH, pages
121-128, 1999.

T. Takahashi, H. Fujii, A. Kunimatsu, K. Hiwada, T. Saito,
K. Tanaka, and H. Ueki. Realistic animation of fluid with
splash and foam. Computer Graphics Forum, 22 (3), 2003.

J. Tessendorf. Simulating Ocean Surfaces. SIGGRAPH 2004
Course Notes 31, 2004.

N. Thiirey, U. Riide, and M. Stamminger. ~Animation
of Open Water Phenomena with coupled Shallow Water
and Free Surface Simulations. Proc. of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation,
2006.

Q. Wang, Y. Zheng, C. Chen, T. Fujimoto, and N. Chiba. Ef-
ficient rendering of breaking waves using mps method, Jun
2006.

