
Programming in GLSL
is not

programming in C
Some traps, performances issues, compilation failures
Some recommended computation models

ref: shadertoyunofficial blog

https://shadertoyunofficial.wordpress.com/2017/11/19/avoiding-compiler-crash-or-endless-compilation/

Table of Content

- Various important details
- misc
- compilation

- What happens to your code at compilation

- What happen to your code at run-time

 → Some recommendations

- Some more details

Disclaimer: bias glsl, wGl, fragment [shadertoy :-D]

https://www.shadertoy.com/

Various important details: misc

- Many built-in funcs:
- geometry: reflect, refract, length, dot, cross, normalize… [+ clamp, mix, smoothstep…]

- matrices: ops on nxm up to 4
- textures, interp, MIPmap [but some bugs]

- Loose specs :
- loose IEEE:

- NaN not treated by every built-in funcs (min, max, clamp, smoothstep…)
- denormalized

- NaN and Inf for const vs non const
- loose portability

- Think procedural (pull/Eulerian rather than push/Lagrangian :-)) :
- loop on regular items

→ guess which items can cover the pixel
→ rely on mod(); distance function [example , crowded]

https://www.shadertoy.com/view/XtXBRn
https://www.shadertoy.com/results?query=crowded

Various important details: misc

- Many built-in funcs:
- geometry: reflect, refract, length, dot, cross, normalize… [+ clamp, mix, smoothstep…]

- matrices: ops on nxm up to 4
- textures, interp, MIPmap [but some bugs]

- Loose specs :
- loose IEEE maths: [IEEE 754 floats]

- NaN not treated by every built-in funcs (min, max, clamp, smoothstep…)
- denormalized numbers

- NaN and Inf for const vs non const
- loose portability

- Think procedural (pull/Eulerian rather than push/Lagrangian :-)) :
- loop on regular items

→ guess which items can cover the pixel
→ rely on mod(); distance function [example , crowded]

https://en.wikipedia.org/wiki/IEEE_754
https://www.shadertoy.com/view/XtXBRn
https://www.shadertoy.com/results?query=crowded

Various important details: misc

- Many built-in funcs:
- geometry: reflect, refract, length, dot, cross, normalize… [+ clamp, mix, smoothstep…]

- matrices: ops on nxm up to 4
- textures, interp, MIPmap [but some bugs]

- Loose specs :
- loose IEEE maths: [IEEE 754 floats]

- NaN not treated by every built-in funcs (min, max, clamp, smoothstep…)
- denormalized numbers

- NaN and Inf for const vs non const
- loose portability

- Think procedural (pull/Eulerian rather than push/Lagrangian :-)) :
- loop on regular items

→ guess which items can cover the pixel
→ rely on mod(); distance function [example , 2 , crowded]

https://en.wikipedia.org/wiki/IEEE_754
https://www.shadertoy.com/view/4tBBWw
https://www.shadertoy.com/view/XtXBRn
https://www.shadertoy.com/results?query=crowded

Various important details: compilation

- Many language targets:
- openGL vs openGL ES vs webGL vs Vulkan vs HLSL [WebGL 2.0 ~ OpenGL ES 3.0 ~ OpenGL 3.3 + 4.2]

- version
- extensions (+ core vs legacy)
- get_program_binary() vs > cgc bug.glsl -ogles -profile fp40 [nvidia-cg-toolkit]

- Compilation steps:
- web: Angle patches (browser dependent)
- web: possibly, transpilation to HLSL/D3D (version browser dependent)

 or choice of openGl target language
- GLSL compiled into ARB (in driver)

HLSL compile into intermediate (in D3D) then ARB (in driver) [maybe ?]

- ARB compiled into PTX (on GPU)
- rewriting (for bug/perf fixes + optimizations) occurs at every steps

NB: Bug reports: https://bugs.chromium.org community ultra-efficient [mix of Nvidia/Intel/Microsoft/Angle/Chrome coders]

https://bugs.chromium.org/p/chromium/issues/detail?id=772695#c18

Various important details: compilation

- Many language targets:
- openGL vs openGL ES vs webGL vs Vulkan vs HLSL [WebGL 2.0 ~ OpenGL ES 3.0 ~ OpenGL 3.3 + 4.2]

- version
- extensions (+ core vs legacy)
- get_program_binary() vs > cgc bug.glsl -ogles -profile fp40 [nvidia-cg-toolkit]

- Compilation steps:
- web: Angle patches (browser dependent)
- web: possibly, transpilation to HLSL/D3D (D3D version browser dependent)

 or choice of openGl target language (desktop vs ES vs wGl)

- GLSL compiled into ARB (in driver)
HLSL compile into intermediate (in D3D) then ARB (in driver) [maybe ?]

- ARB compiled into SAS (on GPU) [Cuda: PTX then SAS]

- code rewriting occurs at every steps (for bug/perf fixes + optimizations)

NB: Bug reports: https://bugs.chromium.org community ultra-efficient [mix of Nvidia/Intel/Microsoft/Angle/Chrome coders]

https://bugs.chromium.org/p/chromium/issues/detail?id=772695#c18

What happen at compilation

- no true functions → inlined [no stack, no recursivity, macro-like]

- loops → optimizer unroll if it can [even if gives stupidly long code or compile time or endless]

- branches → both might be evaluated

while (marching ray, up to 100 steps) {
 p = next ray sample
 if hit(p) {
 eval N(p); eval material(p);
 I = shadow(p,L)*color(L);
 outColor = shading(N,material,I);
 break;
 }
}
hit(p); // compute intersection against N shapes parts. + possible proceduralism.
N(p); // finite difference on shape [hopefully not doing FDiff(hit(p))]
shadow(p,L); // march shadow ray (loop, hit, material…)
material(p); // procedural noise, textures fetches, ...

What happen at compilation

- no true functions → inlined [no stack, no recursivity, macro-like]

- loops → optimizer unroll if it can [even if gives stupidly long code or compile time or endless]

- branches → both might be evaluated

while (marching ray, up to 100 steps) {
 p = next ray sample;
 if hit(p) {
 eval N(p); eval material(p);
 I = shadow(p,L)*color(L);
 outColor = shading(N,material,I);
 break;
 }
}
hit(p); // compute intersection against N shapes parts + possible proceduralism.
N(p); // finite difference on shape [hopefully not doing FDiff(hit(p))]
shadow(p,L); // march shadow ray (loop, hit, material…)
material(p); // proceduralism, noise, textures fetches, ...

What happen at run-time

Conditional branching vs divergence (SIMD)

- Facts: divergence in warp → both branches evaluated for all [& textures fetches ?]

- big then/else blocks → (code length), runtime length
- loop + if (end) break → can give messy code
- dFdx, dFdy, fwidth undetermined, or 0, or rand...
- texture LOD undetermined, or 0, or rand… or might hide 4 x code duplicate → manual LOD
- dF, LOD: pushed out of early exited loop won’t save. True deferred will.

- Myths:
- In many situation, unlikely divergence in warps (are just 32 pixels)
- If process in branch is small, no problem

mix(expr0, expr1, float(cond)) is just counterproductive ! [but mix(v0,v1,bvec) is ok]

- ?: compiles just like shorts if else [still some doubt how chains of ?:?:?: are evaluated]

What happen at run-time

Conditional branching vs divergence (SIMD)

- Facts: divergence in warp → both branches evaluated for all [& textures fetches ?]

- big then/else blocks → (code length), runtime length
- loop + if (end) break → can give messy code
- dFdx, dFdy, fwidth undetermined, or 0, or rand...
- texture LOD undetermined, or 0, or rand… or might hide 4 x code duplicate → manual LOD
- dF, LOD: pushed out of early exited loop won’t save. True deferred will.

- Myths: ‘if’ is not Evil per se
- In many situation, unlikely divergence in warps (are just 32 pixels) [but dithered code is evil]

- If branch block is small, no problem
mix(expr0, expr1, float(cond)) is just counterproductive ! [but mix(v0,v1,bvec) is ok]

- magic thinking: ?: compiles just like shorts if else [still some doubt how ?:?:?: is evaluated]

→ Recommendations
- Deferred heavy processing out of loops:

 replace if (end_condition) { process; break; }
 with if (end_condition) { set_parameters; break; }

- Deferred heavy processing out of branches:
 replace ...else if (cond_N) do_action(params);
 with ...else if (cond_N) set_parameters;

- Specialize functions, or use branches inside only if triggered by const params:
- worst case would be shape(P, [not const] kind, params)
- shadows: loop, hit, material should be simpler

- Forbid unrolling when stupid:
for (int i=0; i<N+min(0,positive not const); i++)

- Special flags and qualifiers : [out of my competence]

#pragma optimize(off), varying, coherent, volatile, restrict, readonly, writeonly...

→ Recommendations
- Deferred heavy processing out of loops:

 replace if (end_condition) { process; break; }
 with if (end_condition) { set_parameters; break; }

- Deferred heavy processing out of conditional branches:
 replace ...else if (cond_N) do_action(params);
 with ...else if (cond_N) set_parameters;

- Specialize functions, or use branches inside only if triggered by const params:
- worst case would be shape(P, [not const] kind, params)
- shadows: loop, hit, material should be simpler

- Forbid unrolling when stupid:
for (int i=0; i<N+min(0,positive not const); i++)

- Special flags and qualifiers : [out of my competence]

#pragma optimize(off), varying, coherent, volatile, restrict, readonly, writeonly...

→ Recommendations
- Deferred heavy processing out of loops:

 replace if (end_condition) { process; break; }
 with if (end_condition) { set_parameters; break; }

- Deferred heavy processing out of conditional branches:
 replace ...else if (cond_N) do_action(params);
 with ...else if (cond_N) set_parameters;

- Specialize functions, or use branches inside only if triggered by const params:
- worst case would be shape(P, [not const] kind, params)
- shadows: loop, hit, material should be simpler

- Forbid unrolling when stupid:
for (int i=0; i<N+min(0,positive not const); i++)

- Special flags and qualifiers : [out of my competence]

#pragma optimize(off), varying, coherent, volatile, restrict, readonly, writeonly...

→ Recommendations
- Deferred heavy processing out of loops:

 replace if (end_condition) { process; break; }
 with if (end_condition) { set_parameters; break; }

- Deferred heavy processing out of conditional branches:
 replace ...else if (cond_N) do_action(params);
 with ...else if (cond_N) set_parameters;

- Specialize functions, or use branches inside only if triggered by const params:
- worst case would be shape(P, [not const] kind, params)
- shadows: loop, hit, material should be simpler

- Forbid unrolling when stupid:
for (int i=0; i<N+min(0,positive not const); i++)

- Special flags and qualifiers : [out of my competence]

#pragma optimize(off), varying, coherent, volatile, restrict, readonly, writeonly...

→ Recommendations
- Deferred heavy processing out of loops:

 replace if (end_condition) { process; break; }
 with if (end_condition) { set_parameters; break; }

- Deferred heavy processing out of conditional branches:
 replace ...else if (cond_N) do_action(params);
 with ...else if (cond_N) set_parameters;

- Specialize functions, or use branches inside only if triggered by const params:
- worst case would be shape(P, [not const] kind, params)
- shadows: loop, hit, material should be simpler

- Forbid unrolling when stupid:
for (int i=0; i<N+min(0,positive not const); i++)

- Special flags and qualifiers : [out of my competence]

#pragma optimize(off), varying, coherent, volatile, restrict, readonly, writeonly… [?]

→ Recommendations

- Calculus model: pipelined

loop (march ray) → hit point
compute N, material
loop (march shadow) → I
compute shading

- Calculus model: deferred [added gift: better for registers]

pass 1 → storage
storage → pass2

→ Recommendations

- Calculus model: pipelined

loop (march ray) → hit point
compute N, material
loop (march shadow) → I
compute shading

- Calculus model: deferred [added gifts: better for registers , dFdx]

pass 1 → storage
storage → pass2

→ Recommendations

Calculus model: pipelined

→ GigaVoxels : octree with voxel grids in not empty nodes

- bad: [warp might get divergent, even if all grids]

while (march ray through octree) {
 if (grid) march_grid();
}

- good:
while (not finished) {
 step 1 octree node;
 if (grid) march_grid();
}

http://gigavoxels.inrialpes.fr/

Some more details : optimizer [nvidia, linux]

- pull from output:
- unused code removed (comprising unused vec4 components)
- might unmap uniforms

- some pattern detection, but… [sqrt, invsqrt, length, normalize…]

- test 1 :

- factor expr(uniform) out of loop; recognize *0 [!:nan,inf . const != not const]

- don’t detect empty loop

- test 2 :

- detect empty loop j
- don’t factor expr(i) out of loop j

- test 3 : recognize expr already calculated

- only if it was end result: expr+1 not help expr-1
- still, 1.*expr-0. seen as expr

get_program_binary() vs > cgc bug.glsl -ogles -profile fp40 [nvidia-cg-toolkit]

https://www.shadertoy.com/view/lllfz7
https://www.shadertoy.com/view/ltsfz7
https://www.shadertoy.com/view/ltffW8

Some more details

- multiple compilations
- compiler tries multiple optimization strategies [Angle ? might timeout ?]

- at runtime: perf increases with time ! [jitc ? precompiled variants ? const uniforms]

- no branch prediction
- no Spectre exploit on GPU :-)
- order tests by decreasing probability

- generalization
- to Cuda ? OpenCL ?
- to C ?

