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Abstract

Although surfaces are more and more often represented by dense triangulations, it can be

useful to convert them to B-spline surface patches, lying on quadrangles. This paper presents a

method for the construction of coarse topological quadrangulations of closed triangulated sur-

faces, based on Morse theory. In order to construct on the surface a quadrangulation of its

canonical polygonal schema, we compute first a Reeb graph then a canonical set of generators

embedded on the surface. Some results are shown on different surfaces.

� 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Surfaces of arbitrary shape and topology are often represented in computer

graphics by large fine triangle meshes, obtained with complex data acquisition hard-

ware. Such discrete representations of surfaces are not easy to store and handle be-

cause of the huge amount of data (up to several millions of triangles). Many works

trying to reduce the number of triangles have been carried out [11]. Other approaches
convert these dense triangle mesh representations to other suitable models, such as

parametric surfaces [6,14].

Our goal is to create a new discrete description of a surface involving large non

planar quadrangles, in order to later fit B-spline surface patches on them (one patch
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per quadrangle). We decided to work with quadrangles instead of triangles or a mix

of both, because schemes based on 4-sided patches are more common. The problem

of fitting spline patches on quadrangles has been well studied, see works by Peters

[19] or Lai and Schumaker [15]. We focus on the determination of the quadrangles.

To define such a description of a surface, strategies can be very different whether
we try to optimize the shape of the quadrangles, the number of quadrangles or the

number of vertices whose valence is different from four. The last point is important

in our case since problems generally occur at the vicinity of those vertices, when an-

alyzing continuity between B-spline surface patches. Several techniques exist to con-

vert a triangulated surface into a quadrilateral mesh (see [18] for a survey on mesh

generation). But using these methods which focus on the geometry of the surface,

the number of quadrangles often remains high. Theoretical results also exist on

quadrangulations of surfaces with a minimum number of quadrangles [10]. As far
as we are concerned, we want both a small number of quadrangles and a method

to construct them on the surface.

In this paper we define topological quadrangulations on connected compact sur-

faces and construct them on triangulated surfaces. The combinatorial relationships

between quadrangles will only depend on the topology of the surface, but the geo-

metrical properties (such as the length of the edges or the location of the vertices)

will depend on its geometry. In other words, the topological quadrangulation seen

as a combinatorial mesh will only depend on the genus of the surface (two homeo-
morphic surfaces, e.g., a sphere and a cube, will have the same topological quadran-

gulation) whereas its embedding in R3 will depend on the geometry of the surface.

Our definition minimizes the number of vertices whose valence is different from

four in a topological quadrangulation. We could have chosen instead to minimize

the maximum valence of a vertex; the first strategy comes to concentrate problems

on a few places whereas the last method comes to distribute problems all over the

surface. Moreover, the number of quadrangles in our quadrangulation will only de-

pend on the genus of the surface and will be small.
This paper is organized as follows. In Section 2 we recall some results about the

topology of surfaces and we define a topological quadrangulation of a connected,

compact surface as a 2D-quadrangulation of its canonical polygonal schema. Then

in Section 3 we define a Reeb graph, based on a distance function to a source

point, and embedded on the triangulated surface. We prove that this Reeb graph

is linked to the location of the holes in the surface. It helps us to detect an embed-

ding of the canonical generators on the triangulated surface, from which we deduce

the topological quadrangulation of the triangulated surface. Finally in Section 4 we
show some results on several triangulated surfaces. We conclude and discuss future

work in Section 5.

2. Topological quadrangulation of a surface

We call surface a connected, compact 2-manifold embedded in R3. This definition

implies that a surface is orientable, closed (i.e., without boundary).
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2.1. Topological classification of surfaces

Two surfaces are topologically equivalent if and only if they are homeomorphic.

We recall here the classification theorem for surfaces and some definitions. A good

introduction to combinatorial topology and a detailed proof of the classification the-
orem for surfaces can be found in [8].

Let M be an orientable, connected, compact 2-manifold. There exists an integer
gP 0 such that M is homeomorphic to a sphere with g handles. g is called the genus
of M .

M can be represented canonically using a 4g-gon G, whose successive edges are
marked with letters a1; b1; a�11 ; b�11 ; . . . ; ag; bg; a�1g ; b�1g , and such that for all 16 i6 g,
edges ai and bi are oriented counterclockwise and edges a�1i and b�1i are oriented
clockwise. G is named the canonical polygonal schema or canonical fundamental
polygon of M . If we identify edges ai and a�1i , and edges bi and b�1i of G according
to their orientation, 816 i6 g, we obtain a space homeomorphic to M . Also, all
vertices of G become a single point under this identification. After identification,
the edges of G form 2g curves on M , which are called the canonical generators
of M .
In 1998, Dey and Guha [5] analyzed the generators of the first homology group of

compact connected 3-manifold in R3 and proved that a canonical set of generators of

a surface (considered as the boundary of a 3-manifold) embedded in R3 is composed
of g longitudinal generators and g latitudinal generators. The first surround the g
holes and the last turn around each handle associated with a hole. See Fig. 1 for

an example and [5] for more details.

2.2. Pre-quadrangulation of a surface

Definition 1 (Quadrangle). Let M be a surface and � be the closed square of R2,

i.e., the set of points ðx1; x2Þ 2 R2 such that 06 x16 1 and 06 x26 1. We define a
quadrangle on M as the image f ð�Þ of a homeomorphism f : � ! M . Quad-
rangles have four edges and four vertices which are the images of the edges and

vertices of �.

Fig. 1. Canonical set of generators (a), canonical polygonal schema (b), and pre-quadrangulation of a

2-torus (c). a1 and a2 are the longitudinal generators, and b1 and b2 are the latitudinal ones.
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In this paper, we consider special decompositions of surfaces into vertices, edges, and

quadrangles that we call pre-quadrangulations.

Definition 2 (Pre-quadrangulation). A pre-quadrangulation Q of a surface M is a

decomposition of M into a finite number of vertices, edges, and quadrangles such
that:

1. Q is a cell complex, that is to say a collection of cells (a cell is either a vertex or an
edge or a quadrangle) such that their interiors are disjoint and the boundary of

each cell is made of cells of lower dimensions;

2. any pair of vertices is joined by at most two edges;

3. any two quadrangles ofQ are either disjoint ormeet in a common vertex or intersect
along one common edge or intersect along two non-consecutive common edges.

Our definition includes quadrangulations of surfaces as defined in [10], but is more

general: unlike quadrangulations, two vertices in a pre-quadrangulation can be

joined by two edges and two quadrangles can intersect along two edges. However,

we can still patch a pre-quadrangulation with B-spline surfaces. For example, Fig. 2

shows a pre-quadrangulation of the torus: we have four distinct quadrangles, all

having the same four vertices A, B, C and D; vertices A and B are joined by two
different edges.

Proposition 3. Let Q be a pre-quadrangulation of a surface M. Let V be the number of
vertices in Q, E the number of edges, F the number of quadrangles and vM the Euler
characteristic of M: vM ¼ V � E þ F .
A lower bound for the number of quadrangles needed to construct Q is

Fmin ¼
1

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 8vM

p�
þ 3Þ

�
� vM : ð1Þ

Example 4. For a torus (vM ¼ 0), we have F P 3. For a 2-torus (vM ¼ �2), we have
F P 6.

Proof. According to Rule (2) of Definition 2, E is less than or equal to twice the
number of pairs of vertices in Q, which is V ðV�1Þ

2
: E6 V ðV � 1Þ. Since each edge

belongs to two faces, and each face has four distinct edges, 2E ¼ 4F . We thus have
F ¼ V � vM and F 6

V ðV�1Þ
2
. Consequently, 2V � 2vM 6 V ðV � 1Þ. This quadratic

inequality has the solution: V P d1
2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 8vM

p
þ 3Þe. Finally, F ¼ V � vM P

d1
2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 8vM

p
þ 3Þe � vM . �

Fig. 2. Pre-quadrangulation of a torus.
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We do not know if a general formula gives the minimum number of quadrangles

in a pre-quadrangulation of a surface. In this paper we will construct a pre-quadran-

gulation of a surface with 4g quadrangles and 2g þ 2 vertices.
Since a pre-quadrangulation is a cell complex and a surface is orientable, we also

have the Euler relation: vM ¼ 2ð1� gÞ.
A vertex in a pre-quadrangulation is said to be ordinary if its valence (or degree) is

4. Vertices with a valence different from 4 are said to be extraordinary. We have the
following remarkable relation:

Proposition 5. Let Q be a pre-quadrangulation of M, g the genus of M, Ve the number
of extraordinary vertices in Q, and v1; . . . ; vVe the valences of these extraordinary
vertices. We have:

XVe
i¼1

ðvi � 4Þ ¼ 8ðg � 1Þ: ð2Þ

Proof.We rank the vertices of the pre-quadrangulation from 1 to V starting with the
extraordinary vertices. 816 i6 V , let vi be the valence for the ith vertex of the pre-
quadrangulation: 8Ve þ 16 i6 V ; vi ¼ 4. Since M is closed, vi is also the number of
faces incident in the ith vertex. Since each face has four distinct vertices, we havePV

i¼1 vi ¼ 4F .
We can split the sum in two, separating the extraordinary vertices from the ordin-

ary ones:
PVe

i¼1 vi þ 4ðV � VeÞ ¼ 4F . This leads to: 4F ¼
PVe

i¼1ðvi � 4Þ þ 4V . We have
the Euler relation vM ¼ V � E þ F ¼ 2ð1� gÞ. Since each edge belongs to two faces
and each face has four distinct edges, 2E ¼ 4F . Thus 8ð1� gÞ ¼ 4ðV � E þ F Þ ¼
4ðV � F Þ.

Finally, 8ðg � 1Þ ¼
PVe

i¼1ðvi � 4Þ. �

Proposition 5 shows that the sum of the orders (that is to say, the valences minus

four) of all extraordinary vertices is a surface invariant. This also shows that, except

for surfaces with genus equal to 1, any pre-quadrangulation of a surface contains ex-

traordinary vertices.

2.3. Quadrangulation of the canonical polygonal schema

We now define a pre-quadrangulation of a surface M with genus g > 0 using the
notions introduced above. Our pre-quadrangulation has 4� 2vM ¼ 4g quadrangles
and 4� vM ¼ 2g þ 2 vertices. It is the embedding of a quadrangulation of the canon-
ical polygonal schema on the surface.

Let G be the canonical polygonal schema of M and a1; b1; a�11 ; b�11 ; . . . ;
ag; bg; a�1g ; b�1g the successive labels of its edges. Let O1; . . . ;O4g be the vertices of
G. We choose a vertex Ai (resp. Bi) on each edge ai (resp. bi) of G, and a vertex
Aiþg (resp. Biþg) on each edge a�1i (resp. b�1i ) of G. We also choose a vertex C
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inside the polygon. We join C and each Ai (resp. Bi), 16 i6 2g, together to create an
edge.The quadrangulation Q of G is defined as follows:
• the vertices of Q will be O1; . . . ;O4g;A1; . . . ;A2g;B1; . . . ;B2g;C;
• the edges of Q will be the edges of G and the edges created between C and each

Ai or Bi;
• the quadrangles of Q will be the quadrangles defined by these vertices and edges
inside the polygon.

This quadrangulation of G has 8g þ 1 vertices, 12g edges (one edge of G correspond
to two edges of Q, between some Ai or Bi and two Oj), and 4g quadrangles.
It corresponds to a pre-quadrangulation of M with 2g þ 2 vertices, 8g edges and

4g quadrangles, since under identification of the edges of G, all vertices Oi become a

single point O, and for all 16 i6 g, Ai and Aiþg (resp. Bi and Biþg) become a single

point Ai (resp. Bi).
An example is shown on Fig. 1c, or Fig. 3 (left).

The number of quadrangles, 4g, is close to the lower bound of Proposition 3. The
only extraordinary vertices of the pre-quadrangulation are O and C, which are con-
nected to each Ai and each Bi twice: their valence is equal to 4g (if g ¼ 1, our pre-
quadrangulation does not contain any extraordinary vertex). We have chosen to

minimize the number of extraordinary vertices (with respect to the number of verti-

ces), but it implies in return the valence of these extraordinary vertices is high, ac-

cording to Proposition 5.
Let us observe that the two vertices O and C play the same role in the pre-quadr-

angulation. Indeed, the quadrangulation of the canonical polygonal schema with O
or with C as the base-point leads to the same pre-quadrangulation of M . We can go
from one quadrangulation to the other simply by mentally cutting each quadrangle

along its edges and pasting the quadrangles together, according to the orientation of

the edges. See Fig. 3 for an example on a 2-torus.

We will call this particular pre-quadrangulation of the surface based on a

quadrangulation of its canonical polygonal schema a topological quadrangulation
of the surface.

Fig. 3. Two different representations of the same pre-quadrangulation of a double torus. Quadrangles are

numbered from 1 to 8.
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3. Construction of a topological quadrangulation on a triangulated surface

This section is devoted to the computation of the topological quadrangulation on

a triangulated surface, deduced from the construction of the canonical polygonal

schema on the surface.

3.1. Reeb graph

To construct a canonical set of surface generators on a triangulated surface, we

use a topological structure for compact manifolds called the Reeb graph. The Reeb

graph, named after Reeb [20], is a powerful tool to describe topological features on

surfaces. The Reeb graph combined with the Morse theory is increasingly used in

computer graphics, mainly for terrain analysis and shape modeling [2,13,21,22].
See [8] for an introduction about Morse theory and the Reeb graph.

A Reeb graph is defined as follows:

Definition 6. Let f : M ! R be a real-valued continuous function on a compact

manifold M . The Reeb graph of f is the quotient space of M by the equivalence
relation � defined by:

x1 � x2 () f ðx1Þ ¼ f ðx2Þ and x1 and x2 are in the same connected component of
f �1ðf ðx1ÞÞ.

Fig. 4 shows a Reeb graph of a height function on a torus (figure inspired by [8]).

Nodes correspond to splits or merges of connected components of x 7!f �1ðf ðxÞÞ.
There exists two kinds of nodes in a Reeb graph:

Definition 7. Nodes incident to only one edge will be called extremal nodes. They
represent local extrema of the function f .
Nodes incident to at least three edges will be called internal nodes. They represent

saddle points of the function f .

Fig. 4. A torus and the critical points of its height function f (a), connected components of some level sets
for f (b), and the Reeb graph of f on this torus (c).
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For example, on Fig. 4, nodes A, E, and F are extremal nodes and nodes B, C, and
D are internal nodes.
Points at which the topology of the level sets x 7!f �1ðf ðxÞÞ change are called crit-

ical points of f .

3.2. Cycles in the Reeb graph and canonical generators

From now on, we consider only triangulated surfaces. The Reeb graph we con-

struct will be useful for our purpose because its cycles will help us to locate the gen-

erators on the surface. The following theorem is related to works by Wood et al. [24],

but is more general.

Theorem 8. Let M be a triangulated surface in R3, with genus g. We assume f is linear
inside each triangle of M. We also assume f is general for M, that is to say f ðvÞ 6¼ f ðwÞ
for any edge ðv;wÞ of the triangulated surface M, and all singularities of f are simple
(i.e., nodes of the Reeb graph are incident to exactly three edges).

Then the number of independent cycles in the Reeb graph of f on M is equal to the
genus g of M, and each cycle corresponds to exactly one hole in M.

Proof. Since f is general for M and linear between its vertices, all points of M
which are not vertices of the triangulation must be regular points (i.e., not critical
points).

We recall here that the Euler characteristic of the union of two polyhedra is the

sum of the Euler characteristics of these polyhedra minus the Euler characteristic

of their intersection. Thus if these polyhedra intersect along a disjoint union of

closed polygonal lines, the Euler characteristic of their union is the sum of the Euler

characteristics of the two polyhedra, since the Euler characteristic of a closed polyg-

onal line is equal to 0.

Let a0 < a1 < � � � < an�1 be the critical values of f (that is to say, the values cor-
responding to the nodes of the Reeb graph). We will sweep the surface starting from

s. 8a0 < a6 an�1, we define Ma ¼ fx 2 M ; f ðxÞ6 ag, va to be the Euler characteristic

of Ma and ga its genus.

Since Ma is an orientable connected 2-manifold with boundary, we have

va ¼ 2� 2ga � ba; ð3Þ
where ba is the number of boundary components of Ma.
Let Ca be the boundary of Ma: Ca ¼ f �1ðaÞ. If a is not a critical value, we can ob-

serve that each connected component of Ca is a closed polygonal line, since f is gen-
eral and linear on each edge and inside each triangle of M . If a is a critical value,
there exists one connected component of Ca which is the union of two single closed

polygonal lines meeting at a common (saddle) point (only one connected component

since f is general, and only two polygonal lines since a is a simple singularity), see
Fig. 5.

For a06 a < a1, Ca is a single closed polygonal line. Filling Ca with a disk adds 1
to the Euler characteristic of Ma, since the Euler characteristic of a (closed) disk is
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equal to 1. It also leads to a surface homeomorphic to a sphere. Since the Euler char-

acteristic of a sphere is equal to 2, va ¼ 2� 1 ¼ 1.
Let us now see what happens when a increases past a critical value ai of f . Let

e < min
16 j6 n�1

ðaj � aj�1Þ and Ne ¼ fx 2 M ; jf ðxÞ � aij6 eg. Let Pi be the associated crit-
ical point. Pi is a vertex of M . We have the following possible cases:
• Pi corresponds to a local maximum of f . We meet the end of an edge in the Reeb
graph. A connected component of Ca is closing (see Fig. 6a), and vai ¼ vai�1 þ 1.

• Pi is a saddle point of f in which one connected component of Ca split in two

connected components (see Fig. 6b). In the Reeb graph, one edge splits in two

edges.

We have Maiþe ¼ Mai�e [ Ne, and Mai�e \ Ne is a disjoint union of closed polygonal

lines. Thus vaiþe ¼ vai�e þ vNe
. Since ai is a simple singularity, Ne has exactly three

boundary components, which are closed polygonal lines, and if we fill each of these

boundary components with a disk we obtain a surface homeomorphic to a sphere

(see Fig. 7). Thus vNe
¼ 2� 3 ¼ �1, and vaiþe ¼ vai�e � 1.

Since one connected component of Ca split in two connected components, we have

baiþe ¼ bai�e þ 1. Eq. (3) leads to gaiþe ¼ gai�e.

Fig. 5. The surface Ma and its boundary Ca, where a is a critical value of f .

Fig. 6. Sweep of M with respect to f . The closing of a connected component of M corresponds to

an external node in the Reeb graph (a); one connected component becoming two connected com-

ponents corresponds to an ‘‘opening’’ internal node in the Reeb graph (b); two connected compo-

nents becoming one connected component corresponds to a ‘‘closing’’ internal node in the Reeb

graph (c).
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• Pi is a saddle point of f in which two connected components of Ca merge in one

connected component (see Fig. 6c). In the Reeb graph, two edges merge in one

edge, and the number of independent cycles increases by 1.
For the same reason as in the previous case, vaiþe ¼ vai�e � 1.
Since two connected components of Ca merge in one connected component, we

have baiþe ¼ bai�e � 1. Eq. (3) leads to gaiþe ¼ gai�e þ 1.
The number of independent cycles in the Reeb graph and the genus of the surface

Ma increase at the same time: a cycle in the Reeb graph corresponds to a hole in M.
Now let a be the number of local maxima of f , b the number of saddle points where
one connected component of the boundary of Ma becomes two connected compo-

nents, and c the number of saddle points where two connected components of the
boundary of Ma become one connected component. When we sweep the Reeb graph,

we meet 1þ 2bþ c beginnings of edges, and aþ bþ 2c ends of edges. Consequently,
1þ 2bþ c ¼ aþ bþ 2c; ð4Þ

that is to say

a� b ¼ 1� c: ð5Þ
Moreover, the Euler characteristic vM of M is equal to van�1 . We thus have

vM ¼ va0 þ a� b� c: ð6Þ

Since va0 ¼ 1 and following from Eqs. (5) and (6),
vM ¼ 2� 2c: ð7Þ

Since M is orientable, vM ¼ 2ð1� gÞ, and we can deduce from Eq. (7) that
g ¼ c: ð8Þ

But the number of cycles in the Reeb graph is also c. Consequently, the number of
cycles in the Reeb graph is equal to the genus of the surface. Since for each cycle we

have found a corresponding hole in the surface, we can claim that each cycle cor-

responds to exactly one hole in M . �

Fig. 7. Connected component of Ca, where a is a critical value of f (bold), and the set Ne (between the

dotted polylines).
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3.3. Construction of a Reeb graph embedded on a triangulated surface

3.3.1. Choice of the function f
To define our Reeb graph, we must choose a function f . As said before, the Reeb

graph is mainly used in terrain analysis. In this case f is often a height function, be-
cause we have a given orientation where the height is meaningful. In the case of sur-

faces, we do not have such a particular orientation, and people often choose f as a
distance function to a given source point on the surface [1,16,24]. Another possibility

is to integrate this function over the surface, in order to avoid the choice of the

source point [12]. Since we are only interested in the topology of the surface and

not the exact location of the critical points of f , we do not need to choose a very
subtle (but computationally more expensive) function f . That is why we choose f
as the shortest path distance to a given source point on the surface:
let s be a vertex on M (the source point); for each vertex v of M , we define f ðvÞ as

the shortest edge path distance from s to v and we extend f linearly to a continuous
function over all points of M .
The distance between two neighbouring vertices is the length of the edge between

these two vertices, whereas in [1] it is equal to 1. If f is not general forM , we can turn
f into a general function simply by a small perturbation of the vertices, as described
in [7]. This method has been used in a similar problem by [3].

In practice multi-saddle points can exist. Multi-saddle points are points where
several splits or merges of connected components of x 7!f �1ðf ðxÞÞ can occur. In or-
der to break them into multiple simple singularities, we refer to Carr et al. algo-

rithm [3].

The choice of the source point is not critical for our topological purpose, but the

number of edges in the Reeb graph, therefore the computational time of our algo-

rithm, depends on its location. We will choose the source point s as the furthest ver-
tex from an arbitrary vertex [16]: in practice s will be at the end of some long branch
of the surface; consequently the direction induced by f is geometrically meaningful.
For our sample surfaces, we observed that the number of local extrema for f is usu-
ally smaller than with other source points, inducing in return the amount of edges in

the Reeb graph to remain small.

3.3.2. Algorithm

To avoid confusion between the nodes (resp. edges) of the Reeb graph and the

vertices (resp. edges) of the mesh, the first will be called Reeb nodes (resp. Reeb

edges) and the last vertices (resp. edges).
To construct the Reeb graph of f on the surface, we must first compute the value

of f at all the vertices of the mesh, then detect the critical points of f and finally link
them to create the Reeb edges. Actually, we will do the three steps at the same time,

using Dijkstra�s algorithm. Dijkstra�s algorithm gives at each step and for each vertex
X a temporary value vðX Þ and a predecessor vertex.
With each vertex X of the triangulation we associate its value vðX Þ (at the end of

the algorithm vðX Þ will be equal to the value of f at X ), its predecessor according to
Dijkstra, and a list of labels. Labels will be used to identify Reeb edges: two vertices
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X and Y will have the same label if and only if the segment ½f ðX Þ; f ðY Þ� contains no
critical values of f and X and Y belong to the same connected component of
f �1ð½f ðX Þ; f ðY Þ�Þ. At the beginning, the value of each vertex is þ1 and vertices have
no label, except the source point whose value is 0 and which has one label.

At each step, the currently processed vertex is the vertex X with minimal value: we
know that f ðX Þ ¼ vðX Þ. Values of all neighbouring vertices of X are updated using
Dijkstra�s algorithm.
We then compute the number of sign change nðX Þ for v� vðX Þ when we visit all

neighbouring vertices. Let Y be a neighbouring vertex of X . Since we use Dijkstra�s
algorithm, if vðY Þ < vðX Þ, we also have f ðY Þ < f ðX Þ. Thus nðX Þ is also the number
of sign change for f � f ðX Þ.
If nðX Þ ¼ 0, X is a local extremum for f , that is to say an extremal Reeb node. Its

only label will be equal to the (first) label of its predecessor. If nðX Þ ¼ 2, X is not a
Reeb node. Its only label will also be equal to the (first) label of its predecessor. Fi-

nally if nðX ÞP 4, X is an internal Reeb node. We compute its local level set and its
connected components (see below). Each vertex of each upper connected component

will be given a new label (the same for all vertices in the same connected component).

X will be given all labels of its upper and lower connected components. See Fig. 8 for
some examples: (a), X is a local maximum for f ; (b) X is not a Reeb node; (c) X is an
internal Reeb node.

A Reeb edge between vertices A and B with f ðAÞ < f ðBÞ will consist of two parts,
as depicted in Fig. 9. The first part is a path made from B to its successive predeces-
sors through Dijkstra�s algorithm until A or a vertex with the corresponding label is
found. The second part is the path made from this vertex to A by following a con-
nected component of A (if A is not the source point, A is an internal node of the
graph, so its local level set has been computed).

3.3.3. Local level sets

The local level set LSðX Þ of X is a set of pairs of vertices ðY ; ZÞ, where f ðY Þ > f ðX Þ
and f ðZÞ < f ðX Þ (see Fig. 10). An upper (resp. lower) connected component of X will
be a connected component of the set of all Y (resp. Z) in LSðX Þ such that
f ðY Þ > f ðX Þ (resp. f ðZÞ < f ðX Þ). Note that a connected component of X will be a
set of vertices, and not a set of pairs of vertices.

Fig. 8. Sign changes nðX Þ for f � f ðX Þ around a vertex X of the triangulated surface. nðX Þ ¼ 0 (a);
nðX Þ ¼ 2 (b); nðX Þ ¼ 4 (c).
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To compute LSðX Þ and the connected components of X , we use a very simple al-
gorithm. Basically, we start from X and we follow the level set f �1ðf ðX ÞÞ. We enu-
merate the edges intersected by this level set and put them in a list.
LS :¼ 0
Repeat

Choose two adjacent vertices Y and Z in the neighbourhood of X such that
f ðY Þ > f ðX Þ and f ðZÞ < f ðX Þ
Add ðY ; ZÞ to LS
avoid vertex :¼ X
new vertex :¼ Y
While new vertex is different from X do:
new vertex :¼the vertex adjacent to Y and Z which is not avoid vertex
If f ðnew vertexÞ < f ðX Þ then
Add ðY ; new vertexÞ to LS
avoid vertex :¼ Z
Z :¼ new vertex

Fig. 10. Local level set of an internal node X and its connected components. Here we have two upper con-
nected components (Y1; . . . ; Y17Y 0

1Y
0
2 and Y18; . . . ; Y31Y 0

3) and one lower connected component (Z1; . . . ;Z17;
. . . ; Z35).

Fig. 9. An edge between two Reeb nodes A and B (bold) and the corresponding local level sets.
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Elsif f ðnew vertexÞ > f ðX Þ then
Add ðnew vertex; ZÞ to LS
avoid vertex :¼ Y
Y :¼ new vertex

End if.
End while.

Until it is no more possible to choose such two adjacent vertices.

At the end of each while loop, we have two new connected components of X , which
are not complete. To complete them and possibly merge them, we compute the

vertex NV adjacent to X and Y (where Y is the last vertex of a connected component)
which is not the previous vertex of the connected component. We add it to the

connected component, replace Y by this new vertex and do the same until NV is in
LSðX Þ. If the last vertex NV (which is in LSðX Þ) is also in the connected component,
this connected component is complete. If not, we must merge it with the connected

component which contains NV .

3.4. Construction of the canonical generators embedded on a triangulated surface

Only a few algorithms have been proposed to construct generators. Dey and

Schipper [4] compute a polygonal schema of a triangulated surface in OðnÞ time; un-
fortunately their polygonal schema is not necessarily canonical. Vegter and Yap�s al-
gorithm [23] runs in Oðg � nÞ time and space (which is optimal) and construct a
canonical set of generators. Lazarus et al. [17] simplified this algorithm and com-

pared it to another algorithm based on Brahana�s method.
Providing that the genus of the surface is strictly positive, finding a cycle basis B

on our constructed Reeb graph will give us information about the location of surface

holes, and thus about surface generators.

To find B, we use a traditional algorithm from graph theory: we find a maximal
forest (a forest is a subgraph with no cycle) on the Reeb graph, then for each edge
which is not in this forest we find a minimal cycle containing this edge. The set of

all minimal cycles found is B. Such algorithms are detailed in graph theory books,
e.g., [9].

Once we have found B we can construct a canonical set of surface generators: for
each cycle C in B there exists one longitudinal generator and one latitudinal genera-
tor. C is the longitudinal generator. To construct the latitudinal generator, we find
the cycle vertex V with the minimal value, and then follow an upper connected com-
ponent of V (we have computed the local level set of V when we have constructed the
Reeb graph).

3.5. Construction of the topological quadrangulation

Now that we have computed a canonical set of generators on the surface, the con-

struction of our pre-quadrangulation will be easy if we choose judiciously its vertices

O, Ak, Bk, and C (cf. Section 2.3 for the notations).
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We take O equals to the source point and C equals to the vertex for which f is
maximum. Then for each k we define Bk as the internal node of the Reeb graph with

the lowest value and belonging to the kth latitudinal cycle of the basis, and Ak as the

internal node with the greatest value and belonging to the kth longitudinal cycle of
the basis.
To construct the edges OAk and OBk of the quadrangulation, we continuously dis-

tort each generator of the constructed canonical set of generators so that O belongs
to it (this can be done in time Oðg � nÞ, n being the number of vertices in the initial
triangulation, since Dijkstra�s algorithm computes for each vertex a path to the
source point). Then we follow the distorted generators: the longitudinal ones for

the edges OAk and the latitudinal ones for the edges OBk. Since O and C play the
same role in the pre-quadrangulation (see Section 2.3), we can do the same to con-

struct the edges CAk and CBk: edges CAk correspond to the latitudinal generators and
edges CBk correspond to the longitudinal generators. See Fig. 11 for an example.

4. Results and discussion

We have implemented our algorithm in C++; the user interface was developed us-

ing the GLUT and Mesa libraries. The user can choose to visualize either the vertices

of the triangulated surface which correspond to the Reeb nodes, or the Reeb graph
embedded on the triangulated surface, or a canonical set of generators embedded on

the triangulated surface, or the edges of the topological quadrangulation as com-

puted by the algorithm. Some results are shown on Fig. 12.

Top figures show the Reeb graph computed on three surfaces: a helix, which is

homeomorphic to a sphere, a surface with one hole, and a rocker arm (courtesy

Fig. 11. Generators of a torus (a), edges OAi and OBi of the topological quadrangulation (b), edges CAi

and CBi of the topological quadrangulation (c). The bottom figure (d) shows the quadrangulation ‘‘cen-

tered’’ either at C or at O (quadrangles are numbered from 1 to 4).
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of Cyberware, http://www.cyberware.com), also homeomorphic to a torus. The Reeb

graph for the helix is a tree, and we found six Reeb nodes: one global minimum, one

global maximum, two internal Reeb nodes and two local maxima. These two max-
ima are close to the internal nodes, and can be seen on the middle of the helix. A

local maximum has also been detected on the bottom right of the one-hole surface,

and on the left of the rocker arm. We see, particularly on the one-hole surface, that a

Reeb edge between two nodes A and B (with f ðAÞ < f ðBÞ) follows two different di-
rections: starting from B, it follows first the gradient of f on the surface until it
reaches a vertex C which belongs to the local level set of A, then it follows the short-
est edge path from C to A.
Middle figures showa canonical set of generators computed on aknot-shaped torus,

a surface with genus 3, and the rocker arm. The latitudinal generator of the knot is in

the bottom left of the surface. All latitudinal generators embedded on a surface are al-

most parallel, and orthogonal to the gradient of f , since they follow local level sets.
Consequently, they do not necessarily correspond to locally shortest closed curves.

Finally, bottom figures show the coarse topological quadrangulations of a simple

torus and the rocker arm constructed with our algorithm (only edges of the quadr-

Fig. 12. Reeb graph (a,b,c), canonical set of generators (d,e,f), and topological quadrangulation (g,h) of

some surfaces.
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angulations are visualized). Edges starting from the vertex O (or C), using notations
from the Section 2.3, are sometimes close to each other.

The computation time of our algorithm to construct the Reeb graph and the gen-

erators on the surface is Oðn2Þ. Time used by Dijkstra�s algorithm to construct the
Reeb nodes is Oðn: logðnÞÞ, but then to construct the Reeb edges we need to compute
the local level sets of Reeb nodes. This takes Oðn2Þ time. An open question would be
to know if this computational time can be improved.

5. Conclusion and future work

We have presented an algorithm to construct a new discrete representation of a

triangulated surface with strictly positive genus by a coarse topological quadrangu-
lation, based on a quadrangulation of the canonical polygonal schema of the surface.

Our method first constructs a Reeb graph embedded on the surface, using Dijkstra�s
algorithm, then deduces the generators of this surface.

Our work has mainly focused on combinatorial properties of the topological

quadrangulation. Further work includes quadrangulation refinement to take surface

geometrical singularities (to be defined) into account, and optimization (in terms of

angles in quadrangles, extraordinary vertices, . . .). The choice of the function used to
define the Reeb graph can also be improved to fulfill these goals.
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