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Abstract

We present an anisotropic mesh denoising algorithm that is effec-
tive, simple and fast. This is accomplished by filtering vertices of
the mesh in the normal direction using local neighborhoods. Mo-
tivated by the impressive results of bilateral filtering for image de-
noising, we adopt it to denoise 3D meshes; addressing the specific
issues required in the transition from two-dimensions to manifolds
in three dimensions. We show that the proposed method success-
fully removes noise from meshes while preserving features. Fur-
thermore, the presented algorithm excels in its simplicity both in
concept and implementation.
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1 Introduction

With the proliferation of 3D scanning tools, interest in removing
noise from meshes has increased. The acquired raw data of the sam-
pled model contains additive noise from various sources. It remains
a challenge to remove the noise while preserving the underlying
sampled surface, in particular its fine features. Related techniques
like mesh smoothing or mesh fairing alter the given surface to in-
crease its degree of smoothness. The goal of these techniques is to
create semi-uniform triangulation, often with subdivision connec-
tivity. This paper focuses on mesh denoising, which is an important
preprocess for many digital geometry applications that rely on local
differential properties of the surface.

Denoising the sampled data can be applied either before or af-
ter generating the mesh. The advantage of denoising a mesh rather
than a point-cloud, is that the connectivity information implicitly
defines the surface topology and serves as a means for fast access
to neighboring samples. The information in a mesh can be sepa-
rated into two orthogonal components: a tangential and a normal
component. The normal component encodes the geometric infor-
mation of the shape, and the tangential component holds paramet-
ric information [Guskov et al. 1999]. In this formulation, moving
vertices along their normal directions, modifies only the geometry
of the mesh. Related to this notion are evolution curves [Osher
and Sethian 1988], where points are shifted in the direction of the
normal at a distance that is proportional to their curvature, to get
smoother curves over time. Our denoising method is based on this
idea, shifting mesh vertices along their normal direction.

The extensive research on image denoising serves as a founda-
tion for surface denoising and smoothing algorithms. However,
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Figure 1: Denoising a scanned model: On the left is the input
model, in the middle is the result of implicit fairing [Desbrun et al.
1999], and on the right is the result of our algorithm. The top row
visualizes the details of the models, and on the bottom row is a
mean curvature visualization. Data courtesy of Alexander Belyaev.

adapting these algorithms from the two dimensional plane to a sur-
face in three dimensions is not straightforward for three main rea-
sons: (i) Irregularity; unlike images, meshes are irregular both in
connectivity and sampling, (ii) Shrinkage; image denoising algo-
rithms are typically not energy preserving. While this is less no-
ticeable in images, in meshes, this is manifested as shrinkage of
the mesh, (iii) Drifting; naive adaptation of an image denoising
technique may cause artifacts known as vertex drifts, in which the
regularity of the mesh decreases.

The bilateral filter, introduced by Tomasi and Manduchi [1998],
is a nonlinear filter derived from Gaussian blur, with a feature
preservation term that decreases the weight of pixels as a func-
tion of intensity difference. It was shown that bilateral filtering
is linked to anisotropic diffusion [Barash 2002], robust statistics
[Durand and Dorsey 2002], and Bayesian approaches [Elad 2001].
Despite its simplicity, it successfully competes with image denois-
ing algorithms in the above categories. The bilateral filtering of
images and its adaptation to meshes has an intuitive formulation,
which leads to a simple method for selecting the parameters of the
algorithm.

The contribution of this paper is a mesh denoising algorithm that
operates on the geometric component of the mesh. The origin of
the denoising algorithm is the bilateral filter that has a simple and
intuitive formulation, is fast and easy to implement, and adapting it
to meshes, yields results that are as successful as its predecessor.

1.1 Previous work

Image denoising is part of on-going research in image processing
and computer vision. The state-of-the-art approaches to image de-
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noising include: wavelet denoising [Donoho 1995], nonlinear PDE
based methods including total-variation [Rudin et al. 1992], and bi-
lateral filtering [Tomasi and Manduchi 1998]. These approaches
can be viewed in the framework of basis pursuit [Chen et al. 1999].

Typically, mesh denoising methods are based on image denois-
ing approaches. Taubin [1995] introduced signal processing on sur-
faces that is based on the definition of the Laplacian operator on
meshes. Peng et al. [2001] apply locally adaptive Wiener filtering
to meshes. Geometric diffusion algorithms for meshes was intro-
duced by Desbrun et al. [1999], they observed that fairing surfaces
can be performed in the normal direction. Anisotropic diffusion for
height fields was introduced by Desbrun et al. [2000], and Clarenz
et al. [2000] formulated and discretized anisotropic diffusion for
meshes. Recently, Bajaj and Xu [2003] achieved impressive results
by combining the limit function of Loop subdivision scheme with
anisotropic diffusion. Tasdizen et al. [2002] apply anisotropic dif-
fusion to normals of the level-set representation of the surface, and
in the final step, the level-set is converted to a mesh representa-
tion. Guskov et al. [1999] introduced a general signal processing
framework that is based on subdivision, for which denoising is one
application.

2 Bilateral mesh denoising

We open with a description of our method for filtering a mesh us-
ing local neighborhoods. The main idea is to define a local param-
eter space for every vertex using the tangent plane to the mesh at
a vertex. The heights of vertices over the tangent plane are syn-
onymous with the gray-level values of an image, and the closeness
components of the filter are the tangential components. The term
offset is used for the heights. Let S denote the noise-free surface,
and let M be the input mesh with vertices that sample S with some
additive noise. Let v ∈ M be a vertex of the input mesh, d0 its
signed-distance to S, and n0 the normal to S at the closest point to
v. The noise-free surface S is unknown and so is d0, therefore we
estimate the normal to the surface as the normal n to the mesh, and
d estimates d0 as the application of the filter, updating v as follows:

v̂ = v+d ·n. (1)

Note that we do not have to define a coordinate system for
the tangential component; as explained below, we apply a one-
dimensional filter with a spatial distance as a parameter. The filter
is applied to one vertex at a time, computing a displacement for the
vertex and updating its position.

Bilateral filtering of images. Following the formulation of
Tomasi and Manduchi [1998], the bilateral filtering for image I(u),
at coordinate u = (x,y), is defined as:

Î(u) =

∑
p∈N(u)

Wc(‖p−u‖)Ws(|I(u)− I(p)|)I(p)

∑
p∈N(u)

Wc(‖p−u‖)Ws(|I(u)− I(p)|)
, (2)

where N(u) is the neighborhood of u. The closeness smoothing
filter is the standard Gaussian filter with parameter σc: Wc(x) =

e−x2/2σ 2
c , and a feature-preserving weight function, which we refer

to as a similarity weight function, with parameter σs that penalizes
large variation in intensity, is: Ws(x) = e−x2/2σ 2

s . In practice, N(u)
is defined by the set of points {qi}, where ‖u−qi‖ < ρ = d2σce.

Algorithm. We begin introducing the algorithm by describing
how to compute the normal and tangential components that are as-
signed to Eq. 2, yielding a new offset d. Since S is unknown, and
we wish to use the edge preservation property of the bilateral filter,
we define Sv ⊂ S as the smooth connected component of S that is

closest to v. For the normal component, we would like to compute
the offsets of the vertices in the neighborhood of v, denoted by {qi},
over the noise-free smooth component Sv. We use the tangent plane
to v defined by the pair (v,n) as a first-order approximation to Sv.
The offset of a neighbor qi is the distance between qi and the plane.
The following is the pseudo-code for applying a bilateral filter to a
single vertex:

DenoisePoint(Vertex v, Normal n)
{qi} = neighborhood(v)
K = |{qi}|
sum = 0
normalizer = 0
for i := 1 to K

t = ||v−qi||

h =
〈

n,v−qi
〉

wc = exp(−t2/(2σ2
c ))

ws = exp(−h2/(2σ2
s ))

sum += (wc ·ws) ·h
normalizer += wc ·ws

end
return Vertex v̂ = v+n · (sum/normalizer)

The plane that approximates the noise-free surface should on
one hand, be a good approximation of the local surface, and on
the other hand, preserve sharp features. The first requirement leads
to smoothing the surface, while the latter maintains the noisy sur-
face. Therefore, we compute the normal at a vertex as the weighted
average (by the area of the triangles) of the normals to the triangles
in the 1-ring neighborhood of the vertex. The limited neighbor-
hood average smoothes the local surface without over-smoothing.
In some cases, for example, of a synthetic surface, the normal of an
edge vertex will erroneously point to the average direction and lead
to a rounded edge.

For the tangential component, the correct measure of distance
between vertices on the smooth surface is the geodesic distance be-
tween points. Since we use local neighborhoods, we approximate
the geodesic distance using the Euclidean distance. This approx-
imation seems to introduce artifacts in the neighborhood of sharp
features, since vertices that happen to be geodesically far from the
smoothed vertex may be geometrically close. Furthermore, the as-
sumption from differential geometry that a neighborhood of a point
on a surface can be evaluated by a function over the tangent plane
to that point may not be satisfied. Both apparent problems do not
hinder our algorithm because any of the above offending vertices is
penalized by the similarity weight function.

Mesh shrinkage and vertex-drift. Image denoising and smooth-
ing algorithms that are based on (possibly weighted) averaging of
neighborhood, result is shrinkage of the object. Taubin [1995]
solves this problem for the Laplacian operator by alternating shrink
and expand operations. Another common approach is to preserve
the volume of the object as suggested by Desbrun et al. [1999].

Our algorithm, also shrinks the object. This can be observed
when smoothing a vertex that is a part of a curved patch; the offset
of the vertex approaches the average of the offsets in its neighbor-
hood. Therefore, we follow the volume preservation technique.

Vertex-drift is caused by algorithms that change the position of
the vertices along the tangent plane as well as the normal direc-
tion. The result is an increase in the irregularity of the mesh. Our
algorithm moves vertices along the normal direction, and so, no
vertex-drift occurs.

Handling boundaries. Often meshes, in particular scanned data
sets, are not closed. There are two aspects to note here: first, the
shape of the boundary curve, which is the related problem of “mesh
fairing”. Second, is that a filter is defined for a neighborhood of a
point. However for boundary points, part of the neighborhood is
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Figure 2: The shrinkage problem. On the left the model of Max
Planck with heavily added random noise. In the middle the de-
noised model after four iterations of our algorithm without volume
preservation. The Max-Planck model is courtesy of Christian Rössl
from Max Planck Insitut für Informatik.

Figure 3: Comparison with AFP. On the left is the input model, in
the middle is the result denoised by AFP, and on the right is the
result of bilateral mesh denoising. Observe the difference in details
in the area of the lips and eyes. The noisy model and the AFP
denoised models are courtesy of Mathieu Desbrun.

not defined. One common solution to this problem is to define a
virtual neighborhood by reflecting vertices over edges. Our filter
inherently handles boundaries by treating them as sharp edges with
virtual vertices at infinity. The similarity weight sets the weight
of virtual vertices to zero, and thus, the normalization of the entire
filter causes boundaries to be handled correctly.

Parameters. The parameters of the algorithm are: σc, σs, the
kernel size ρ , and the number of iterations. We propose an intuitive
user-assisted method for setting these parameters. Two parameters,
σc and σs are interactively assigned: the user selects a point of
the mesh where the surface is expected to be smooth, and then a
radius of the neighborhood of the point is defined. The radius of the
neighborhood is assigned to σc, and we set ρ = 2σc. Then σs is set
to the standard deviation of the offsets in the selected neighborhood.

One may choose a large σc and perform a few iterations, or
choose a narrow filter and increase the number of iterations. Multi-
ple iterations with a narrow filter has the effect of applying a wider
filter, and results in efficient computation. Using a small value for
σc is sensible for two reasons: (i) large values may cross features as
shown in, and (ii) smaller values result in a smaller neighborhood
which leads to faster computation of every iteration.

In all the results shown in this paper, we used up to five iterations,
we found a small number of iterations sufficient for our purposes,
and advantageous both to the speed of computation and for the nu-
merical stability of the filter.

Noisy data may lead to unstable computation of the normals if
the 1-ring neighborhood of a vertex is used to compute the normals.
For extremely noisy data, the normal to a vertex is computed using
the k-ring neighborhood of the vertex, where k is defined by the
user. For every scanned models that we denoised, the normals were

Figure 4: Results of denoising the face model. On the top row from
left to right are the input noisy mode, the results of [Jones et al.
2003], and our result. On the bottom we zoom on the right eye of
the model, where the bottom left image shows the results of Jones
et al. , and on the bottom right is the result of our method. The face
model is courtesy of Jean-Yves Bouguet.

Figure 5: Results of denoising the Fandisk model. On the left is the
input noisy model, in the middle is the results of [Jones et al. 2003],
and on the right is our result.

computed using the 1-ring neighborhoods. Note that only for the
Max Palanck (Figure 2) model, we were required to use the 2-ring
neighborhood to compute normals.

3 Results

We have implemented the bilateral mesh denoising algorithm as
described in the previous section and compared our results to the
results of the anisotropic denoising of height fields algorithm (AFP)
[Desbrun et al. 2000], Jones et al. [2003], and the implicit fairing
(IF) algorithm [Desbrun et al. 1999] 1. The times are reported on a
1GHz PentiumTM III. In Figure 3, we compare the AFP algorithm
with our results. The mesh with 175K vertices is smoothed by three
iterations in 10 seconds. Observe the preserved details near the
mouth of the model denoised by our algorithm. Figure 1 shows
a comparison with implicit fairing. The smoothness of the object
can be appreciated from the visualization of the mean curvature in
the second row. The model has 17K vertices, and it was denoised
in three iterations, taking 1.8 seconds. In Figure 6 we show the
denoising of a CAD object. Observe that the sharp features are
preserved, but vertices with larger error are treated as outliers and
thus are not smoothed out. For the Max Planck model (Figure2)
(100k vertices), the timing for a single iteration is 5.75 seconds,
and the total number of iterations was four.

1Implementation courtesy of Y. Ohtake
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Figure 6: Denoising of CAD-like model. (a) is the input noisy
model, (b) is the result of two iterations of our algorithm, (c) and
(d) are the result of five iterations of our algorithm, where in (d) the
clean model was superimposed on the denoised model.

Independently, Jones et al. [2003] present a similar algorithm
that uses bilateral filtering for smoothing surfaces. The main dif-
ference between the two methods is in the surface predictor. More
specifically, Jones et al. take the distance between the point and
its projection onto the plane of a neighboring triangle, whereas our
approach takes the distance between a neighboring point and the
tangent plane. While we perform several filtering iterations, Jones
et al. smooth a surface in a single pass. Figure 4 and 5 compare the
results for two different types of models.

Volume preservation is a global operation, whereas denoising is
a local operation. In Figure 2, we visualize the local change of vol-
ume by adding severe synthetic noise (of zero mean and variance
of 0.05% of the diagonal of the bounding box of the model) to the
clean model of Max Planck, and then denoised the model. On the
right, we zoom on a feature of the model, superimposing the origi-
nal mesh on top of the smoothed model, showing that the change in
shape and volume is minimal.

4 Discussion and future work

Choosing the tangent plane as an approximation of Sv is an im-
portant component of our algorithm. Positioning the plane at the
average of the offsets of neighboring points would improve our ap-
proximation of the smooth surface. However, this would nullify the
effect of the similarity term of the bilateral filter. We expect that
computing the offsets over a higher order function such as a poly-
nomial of low degree will reduce the shrinkage problem. Finding a
high-order, feature-preserving function for the noise-free surface is
a difficult problem. In the future, we would like to investigate this
possibility, by combining the bilateral filter with a rational function.

The key points of our algorithm are the choice of tangent plane
and moving vertices along the normal direction. However this
change in vertex position may lead to self-intersection of the de-
noised mesh. During the application of our algorithm to vertices on
two sides of the edge, each vertex moves inwards, for sharp edges
this will cause self-intersection after a number of iterations that is
proportional to the angle of the edge.

The algorithm that we present assumes that the mesh is sampled

regularly. This assumption is made when we fix the values of σc.
Highly irregular meshes are uncommon in scanned data-sets. To
handle irregular data-sets, the parameters must be adjusted locally.

We presented a mesh-denoising algorithm that modifies vertices
in the normal direction. The bilateral filtering algorithm that we
use is practical, clear and simple. The proposed method deals with
irregular meshes and does not perform any reparameterization. In
addition, the only property of the mesh that we use is the topological
information, and therefore, the algorithm can be adapted to point-
based representations.
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