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Abstract

In many cases the surfaces of geometric models consist of a large
number of triangles. Several algorithms were developed to reduce
the number of triangles required to approximate such objects. Al-
gorithms that measure the deviation between the approximated ob-
ject and the original object are only available for special cases. In
this paper we use the Hausdorff distance between the original and
the simplified mesh as a geometrically meaningful error value which
can be applied to arbitrary triangle meshes. We present a new al-
gorithm to reduce the number of triangles of a mesh without exceed-
ing a user-defined Hausdorff distance between the original and sim-
plified mesh. As this distance is parameterization-independent, its
use as error measure is superior to the use of the

���
-Norm between

parameterized surfaces. Furthermore the Hausdorff distance is al-
ways less than the distance induced by the

� �
-Norm. This results

in higher reduction rates. Excellent results were achieved by the
new decimation algorithm for triangle meshes that has been used in
different application areas such as volume rendering, terrain mod-
eling and the approximations of parameterized surfaces. The key
advantages of the new algorithm are:
� It guarantees a user defined position dependent approximation

error.
� It allows to generate a hierarchical geometric representation in

a canonical way.
� It automatically preserves sharp edges.

CR Descriptors: I.3.3[Computer Graphics]: Picture/Image
Generation, Display algorithms; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling Curve, surface,
and object representations, Object hierarchies ; Additional
Key Words and Phrases: hierarchical approximation, model
simplification, levels-of-detail generation, shape approximation

1 Introduction and previous work

Triangle meshes are one of the most popular representations of sur-
faces for computer graphics applications. On the one hand, ren-
dering of triangles is widely supported by hardware and, therefore,
�
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fast. On the other hand, there is an increasing set of data acquis-
ition techniques which generate triangle meshes as output. Ex-
amples are Marching Cubes algorithms, acquisition of digital eleva-
tion data, 3D reconstruction from images, or the use of 3D-scanners.
However, most of these techniques generate much more triangles
than neccessary to represent the given object with a small approxim-
ation error. For example typical medical computer tomography or
magnetic resonance scanners produce over 100 slices at a resolution
of 256 by 256 or up to 1024 by 1024 pixels each. For a sampled data
set of the human head at a resolution of 512 by 512 pixels, isosur-
face extraction of the bones using the Marching Cubes algorithm
produces a mesh with about 1M triangles. A digital map of Ger-
many with a resolution of 40 meters in North-to-South and West-
to-East direction results in about 500M points. Such huge amounts
of data lead to problems with data storage and postprocessing pro-
grams. Animation and realtime rendering of such datasets is almost
impossible even on high performance graphics hardware.

Many techniques were published that aimed at reducing surface
complexity. These techniques simplify triangular meshes either by
merging elements or by resampling vertices using different error cri-
teria to measure the fitness of the approximated surfaces.

Following, we briefly mention some general and valuable solu-
tions. For some surveys see also [CRS96] and [HG95].

� Coplanar facets merging: coplanar or nearly coplanar data are
searched, merged in larger polygons and then retriangulated
into fewer simple facets, [HH92, MSS94].

� Mesh decimation: the algorithm uses multiple passes remov-
ing on each pass, all vertices that satisfy a distance and a fea-
ture angle criterion. The resulting holes are retriangulated
[SZL92].

� Mesh optimization: an energy function is evaluated over the
mesh and is minimized either by removing/moving vertices or
collapsing/swapping edges [HDD � 93].

� Point coalescence: this technique subdivides the ambient
space into smaller subspaces. Multiple vertices in a subregion
are merged into a single vertex using a weighted approxim-
ation such as their centeroid. The merged vertices are then
reconnected with their neighbours to form a collection of
faces [RB93].

� Re-tiling: a new set of vertices is inserted at random on the ori-
ginal surface mesh, and then moved on the surface to be dis-
placed on maximum curvature locations; the original vertices
are then iteratively removed. A retiled mesh, built on the new
vertices only, is returned [Tur92].

� Multiresolution retiling: the approach uses remeshing, res-
ampling and wavelet parametrization to build a multiresolu-
tion representation of the surface from which any approxim-
ated representation can be extracted [EDD � 95].

The general drawback of all these algorithms is the lack of a com-
mon way of measuring the error between the original and the simpli-
fied mesh. This has also been pointed out by Cignoni and Rocchini



[CRS96]. Therefore, a general comparison between the above ap-
proaches is not easy.

In many cases the relation between the parameters (like the ones
used in the algorithms above) and the result of the mesh simplific-
ation process is a-priori not obvious for a user. For example, some
approaches [SZL92, Tur92] allow the user to define the maximum
error that can be introduced in a single simplification step. In this
way errors can accumulate and there is no measure for the actual
global error.

How further parameters like ”feature angles” [SZL92], rough-
ness criteria [Sb94], or decimation rates [SZL92, Tur92] effect the
simplification process and the simplified mesh is also not obvious.
As the specification of the parameters is difficult, the user in many
cases has to run the reduction algorithm several times with different
parameters to get a good result.

The mesh simplification process is much easier to control by
measuring the distance between the original and simplified mesh.
Such distance measures have already been used for mesh simplific-
ation in the area of terrain modeling [DFP85, HG95] and the ap-
proximation of parameterized surfaces [Kle94, Ke95]. For height
fields the distance between the original and the simplified mesh can
be measured either as vertical distance from a plane or as distance
from the closest point to the polygon. For parameterized surfaces
the

� �
-norm is a possible measure.

In addition, the measurement of the distance between original
and simplified mesh is neccessary for mesh simplification al-
gorithms that must ensure a certain geometric accuracy between
the original and the simplified mesh. An example from medicine is
the reconstruction of organs from CT data that need to be replaced
by a prosthesis.

The basis of our mesh simplification algorithm is the use of the
Hausdorff distance as an appropriate error measure between original
and simplified mesh. In contrast to other algorithms like [SZL92]
this distance is measured between the reduced and the orignal mesh
and not between the reduced mesh and some average surface. We
shortly define and discuss this distance in the next section.

2 The error metric

The Euclidean distance between a point � and a set
�������

is
defined by �
	 ��� ���������������

�
	 �����  �

where
�
	�� � �  is the Euclidean distance between two points in

���
.

Using this definition we can define the distance
�! �	#" � �$ from a

set
"

to a set
�

by �
 %	#" � �&%�('*)�+
,-�/.

�
	 �0� �& � (1)

We call this distance one-sided Hausdorff distance between the set"
and the set

�
. It doesn’t define a distance function on the set of all

sets of
�1�

, because it is not symmetric. That means that in general�
 �	#" � �$32� �
 �	 � � "  �
If, for example, the one-sided Hausdorff distance

�  	#4 �65  from
the simplified mesh 5 to the original mesh

4
is less than a predefined

error tolerance 7 , then
8 �:9 4 there is a ��9;5 with

�
	 ����� =< 7
�

For mesh simplification this condition would be sufficient in many
cases. But in some cases the unsymmetry of this distance leads to
problems. This can either happen near to the borders of the original
mesh or at parts of the mesh that resemble to the border, in the sense
that the angle between adjacent triangles along a common edge is
very small. An example is the concave blade of a sickle, see Figure
1.
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Figure 1: Left: The original nonconvextriangle mesh
4

is contained
within a plane. The simplified mesh 5 consists of a triangulation of
the convex hull of the original mesh and therefore the original mesh
is contained in the simplified mesh. Right: The same situation in
3D.

8 �>9 4 there is a �?9@5 with
�
	 ���A� B< 7 but we do not have8 ��9;5 there is a �C9

4
with

�
	 ���A� D< 7
�

To handle such cases we use the Hausdorff distance. It is defined
by ��EF	#" � �$%�HGJILK 	#�  	#" � �& � �  	 � � " � � (2)

In contrast to the one-sided Hausdorff distance it is symmetric and
we have � E 	#" � �$D�NM$O1P " �Q� �

If the Hausdorff distance between the original triangulation
4

and
the simplified triangulation 5 is less than a predefined error toler-
ance 7 , then

8 �C9 4 there is a �J9R5 with
�
	 ���A� =< 7

and 8 ��9R5 there is a �?9
4

with
�
	 ���A� =< 7

�

Therefore, the Hausdorff distance between the original and sim-
plified triangulation is the one a user would intuitively think of.

It is worthwhile to mention that for any parameterized surface5TS �$UJVXW SZY\[ �$]
that is approximated by a piecewise linear

surface
4 S^S �&U_V`W SZY\[ �$]

we always have� E 	 5�� 4 baQcZc 5CY 4 c^c � �Q'*)�+
d-�-e

c^c 5 	gf  Y 43	gf hc^c �

For this reason, using the Hausdorff distance for error measurement
results in higher reduction rates using the same error tolerance.

3 The algorithm

The algorithm is a typical mesh simplification algorithm, that is it
starts with the original triangulation

4
and successively simplifies

it: It removes vertices and retriangulates the resulting holes until no
further vertices can be removed from the simplified triangulation 5
without exceeding a predefined Hausdorff distance between the ori-
ginal triangulation and the simplified one.

The main problem of the algorithm is how to compute the Haus-
dorff distance� E 	 5�� 4 ��iGJI-K 	#�
 �	 5�� 4  � �
 D	#4 �65 � (3)

between the original and simplified mesh. While, in general, this
is a very complicated task, it can be easily solved in the case of an
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Figure 2: Although the distance
� U is less than distance

�
� ,
�
� is

measured due to the topological correspondance.

iterative simplification procedure. The idea is to keep track of the
actual Hausdorff distance between the original and simplified mesh
and of the correspondence between these two meshes from step to
step. This correspondance is the clue to compute the Hausdorff dis-
tance between the two meshes. It allows for every �(9 5 in the
new triangulation to find the triangles of the original triangulation
that contain the �J9

4
nearest to �0� that is

�
	 �0� � Da �
	 �0���  � 8 � 9�(� 4
and vice versa.

� � 4
needs to be carefully chosen in or-

der to avoid measuring the distance to topologically not neighbour-
ing parts of

4 � see Figure 2. Note that keeping track of the corres-
pondance and the Hausdorff distance

�\E3	 5�� 4  is a local operation
because only a small part of the simplified triangulation changes in
each step. Points of the simplified triangulation that may change the
Hausdorff distance

� E
must belong to the modified area of the sim-

plified triangulation. The calculation of the new distance is restric-
ted to that area. After each step we know the Hausdorff distance
between the original and simplified mesh. Based on this informa-
tion a multiresolution representation of the model can be built.

A further idea of the new algorithm is to compute and update
an error value for every single vertex of the simplified mesh. This
value describes the potential error, that is the Hausdorff distance
that would occur if a certain vertex was removed. In each step
we actually eliminate one of the vertices whose removal causes the
smallest potential error. At the beginning of the algorithm the ori-
ginal and simplified triangulation coincide. For every single vertex
the potential error is computed and all vertices are stored into a list

�
in ascending order according to their potential errors. If a vertex is
actually removed from the current simplified triangulation this list is
updated. Becauseof the ordering of the list, the vertex that should be
removed next is placed at its beginning. There are two cases where
the removal of a vertex would not make sense: First so-called com-
plex vertices, see [SZL92], and second vertices for which the retri-
angulation of the resulting hole may lead to topological problems.
These situations are detected by topological consistency checks, see
[Tur92]. In both cases the potential error is set to infinity.

This strategy of implicit sorting preserves sharp edges in the ori-
ginal triangulation, see Figure 10.

3.1 Description of the algorithm

In the algorithm we first concentrate on the one-sided Hausdorff dis-
tance

�  �	#4 � 5  from the original to the simplified mesh. After the
realization of this one-sided distance, it is relatively easy to calculate
the full Hausdorff distance, if neccessary.

3.1.1 The main loop

After building the list
� � the triangulation is simplified through an it-

erative removement of vertices, one at a time: At each iteration, the
vertex on top of the list

�
is removed from the list and from the ac-

tual triangulation, provided that its corresponding potential error is
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Figure 3: If the vertex � is removed only the potential errors of
neighbour vertices have to be updated.

smaller than the predefined maximum Hausdorff distance 7 . Other-
wise it is not possible to remove an additional vertex while keeping
the distance between simplified and original triangulation smaller
than 7 and we are finished.

If we remove a vertex � from the triangulation its adjacent tri-
angles are removed and the remaining hole is retriangulated. For
this purpose the adjacent vertices are projected into a plane similar
to the algorithm of Turk [Tur92]. If the corresponding polygon in
the plane does not self-intersect, the polygon is triangulated using a
constrained Delaunay triangulation. The use of the Delaunay trian-
gulation is not essential but we found that it produces better reduc-
tion results than an arbitrary triangulation of the polygon. In addi-
tion, for all neighbouring vertices � � �������!� � � ���@9	� of � the po-
tential errors need to be updated, see Figure 3. The vertices have to
be removed from the list

�
and reinserted into

�
according to their

new potential error. Note that this can be done in 
 	������� 
time,

where
�

is the number of remaining vertices in the reduced mesh.

3.1.2 Calculation of the potential error

One of the crucial parts in the algorithm is the computation of the
potential error of a vertex, becausein this step not only the distances
between vertices have to be computed but the distance

�  
between

all points of the two triangulations. To simplify things we use�  	#4 �h5 ��NGJILK� ���
�
	�� � 5 

instead of
�
 

. If none of the neighbour vertices of a single vertex
has already been removed from the original triangulation, it is clear
how to calculate the potential error of that vertex: Let

��� ��� ��� �^� �
be the set of removed triangles and ��� � � �!� �^� "

the set of new
triangles produced during the retriangulation and � the vertex. Note
that

" � � Y$# in the general case and
" � � Y �

if the removed
vertex was a border vertex. To calculate

�  	#4 �65  it is sufficient to
calculate �  	�%&� �('&��)

��* * � � % �+� ' � ) ��* * ,  �
see Figure 4.

Yet after some simplification steps there are triangles
��- ��.?90/

in the original mesh with vertices that do no longer belong to the
simplified mesh, see Figure 5. The straightforward way to calculate
the maximum distance�  	�� - � 5 �� '*)�+

,-� ��1
�
	 ��� 5 

for these triangles is not realizable to the whole simplified triangula-
tion 5

�
To solve this problem we store for each already removed ver-

tex � of the original triangulation
4

the triangle � 9R5 that has the
smallest distance to � . Vice versa we store for each triangle � 9 5
all vertices that reference � as the triangle with smallest distance,
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Figure 4: None of the neighbour vertices of a vertex are removed. In
this case it is clear which triangles of the old and new triangulation
have to be consideredto calculate the potential error that would arise
if the vertex was removed.

Figure 5: For the white triangles of the original triangulation (solid
lines) it is a priori not clear to which triangles of the simplified tri-
angulation (dashed) distances have to be computed.

see Figure 6. This information is updated in each iteration step and
suffices to calculate

�  	#4 � 5  . Let � � � 9 5 � ��� � � �Z� � be the set of
removed triangles and �+� � � � 9 5 � � � � �

� � �^� "
the set of new tri-

angles produced during the step from triangulation 5 � to 5 � � � and% � - 9�� '
the set of vertices of the original triangulation that are

already removed. Furthermore each � - must be nearest to one of
the removed triangles � � � 9 5 � � For all triangles of the original tri-
angulation

4
incident to one of the vertices � - the distance to 5 � � �

is calculated. It is sufficient to calculate the distances between tri-
angles of the original triangulation and a subset

�5 � 5 �
�
� � where�5 contains the newly created triangles of 5 � � � and the triangles of5 �

�
� sharing at least one point with the newly created ones. This is

justified by �  	�� � 5  a �  	�� � �5  �

Note that this is a local procedure and that this data structure not only
enormously accelerates the distance computation but also ensures
that the distance measure is always calculated to the correct part of
the simplified mesh, i.e. the distance measurement respects the to-
pology.

3.1.3 Distance from a triangle
�
to the simplified triangu-

lation 5
The maximum of the distances from all three vertices of a triangle�

in the original mesh to the simplified mesh is not always an upper
bound for the distance from a triangle

�
to the simplified triangula-

tion 5
�
If the smallest distances from the vertices of the triangle

�
ex-

ist to different triangles of the simplified mesh 5�� the distance from�
to 5 may occur between a point on the border or even inside of the

triangle
�

and a point somewhere on the simplified triangulation 5
�

We distinguish two cases:

� The triangle
�

of the original triangulation has no vertex in
common with the simplified triangulation 5

�
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Figure 6: For every already removed vertex in the original trian-
gulation we keep the triangle in the simplified triangulation that is
nearest to the vertex itself. For example the vertices ��� � ��� � �	� and�	
 store �

	 � � � � U � � ]  � Vice versa the triangle �
	 � � � � U � � ]  stores

the vertices � � � � � � � � � ��
 �

1) 2)

3 a) 3 b)

Figure 7: In the Figures 1), 2), and 3) the vertices of the triangle
�

have smallest distances to one, two, or three different triangles of
the simplified triangulation 5

�
In Figure 3 b) the original triangle is

subdivided. Here all subdivided triangles belong to the same case
like the one in Figure 2).

� The triangle
�

of the original triangulation has one or two ver-
tices in common with the simplified triangulation 5

�

This distinction allows us to reduce all occurring cases to easier-to-
handle ones using a simple regular subdivision of the original tri-
angles. If the second case is not treated differently, the subdivision
may not converge to one of the simpler cases.

Case 1: We consider the following three subcases, see Figure 7:

� All three vertices are nearest to the same triangle � 9;5 �
� The three vertices are nearest to two triangles � � � � U 9R5 that

share an edge.

� All other cases.

In the first subcase we have�
 �	�� � 5 �� "� � 	#�
	 � � � 5  � �
	 � U � 5  � �
	 � ] � 5 � �

The second subcase is a little bit more complicated. We intersect the
half-angle plane between the two triangles � � and � U sharing a com-
mon edge with those edgesof the triangle

�
having endpoints that be-

long to different triangles. We then use the maximum of distances
of the vertices of

�
and the distances of these intersection points to
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Figure 8: In the left Figure the situation is shown in 3D. Looking
in direction of the edge � 
 � � we get the 2D situation on the right
side. To calculate the distance from �

	 � � � � U � � ]  to the triangles
� � � �

	 ��� � �	� � � 
  and � U � �
	 �	� � � 
 � � �  the half-angle plane

between the two triangles � � and � U is intersected with the edge� � � U and the edge � � � ] � The distance from �
	 � � � � U � � ]  to the sim-

plified triangulation 5 can then be calculated as the maximum of the
distances from the intersection points and vertices � � � � U � � ] to the
triangles � � and � U

�
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v2 v2

v1v3
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v5 v6
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Figure 9: On the left side the 3D situation is shown, on the right side
a 2D view. To obtain the distance from �

	 � � � � U � � ]  to the simpli-
fied triangulation 5 the distances to the triangles adjacent to � ] are
calculated using the half-angle planes between adjacent triangles.

the triangles � � and � U as an upper bound for the error, see Figure
8. In all other cases the original triangle is adaptively subdivided
until the subtriangles fulfill either subcase 1 or subcase 2. Or until
until the longest edge of a subtriangle is smaller than the predefined
error tolerance 7 in subcase3, see Figure 7-3b). In that subdivision
terminating case the maximum distance

�
	�� ��5  � " � � 	#�
	 � �gd��� � 5  � �
	 � �gd��U � 5  � �
	 � �gd��] �A5 �

is used. (To also get a correct upper bound for the approximation er-
ror in this case, one should run the algorithm with

�7 �
	 ��� �

	 ] �

� 7

to ensure error 7
�
)

Case 2: In the case that the three vertices of the original triangle
belong to triangles in the simplified triangulation 5 that share a com-
mon vertex, an upper bound of the maximum distance is again com-
puted using the half-angle planes between adjacent triangles, see
Figure 9. Using adaptive subdivison we reduce the general case 2
either to this case or to case 1 where none of the vertices of the sub-
triangle belong to the simplified triangulation. During the simplific-
ation process it may happen that subtriangles generated in the above
cases are no longer needed because the adjacency relationships of
the triangle in the simplified mesh change. If the triangles in the
simplified mesh grow, more and more vertices of the subdivided tri-
angles are nearest to the same or adjacent triangles in 5 . In such
cases we remove the subdivided triangles.

3.2 Achieving the Hausdorff distance

The simplest way to achieve a sharp upper bound of the Hausdorff
distance between the original and the simplified mesh is to measure

the distances of the new edges of the retriangulated holes to all tri-
angles containing a vertex that is nearest to one of the potentially
removed triangles in each calculation of the potential distance .

4 Examples

Two different applications illustrate the superior results of our tri-
angle decimation algorithm. The first application is the approxim-
ation of NURBS surfaces by triangle meshes. The NURBS surface
is regularly sampled in parameterspace to achieve an error bound
to an intermediate triangulation of 10000 vertices. This triangula-
tion is simplified by the new algorithm using the Hausdorff distance
and compared to a triangulation simplified using a

� �
norm on the

NURBS-parametrization, [Kle94, Ke95]. This application shows
the superiority of the Hausdorff distance to the

� �
-Norm for a geo-

metric approximation. The second application applies the decima-
tion algorithm to the isosurface of medical data created using the
Marching Cubes algorithm run on a data set of 113 slices with a
resolution 512 by 512 pixel. More than 811000 triangles were re-
quired to model the bone surface. The results are compared to a res-
ult gained by the algorithm of Schroeder, Zarge, Lorensen [SZL92].
Despite of the very small error tolerances of one or one-and-a-half
pixel, the reduction rates are even higher than the ones published by
Schroeder et al. Further it should be noted that reduction as achieved
by this algorithm cannot be achieved in general using a

� �
-Norm.

In the third application we use an object containing different fea-
tures like sharp edges. Due to the ordering of the removed points at
the beginning of the algorithm planar regions are reduced first. Re-
moving vertices on sharp edges would lead to illegal approximation
errors.

5 Conclusion

We have described an algorithm for solving the mesh simplification
problem, that is the problem of approximating an arbitrary mesh by
a simplified mesh. The algorithm ensures that for each point in the
original mesh there is a point in the simplified mesh with an Eu-
clidean distance smaller than a user-defined error tolerance 7

�
For

parameterized surfaces this distance also allows for much better re-
duction rates and is, in addition, independent of the parameteriza-
tion.

We have applied our mesh simplification algorithm to different
complicated meshes consisting of up to 811.000 vertices. The very
impressive reduction rates for Marching Cubes outputs on medical
data demonstrate the power of the algorithm even for error toler-
ances in the range of a voxel.
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