Creating and processing 3D geometry

Marie-Paule Cani Marie-Paule.Cani@imag.fr

Cédric Gérot Cedric.Gerot@gipsa-lab.inpg.fr

> Franck Hétroy Franck.Hetroy@imag.fr

http://evasion.imag.fr/Membres/Franck.Hetroy/Teaching/Geo3D/

Context: computer graphics

- We want to represent objects
 - Real objects
 - Virtual/created objects
- Several ways for virtual object creation
 - Interactive by graphists
 - Automatic from real data
 - 3D scanner, medical angiography, ...
 - Procedural (on the fly)
 - Complex scenes, terrain, ...
- Different uses
 - Display, animation, physical simulation, ...

Course overview

- 1.Objects representations
 - Volume/surface, implicit/explicit, ...

Real-time triangulation of implicit surfaces

Course overview

- 1.Objects representations
 - Volume/surface,
 implicit/explicit, ...
- 2.Geometry processing
 - Simplify, smooth, ...

Interactive multiresolution surface exploration

Course overview

- 1.Objects representations
 - Volume/surface, implicit/explicit, ...
- 2.Geometry processing
 - Simplify, smooth, ...
- 3.Virtual object creation
 - Surface reconstruction, interactive modeling

Planning (provisional)

Part I – Geometry representations

- Lecture 1 Oct 9th FH
 - Introduction to the lectures; point sets, meshes, discrete geometry.
- Lecture 2 Oct 16th MPC
 - Parametric curves and surfaces; subdivision surfaces.
- Lecture 3 Oct 23rd MPC
 - Implicit surfaces.

Planning (provisional)

Part II – Geometry processing

- Lecture 4 Nov 6th FH
 - Discrete differential geometry; mesh smoothing and simplification (paper presentations).
- Lecture 5 Nov 13th CG + FH
 - Mesh parameterization; point set filtering and simplification.
- Lecture 6 Nov 20th FH (1h30)
 - Surface reconstruction.

Planning (provisional)

Part III – Interactive modeling

- Lecture 6 Nov 20th MPC (1h30)
 Interactive modeling techniques.
- Lecture 7 Dec 04th MPC
 - Deformations; virtual sculpting.
- Lecture 8 Dec 11th MPC
 - Sketching; paper presentations.

Books

For my part of the course:

 M. Botsch et al., "Geometric Modeling Based on Polygonal Meshes", SIGGRAPH 2007 Course Notes.

http://graphics.ethz.ch/~mbotsch/publications/sg07-course.pdf

!!! Also test the source code:

http://graphics.ethz.ch/~mbotsch/publications/meshcourse07_code.tgz

Books

For Marie-Paule's part of the course:

 D. Bechmann, B. Péroche eds., "Informatique graphique, modélisation géométrique et animation", Hermès, 2007.

- Geometry representations

- M. Alexa et al., "Interactive shape modelling", Eurographics 2005 Tutorial.
 - Interactive modeling

Factual information

- 9h-10h30+10h45-12h15
- This room (008)
- Mark:
 - 1 final written exam (1/2)
 - Geometry processing paper presentation + demo (1/4)
 - Interactive modeling paper presentation (1/4)

Geometry processing paper

- By groups of 2 students
- You are asked to:
 - Choose a paper among the proposed ones
 - Prepare a short presentation (10 minutes + 5 minutes for questions), which includes a demo
- PDF files and basic interface and data structures on the course's webpage:

http://evasion.imag.fr/Membres/Franck.Hetroy/Teaching/Geo3D

Proposed papers

- Two topics
 - Mesh smoothing (3 papers)
 - Mesh simplification (3 papers)

- Send an e-mail to Franck.Hetroy@imag.fr when chosen
- Presentations: November, 6th

Mesh smoothing papers

- 1.G. Taubin, "A Signal Processing Approach to Fair Surface Design", SIGGRAPH 1995.
- 2.M. Desbrun et al., "Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow", SIGGRAPH 1999.
- 3.S. Fleishman et al., "Bilateral Mesh Denoising", SIGGRAPH 2003
- +T.R. Jones et al., "Non-Iterative, Feature-Preserving Mesh Smoothing", SIGGRAPH 2003.

Mesh simplification papers

- 1.H. Hoppe, "Progressive Meshes", SIGGRAPH 1996.
- 2.R. Klein et al., "Mesh Reduction with Error Control", Visualization 1996.

3.P. Lindström, "Out-of-Core Simplification of Large Polygonal Models", SIGGRAPH 2000 => incl. M. Garland & P. Heckbert, "Surface Simplification Using Quadric Error Metrics", SIGGRAPH 1997.

Today's planning

Introduction to the course
 Geometry representations: introduction
 Point sets
 Meshes
 Discrete geometry

Today's planning

1.Introduction to the course

- 2.Geometry representations: introduction
- 3.Point sets
- 4.Meshes
- 5.Discrete geometry

Geometry representations

- Today:
 - Point sets
 - (Flat) Meshes
 - Voxels
- Next week:
 - Parametric curves and surfaces (splines, ...)
 - Multiresolution meshes
- In two weeks:
 - Implicit surfaces

Geometry representations

- A good introduction to all these representations is in chapter 2 of Botsch et al.'s book
 - Parametric/explicit surfaces: splines, subdivision surfaces, triangle meshes
 - Implicit surfaces
 - Conversion from one rep. to the other
 - Only about surfaces: point sets volumetric rep.

Why not <u>one</u> good representation ?

- Multiple applications, different constraints
 - Powerful rep.
 - To handle a large class of objects
 - To create complex objects from simple ones
 - Intuitive rep.
 - To edit the model
 - To animate some parts of it
 - Efficient rep.
 - Memory cost
 - Display/process time cost

Classification: a proposal

- Non structured rep.
 - Point set
 - Polygon soup
- Surface rep.
 - Mesh
 - Parametric
 - Subdivision
 - Implicit

- Volumetric rep.
 - Voxel line/plane/set
 - Octree
 - CSG
- Procedural rep.
 - Fractal
 - Grammar/L-system
 - Particle system
- Image-based rep.

Today's planning

1.Introduction to the course

- 2.Geometry representations: introduction
- 3.Point sets
- 4.Meshes
- 5.Discrete geometry

Point sets

- Result of scanner acquisition
- Also image-based modeling
- Main advantages:
 - "Natural" representation
 - Simple and cheap to display
- Main drawbacks:
 - No connectivity info: underlying shape = ?
 - Tedious to edit

NextEngine scanner: soon here!

Too simple ?

- If nb of points too low: holes
- However:
 - Currently scanned models have up to several millions points
 - Mesh reconstruction is then time-consuming
 - Memory to store the mesh also a problem (number of faces ~ 2 x number of points)
 - Each face projects onto only one or two pixels !
- That is why surface representation by a point set is more and more used and studied

Point set representation

- Points are samples of the underlying surface
- 1 point corresponds to 1 surfel (surface element)
 - Position
 - Color
 - Normal
 - Radius
- Surfel = 2D !

Surfel

- Surfels are designed mostly for rendering
- Advantage: no mesh reconstruction necessary
 - Time saving
- No surface connectivity information

Courtesy M. Zwicker

Point rendering pipeline

• Credit: M. Zwicker 2002

Forward warping and shading

- Forward warping = perspective projection of each point in the point cloud
- Similar to projection of triangle vertices (mesh case)
- Shading:
 - Per point
 - Conventional models for shading (Phong, Torrance-Sparrow, reflections, etc.)
 - Cf. rendering course

Visibility and image reconstruction

- Performed simultaneously
- Discard points that are occluded from the current viewpoint
- Reconstruct continuous surfaces from projected points

Image reconstruction

- Goal: avoid holes in the image of the surface
- Use surfel radius to cover the surface
- More during the rendering course

Point set processing

- Some work on:
 - Simplification
 - Filtering
 - Decomposition, resampling
- Still lack of robust mathematical theory

- Cf. the mesh case (session 4)

(Possible) Topic of the session 5 of this course

Surface approximation

- Almost all other surface representations are based on points
 - Meshes
 - Parametric rep. (splines)
 - Implicit rep.
- A projection-based surface definition is also possible
 - Local polynomial P around each point
 - Project P(0) onto a local reference plane

Books

• M. Alexa et al., "Point-Based Computer Graphics", SIGGRAPH 2004 Course Notes

http://graphics.ethz.ch/publications/tutorials/points/

- C. Schlick, P. Reuter, T. Boubekeur, "Rendu par Points", chapter from "Informatique Graphique et Rendu", Hermès, 2007
- See also works by Mark Alexa (TU Berlin), Markus Gross et al. (ETH Zürich), Gaël Guennebaud et al. (IRIT Toulouse, now ETH Zürich)

Today's planning

1.Introduction to the course

- 2.Geometry representations: introduction
- 3.Point sets
- 4.Meshes
- 5.Discrete geometry

Meshes

- Mesh = (V, E, F)
 - -V = set of vertices
 - -E = set of edges

- F = connected set of (planar) faces
- Not connected = polygon soup
- Faces can be
 - Triangles
 - Planar quads
 - Any planar, convex polygon

Meshes

- Main advantage: easy display
- Main drawback: tedious to edit
- Represent continuous piecewise linear surfaces
- Encode
 - (Approximate) geometry
 - OK for planar shapes (CAD)
 - Bad for curved shapes
 - Topology (see 2 slides after)

2-Manifold

- Def.: each vertex has a neighborhood on M homeomorphic to a disk
 - Continuous bijection, distance does not matter
- 2-Manifold with boundary: to a [half-]disk
- 3-Manifold, n-manifold, ...
- No singularities:

Object topology

- Any manifold's topology is defined by a small set of numbers:
 - Surface: nb c of connected components + nb g of holes + nb b of boundaries
 - Volume: nb of conn. comp. + nb of tunnels + nb of cavities (bubbles) + nb of boundaries
- Euler formula for surface meshes:

 $-V-E+F = \chi = 2(c-g)-b$

 $-\chi = Euler characteristic$

-g = genus

(Easy) Exercise

• Find the Euler characteristic of the following 6 surfaces:

• And for volumes ?

Mesh data structures

- Ref.: chapter 3 of Botsch et al.'s book
- How to store geometry <u>and connectivity</u> ?
 - STL-like: store triangles, vertices duplicated
 no connectivity
 - Shared vertex data structure (OBJ, OFF file formats): vertex list, triangles = triples of indices
 no neighborhood info
 - Half-edge and variants
 - => all is based on **oriented** edges

Half-edge data structure

- Three main classes:
 - Vertex
 - Coord, [id,] pointer to one outgoing half-edge
 - Half-edge
 - Pointers to the origin vertex, to the next and to the opposite halfedge, to the incident face
 - Face
 - Pointer to **one** incident half-edge

You can add whatever attributes you want (normal, color, ...)

Example: browsing the 1-ring neighborhood of a vertex

(3) switch to opposite halfedge

(2) find outgoing halfedge

(4) next halfedge points to neighbouring vertex

Example: browsing the 1-ring neighborhood of a vertex

- Exercise:
 - Write your own half-edge data structure:
 - class Vertex
 - class Edge
 - class Face
 - Write a procedure
 browseOneRing(Vertex* v)
 which returns the 1-ring
 neighborhood of v as a list.

C++ libraries

- CGAL http://www.cgal.org/
 - Developed by a consortium led by INRIA, lots of stuff
 - Widely used by researchers, tutorials
 - Somehow complicated (genericity)
- OpenMesh http://www.openmesh.org/
 - Developed by Mario Botsch at RWTH Aachen
 - Simpler, clearer
 - Lack of documentation
- GTS http://gts.sourceforge.net/
 - Why not ?

Mesh processing

- Lots of work
 - Simplification
 - Smoothing, fairing
 - Parameterization
 - Remeshing
 - Deformation
- See Botsch et al.'s book
- Topic of the sessions 4 and 5 of this course

Today's planning

1.Introduction to the course

- 2.Geometry representations: introduction
- 3.Point sets
- 4.Meshes
- 5.Discrete geometry

Voxels

- Volumetric representation
- (Regularly) discretize the 3D space and only keep elements inside the object
- 2D : pixel = <u>PICT</u>ure <u>EL</u>ement
- 3D : voxel = <u>VO</u>lume
 <u>EL</u>ement
- And also: surfel (surface), texel (texture), ...

Voxel set acquisition

- Using a function sampled on a grid
 - Numerical simulation
- Tomographic reconstruction (CT scan)
 - Medical area
- Depending on the acquisition/application, voxels contain scalar values (function, density, color, ...)

Octree

- Voxel hierarchy
- Saves memory
- Interesting for:
 - Spatial queries
 - Collision detection
 - Hidden surface removal ("view frustrum culling")

Courtesy S. Lefebvre

An introduction to discrete geometry

- Theoretical/Mathematical study of regular 2D/3D (simple) objects
 - Sampled on a grid
 - Object = point, line, plane
- How to define what is a line of voxels ?
- Adapted algorithms

Why a regular grid

- Simple topology
- Easy address to a cell: coordinates
- Easy access from a cell to its neighbors
- Physical reality (sensors)

Cell

- Usually a convex polygon/polyhedron
- Regular
- The 3 principal cases: square/cube, hexagon/hexahedron, triangle/tetrahedron

Advantage of squares/cubes

- Square:
 - 4 neighbors
 - 1 configuration
- Triangle:
 - 3 neighbors
 - 2 configurations
- Hexagon:
 - 6 neighbors
 - 2 configurations

Adjacency on a voxel grid

- (Combinatorial) Def.:
 - 6-neighbors = voxels that share a face
 - 18-neighbors = voxels that share a edge
 - 26-neighbors = voxels that share a vertex

Adjacency on a voxel grid

- (Topological) Def.:
 - 2-neighbors = voxels that share a face
 - 1-neighbors = voxels that share a edge
 - 0-neighbors = voxels that share a vertex

Basic discrete geometry definitions

- An ordered set {c₁, ..., c_n} of discrete cells is a (topological) k-path if ∀ i, c_i is a k-neighbor of c_{i-1}
- It is a k-arc if ∀ i, c_i has exactly two k-neighbors
- It is a k-curve if it a k-arc + $c_1 = C_n$
 - A set O of discrete cells is a k-object if \forall c,c' in O, one can find a k-path from c to c' in O

Discrete object boundary

Problem with discrete objects: their boundary is not obvious

Inside or outside ?

One or two components ?

Problem

- Jordan's theorem: every smooth (n-1)manifold in Rⁿ disjoints space into two connected domains (the inside and the outside); it is the common boundary of these domains
- Corollary: impossible to find a path from inside to outside
- Need to define the right adjacency !

Adjacency couple

• Need to define one connexity for the (inside) object, and one for the outside

• Exercise: possible couples?

Adjacency couple

• Need to define one connexity for the (inside) object, and one for the outside

 Possible couples: (6, 18), (6, 26), (18, 6) and (26, 6)

• Def.: connected set of cell faces between a cell inside the object and a cell outside

- Coherent with Jordan; depends on the chosen adjacency
- Contour of a volume = surface (to display)

Contour coding

- We want the code to be:
 - Compact: compared to a simple list of the discrete faces coordinates
 - Toggle: the surface can be reconstructed from the code
 - Invariant: w.r.t. some geometrical transforms
 - Informative: about the surface (area, ...)
- In 2D: Freeman code

Freeman code

• Idea: code the path between two consecutive pixels of the discrete curve

Properties

- Reversible (unicity)
- Geometrical transforms does not affect much the code
 - Translation: just change the origin point
 - Rotation with angle $\pi/2$: c'=c+2 mod 8 (if 8-adjacency)
- Can give an estimate of the curve length
 - -L := L+1 if c is even
 - $-L := L + \sqrt{2}$ if c is odd

Discrete line (2D)

- How to define a discrete line from a real line ?
- Bresenham algorithm:
 - Choose the closest pixel to the line in the vertical direction (incremental)

Other definition

- Let D: y = ax+b be the real line. D is the set of points/pixels $p_i = (x_i, y_i)$ with $x_i = i$ and $y_i = [ax_i+b+0.5]$.
- Properties:
 - D is a 8-arc
 - D can be Freeman-coded with codes 0 and 1 only
 - If a is rational, then the code of D is periodic

Discrete vs. continuous

• Euclide 1: given two points A and B, there exists only one line going through A and B.

Discrete vs. continuous

• Euclide 2: Two non parallel lines intersect exactly once.

Third definition [Reveillès 1991]

- Arithmetic discrete line:
 - D(a,b,d,e) = { (x, y) with x,y,a,b,d,e in \mathbb{Z} , b ≠ 0, 0 ≤ ax by + d < e and gcd(a,b)=1 }.
 - a/b is the line slope, d is the origin offset and e the thickness.
- Exercise:
 - Draw a regular grid.
 - Draw (the beginning of) the following lines:
 D(3,7,0,5), D(3,7,0,7), D(3,7,0,8), D(3,7,0,10)
 and D(3,7,0,16).

Third definition [Reveillès 1991]

- Arithmetic discrete line:
 - D(a,b,d,e) = { (x, y) with x,y,a,b,d,e in \mathbb{Z} , b ≠ 0, 0 ≤ ax by + d < e and gcd(a,b)=1 }.
 - a/b is the line slope, d is the origin offset and e the thickness.

Courtesy D. Coeurjolly and I. Sivignon

Properties

- Let D(a,b,d,e) be a discrete line. Then:
 - if e < max(|a|,|b|) then D is disconnected;</p>
 - if e = max(|a|,|b|) then D is a 8-arc and is called a naive line;
 - if max(|a|,|b|) < e < |a|+|b| then D has both 4and 8-connected parts;
 - if e = |a|+|b| then D is a 4-arc and is called a standard line;
 - else D is called a thick line.

Properties

- Let D be the real line ax-by+d = 0 with a,b,d in \mathbb{Z} ; suppose $|a| \leq |b|$. Then:
 - the default discretization of D, that is to say the set { (x,y), y = [(-ax-d)/b]} is exactly D(a,b,d,b);
 - the excess discretization of D, that is to say the set { (x,y), y = [(-ax-d)/b]} is exactly D(a,b,d+b-1,b);
Discrete plane (3D)

- Discretization of a real plane:
 - Let d: z = ax+by+c be the real plane. P is the set of points/voxels p = (x,y,z) with x and y in \mathbb{Z} and z = [ax + by+c].
- Arithmetic discrete plane:
 - P(a,b,c,d,e) = { (x, y, z) with x,y,z,a,b,c,d,e in \mathbb{Z} , d \leq ax + by + cz < d + e and gcd(a,b,c)=1 }.
 - (a, b, c)^t is the plane normal, d is the origin offset and e the thickness.

Some discrete planes

Courtesy D. Coeurjolly and I. Sivignon

P(6,13,27,0,15) P(6,13,17,0,27) P(6,13,17,0,46)

Discrete geometry

This part was inspired by a course given by David Coeurjolly and Isabelle Sivignon (CNRS researchers, LIRIS, Lyon)

Books

- J.-M. Chassery, A. Montanvert, "Géométrie Discrète en Analyse d'Images", Hermès, 1991
 - Available at INRIA or University library
- F. Feschet, J.-P. Reveillès, "Tracés Géométriques", chapter from "Informatique Graphique et Rendu", Hermès, 2007
- R. Klette, A. Rosenfeld, "Digital Geometry, Geometric Methods for Digital Picture Analysis", Morgan-Kaufmann, 2004

The end

- Next week:
 - Parametric curves and surfaces
 - Subdivision surfaces
 - Lecturer: Marie-Paule Cani
- These slides will be available on the course's webpage:

http://evasion.imag.fr/Membres/Franck.Hetroy/Teaching/Geo3D/