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Context: computer graphics
● We want to represent objects

– Real objects
– Virtual/created objects

● Several ways for virtual object creation
– Interactive by graphists
– Automatic from real data

● 3D scanner, medical angiography, ...
– Procedural (on the fly)

● Complex scenes, terrain, ...

● Different uses
– Display, animation, physical simulation, ...



   

Course overview

Real-time triangulation
of implicit surfaces

1.Objects representations
– Volume/surface, 

implicit/explicit, ... 



   

Course overview

Interactive multiresolution
surface exploration

1.Objects representations
– Volume/surface, 

implicit/explicit, ... 

2.Geometry processing
– Simplify, smooth, ...



   

Course overview

1.Objects representations
– Volume/surface, 

implicit/explicit, ... 

2.Geometry processing
– Simplify, smooth, ...

3.Virtual object creation
– Surface reconstruction, 

interactive modeling 
Shape modeling

by sketching



   

Planning (provisional)

Part I – Geometry representations

● Lecture 1 – Oct 9th – FH
– Introduction to the lectures; point sets, 

meshes, discrete geometry.

● Lecture 2 – Oct 16th – MPC
– Parametric curves and surfaces; subdivision 

surfaces.

● Lecture 3 – Oct 23rd - MPC
– Implicit surfaces.



   

Planning (provisional)

Part II – Geometry processing

● Lecture 4 – Nov 6th – FH
– Discrete differential geometry; mesh 

smoothing and simplification (paper 
presentations).

● Lecture 5 – Nov 13th - CG + FH
– Mesh parameterization; point set filtering and 

simplification.

● Lecture 6 – Nov 20th - FH (1h30)
– Surface reconstruction.



   

Planning (provisional)

Part III – Interactive modeling

● Lecture 6 – Nov 20th – MPC (1h30)
– Interactive modeling techniques.

● Lecture 7 – Dec 04th - MPC
– Deformations; virtual sculpting.

● Lecture 8 – Dec 11th - MPC
– Sketching; paper presentations.



   

Books

For my part of the course:
● M. Botsch et al., “Geometric Modeling Based 

on Polygonal Meshes”, SIGGRAPH 2007 
Course Notes.

http://graphics.ethz.ch/~mbotsch/publications/sg07-course.pdf

!!! Also test the source code:
http://graphics.ethz.ch/~mbotsch/publications/meshcourse07_code.tgz

http://graphics.ethz.ch/~mbotsch/publications/sg07-course.pdf


   

Books

For Marie-Paule's part of the course:
● D. Bechmann, B. Péroche eds., “Informatique 

graphique, modélisation géométrique et 
animation”, Hermès, 2007.
– Geometry representations

● M. Alexa et al., “Interactive shape 
modelling”,  Eurographics 2005 Tutorial.
– Interactive modeling



   

Factual information

● 9h-10h30+10h45-12h15
● This room (008)
● Mark:

– 1 final written exam (1/2)
– Geometry processing paper presentation + 

demo (1/4)
– Interactive modeling paper presentation (1/4)



   

Geometry processing paper

● By groups of 2 students
● You are asked to:

– Choose a paper among the proposed ones
– Prepare a short presentation (10 minutes + 5 

minutes for questions), which includes a demo

● PDF files and basic interface and data 
structures on the course's webpage:

http://evasion.imag.fr/Membres/Franck.Hetroy/Teaching/Geo3D



   

Proposed papers
● Two topics

– Mesh smoothing (3 papers) 
– Mesh simplification (3 papers)

● Send an e-mail to Franck.Hetroy@imag.fr 
when chosen

● Presentations: November, 6th

mailto:Franck.Hetroy@imag.fr


   

Mesh smoothing papers

1.G. Taubin, “A Signal Processing Approach to 
Fair Surface Design”, SIGGRAPH 1995.

2.M. Desbrun et al., “Implicit Fairing of 
Irregular Meshes using Diffusion and 
Curvature Flow”, SIGGRAPH 1999.

3.S. Fleishman et al., “Bilateral Mesh 
Denoising”, SIGGRAPH 2003

+T.R. Jones et al., “Non-Iterative, Feature-
Preserving Mesh Smoothing”, SIGGRAPH 
2003.



   

Mesh simplification papers

1.H. Hoppe, “Progressive Meshes”, SIGGRAPH 
1996.

2.R. Klein et al., “Mesh Reduction with Error 
Control”, Visualization 1996.

3.P. Lindström, “Out-of-Core Simplification of 
Large Polygonal Models”, SIGGRAPH 2000     
=> incl. M. Garland & P. Heckbert, “Surface 
Simplification Using Quadric Error Metrics”, 
SIGGRAPH 1997.



   

Today's planning

1.Introduction to the course

2.Geometry representations: introduction

3.Point sets

4.Meshes

5.Discrete geometry
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Geometry representations

● Today:
– Point sets
– (Flat) Meshes
– Voxels

● Next week:
– Parametric curves and surfaces (splines, ...)
– Multiresolution meshes

● In two weeks:
– Implicit surfaces



   

Geometry representations

● A good introduction to all these 
representations is in chapter 2 of Botsch et 
al.'s book
– Parametric/explicit surfaces: splines, subdivision 

surfaces, triangle meshes
– Implicit surfaces
– Conversion from one rep. to the other
– Only about surfaces: point sets  volumetric rep.



   

Why not one good 
representation ?

● Multiple applications, different constraints
– Powerful rep.

● To handle a large class of objects
● To create complex objects from simple ones

– Intuitive rep.
● To edit the model
● To animate some parts of it

– Efficient rep.
● Memory cost
● Display/process time cost



   

Classification: a proposal

● Non structured rep.
– Point set
– Polygon soup

● Surface rep.
– Mesh
– Parametric
– Subdivision
– Implicit

● Volumetric rep.
– Voxel line/plane/set
– Octree
– CSG

● Procedural rep.
– Fractal
– Grammar/L-system
– Particle system

● Image-based rep.



   

Today's planning

1.Introduction to the course

2.Geometry representations: introduction

3.Point sets

4.Meshes

5.Discrete geometry



   

Point sets

● Result of scanner acquisition
● Also image-based modeling
● Main advantages:

– “Natural” representation
– Simple and cheap to display

● Main drawbacks:
– No connectivity info: 

underlying shape = ?
– Tedious to edit

NextEngine scanner: soon here!



   

Too simple ?

● If nb of points too low: holes
● However:

– Currently scanned models have up to several 
millions points

– Mesh reconstruction is then time-consuming
– Memory to store the mesh also a problem 

(number of faces ~ 2 x number of points)
– Each face projects onto only one or two pixels !

● That is why surface representation by a point 
set is more and more used and studied



   

Point set representation

● Points are samples of the underlying surface
● 1 point corresponds to 1 surfel (surface 

element)
– Position
– Color
– Normal
– Radius

● Surfel = 2D !

Courtesy M. Zwicker



   

Surfel

● Surfels are designed 
mostly for rendering

● Advantage: no mesh 
reconstruction necessary
– Time saving

● No surface connectivity 
information

Courtesy M. Zwicker



   

Point rendering pipeline

● Credit: M. Zwicker 2002

Point set

Visibility

Framebuffer

Forward
warping

Shading Image
reconstruction



   

Forward warping and shading

● Forward warping = perspective projection of 
each point in the point cloud

● Similar to projection of triangle vertices 
(mesh case)

● Shading:
– Per point
– Conventional models for shading (Phong, 

Torrance-Sparrow, reflections, etc.)
– Cf. rendering course



   

Visibility and image 
reconstruction

● Performed simultaneously
● Discard points that are occluded from the 

current viewpoint
● Reconstruct continuous surfaces from 

projected points



   

Image reconstruction

● Goal: avoid holes in the image of the surface
● Use surfel radius to cover the surface
● More during the rendering course



   

Point set processing

● Some work on:
– Simplification
– Filtering
– Decomposition, resampling

● Still lack of robust mathematical theory
– Cf. the mesh case (session 4)

● (Possible) Topic of the session 5 of this 
course



   

Surface approximation

● Almost all other surface representations are 
based on points
– Meshes
– Parametric rep. (splines)
– Implicit rep.

● A projection-based surface definition is also 
possible
– Local polynomial P around each point
– Project P(0) onto a local reference plane



   

Books

● M. Alexa et al., “Point-Based Computer 
Graphics”, SIGGRAPH 2004 Course Notes
http://graphics.ethz.ch/publications/tutorials/points/

● C. Schlick, P. Reuter, T. Boubekeur, “Rendu 
par Points”, chapter from “Informatique 
Graphique et Rendu“, Hermès, 2007

● See also works by Mark Alexa (TU Berlin), 
Markus Gross et al. (ETH Zürich), Gaël 
Guennebaud et al. (IRIT Toulouse, now ETH 
Zürich)



   

Today's planning

1.Introduction to the course

2.Geometry representations: introduction

3.Point sets

4.Meshes

5.Discrete geometry



   

Meshes

● Mesh = (V,E,F)
– V = set of vertices
– E = set of edges
– F = connected set of (planar) faces

● Not connected = polygon soup
● Faces can be

– Triangles
– Planar quads
– Any planar, convex polygon



   

Meshes

● Main advantage: easy display
● Main drawback: tedious to edit
● Represent continuous 

piecewise linear surfaces
● Encode

– (Approximate) geometry
● OK for planar shapes (CAD)
● Bad for curved shapes

–  Topology (see 2 slides after)



   

2-Manifold

● Def.: each vertex has a neighborhood on M 
homeomorphic to a disk
– Continuous bijection, distance does not matter

● 2-Manifold with boundary: to a [half-]disk
● 3-Manifold, n-manifold, ...
● No singularities:



   

Object topology

● Any manifold's topology is defined by a small 
set of numbers:
– Surface: nb c of connected components + nb g of 

holes + nb b of boundaries
– Volume: nb of conn. comp. + nb of tunnels + nb of 

cavities (bubbles) + nb of boundaries

● Euler formula for surface meshes:
– V-E+F = = 2(c-g)-b

– = Euler characteristic

– g = genus



   

(Easy) Exercise
● Find the Euler characteristic of the following 6 

surfaces:

● And for volumes ?



   

Mesh data structures

● Ref.: chapter 3 of Botsch et al.'s book
● How to store geometry and connectivity ?

– STL-like: store triangles, vertices duplicated

   => no connectivity
– Shared vertex data structure (OBJ, OFF file 

formats): vertex list, triangles = triples of indices

   => no neighborhood info
– Half-edge and variants

   => all is based on oriented edges



   

Half-edge data structure
● Three main classes:

– Vertex
● Coord, [id,] pointer to one 

outgoing half-edge

– Half-edge
● Pointers to the origin vertex, to 

the next and to the opposite half-
edge, to the incident face

– Face
● Pointer to one incident half-edge

You can add whatever attributes you want (normal, color, ...)



   

Example: browsing the 1-ring 
neighborhood of a vertex



   

Example: browsing the 1-ring 
neighborhood of a vertex

● Exercise:
– Write your own half-edge data 

structure:
● class Vertex
● class Edge
● class Face

– Write a procedure 
browseOneRing(Vertex* v) 
which returns the 1-ring 
neighborhood of v as a list.



   

C++ libraries

● CGAL http://www.cgal.org/
● Developed by a consortium led by INRIA, lots of stuff
● Widely used by researchers, tutorials
● Somehow complicated (genericity)

● OpenMesh http://www.openmesh.org/
● Developed by Mario Botsch at RWTH Aachen
● Simpler, clearer
● Lack of documentation

● GTS http://gts.sourceforge.net/
● Why not ?

http://gts.sourceforge.net/


   

Mesh processing

● Lots of work
– Simplification
– Smoothing, fairing
– Parameterization
– Remeshing
– Deformation

● See Botsch et al.'s book
● Topic of the sessions 4 and 5 of this course



   

Today's planning

1.Introduction to the course

2.Geometry representations: introduction

3.Point sets

4.Meshes

5.Discrete geometry



   

Voxels

● Volumetric representation
● (Regularly) discretize the 3D 

space and only keep 
elements inside the object

● 2D : pixel = PICTure ELement
● 3D : voxel = VOlume 

ELement
● And also: surfel (surface), 

texel (texture), ...



   

Voxel set acquisition

● Using a function sampled on 
a grid
– Numerical simulation

● Tomographic reconstruction 
(CT scan)
– Medical area

● Depending on the 
acquisition/application, 
voxels contain scalar values 
(function, density, color, ...)



   

Octree

● Voxel hierarchy
● Saves memory
● Interesting for:

– Spatial queries
– Collision detection
– Hidden surface 

removal (“view 
frustrum culling”)

Courtesy S. Lefebvre



   

An introduction to
discrete geometry

● Theoretical/Mathematical study of regular 
2D/3D (simple) objects
– Sampled on a grid
– Object = point, line, plane

● How to define what is a line of voxels ?
● Adapted algorithms



   

Why a regular grid

● Simple topology
● Easy address to a cell: coordinates
● Easy access from a cell to its neighbors
● Physical reality (sensors)

0,-1

-1,0

1,-1

1,0

-1,1 0,1 1,1

-1,-1



   

Cell

● Usually a convex polygon/polyhedron
● Regular
● The 3 principal cases: square/cube, 

hexagon/hexahedron, triangle/tetrahedron

Courtesy D. Coeurjolly & I. Sivignon



   

Advantage of squares/cubes

● Square:
– 4 neighbors
– 1 configuration

● Triangle:
– 3 neighbors
– 2 configurations

● Hexagon:
– 6 neighbors
– 2 configurations

Courtesy D. Coeurjolly & I. Sivignon



   

Adjacency on a voxel grid

● (Combinatorial) Def.:
– 6-neighbors = voxels that share a face
– 18-neighbors = voxels that share a edge
– 26-neighbors = voxels that share a vertex

Courtesy D. Coeurjolly & I. Sivignon



   

Adjacency on a voxel grid

● (Topological) Def.:
– 2-neighbors = voxels that share a face
– 1-neighbors = voxels that share a edge
– 0-neighbors = voxels that share a vertex

Courtesy D. Coeurjolly & I. Sivignon



   

Basic discrete geometry 
definitions

● An ordered set {c , ..., c } of 
discrete cells is a (topological) 
k-path if i, c  is a k-neighbor 
of c

● It is a k-arc if i, c has exactly 
two k-neighbors

● It is a k-curve if it a k-arc + c = 
c 

1 n

i

i-1

i

1

n

● A set O of discrete cells is a k-object if c,c' 
in O, one can find a k-path from c to c' in O



   

Discrete object boundary

● Problem with discrete objects: their 
boundary is not obvious

Inside or outside ? One or two components ?



   

Problem

● Jordan's theorem: every smooth (n-1)-
manifold in ℝ  disjoints space into two 
connected domains (the inside and the 
outside); it is the common boundary of 
these domains

● Corollary: impossible to find a path from 
inside to outside

● Need to define the right adjacency !

n



   

Adjacency couple

● Need to define one connexity for the 
(inside) object, and one for the outside

● Exercise: possible couples?



   

Adjacency couple

● Need to define one connexity for the 
(inside) object, and one for the outside

● Possible couples: (6, 18), (6, 26), (18, 6) 
and (26, 6)



   

Contour

● Def.: connected set of cell faces between a 
cell inside the object and a cell outside

● Coherent with Jordan; depends on the 
chosen adjacency

● Contour of a volume = surface (to display)



   

Contour coding

● We want the code to be:
– Compact: compared to a simple list of the 

discrete faces coordinates
– Toggle: the surface can be reconstructed from 

the code
– Invariant: w.r.t. some geometrical transforms
– Informative: about the surface (area, ...)

● In 2D: Freeman code



   

Freeman code

● Idea: code the path between two 
consecutive pixels of the discrete curve



   

Properties

● Reversible (unicity)
● Geometrical transforms does not affect 

much the code
– Translation: just change the origin point

– Rotation with angle /2: c'=c+2 mod 8 (if 8-
adjacency)

● Can give an estimate of the curve length
– L := L+1 if c is even
– L := L+ √2 if c is odd



   

Discrete line (2D)

● How to define a discrete line from a real  
line ?

● Bresenham algorithm:
– Choose the closest pixel to the line in the 

vertical direction (incremental)



   

Other definition

● Let D: y = ax+b be the real line. D is the 
set of points/pixels p  = (x ,y ) with x  = i 
and y  = ⌊ax +b+0.5⌋.

● Properties:
– D is a 8-arc
– D can be Freeman-coded with codes 0 and 1 

only
– If a is rational, then the code of D is periodic

i i i i

i i



   

Discrete vs. continuous

● Euclide 1: given two points A and B, there 
exists only one line going through A and B.



   

Discrete vs. continuous

● Euclide 2: Two non parallel lines intersect 
exactly once.



   

Third definition [Reveillès 1991]

● Arithmetic discrete line:
– D(a,b,d,e) = { (x, y) with x,y,a,b,d,e in ℤ, b ≠ 

0, 0 ≤ ax - by + d <  e and gcd(a,b)=1 }.
– a/b is the line slope, d is the origin offset and e 

the thickness.

● Exercise:
– Draw a regular grid.
– Draw (the beginning of) the following lines: 

D(3,7,0,5), D(3,7,0,7), D(3,7,0,8), D(3,7,0,10) 
and D(3,7,0,16). 



   

Third definition [Reveillès 1991]

● Arithmetic discrete line:
– D(a,b,d,e) = { (x, y) with x,y,a,b,d,e in ℤ, b ≠ 

0, 0 ≤ ax - by + d <  e and gcd(a,b)=1 }.
– a/b is the line slope, d is the origin offset and e 

the thickness.

Courtesy D. Coeurjolly and I. Sivignon



   

Properties

● Let D(a,b,d,e) be a discrete line. Then:
– if e < max(|a|,|b|) then D is disconnected;
– if e = max(|a|,|b|) then D is a 8-arc and is 

called a naive line;
– if max(|a|,|b|) < e < |a|+|b| then D has both 4- 

and 8-connected parts;
– if e = |a|+|b| then D is a 4-arc and is called a 

standard line;
– else D is called a thick line.



   

Properties

● Let D be the real line ax-by+d = 0 with 
a,b,d in ℤ; suppose |a|≤|b|. Then:

– the default discretization of D, that is to say 
the set { (x,y), y = ⌊(-ax-d)/b⌋} is exactly 
D(a,b,d,b);

– the excess discretization of D, that is to say 
the set { (x,y), y = ⌈(-ax-d)/b⌉} is exactly 
D(a,b,d+b-1,b);

– ...



   

Discrete plane (3D)

● Discretization of a real plane:
– Let d: z = ax+by+c be the real plane. P is the 

set of points/voxels p = (x,y,z) with x and y in 
ℤ and z = ⌊ax +by+c⌋.

● Arithmetic discrete plane:
– P(a,b,c,d,e) = { (x, y, z) with x,y,z,a,b,c,d,e in 
ℤ, d ≤ ax + by + cz < d + e and 
gcd(a,b,c)=1 }.

– (a, b, c)  is the plane normal, d is the origin 
offset and e the thickness.

t



   

Some discrete planes

Courtesy D. Coeurjolly and I. Sivignon

P(6,13,27,0,15) P(6,13,17,0,27) P(6,13,17,0,46)



   

Discrete geometry

This part was inspired by a course given by 
David Coeurjolly and Isabelle Sivignon 

(CNRS researchers, LIRIS, Lyon)



   

Books

● J.-M. Chassery, A. Montanvert, “Géométrie 
Discrète en Analyse d'Images”, Hermès, 
1991
– Available at INRIA or University library

● F. Feschet, J.-P. Reveillès, “Tracés 
Géométriques”, chapter from “Informatique 
Graphique et Rendu“, Hermès, 2007

● R. Klette, A. Rosenfeld, “Digital Geometry, 
Geometric Methods for Digital Picture 
Analysis”, Morgan-Kaufmann, 2004



   

The end

● Next week:
– Parametric curves and surfaces
– Subdivision surfaces
– Lecturer: Marie-Paule Cani

● These slides will be available on the course's 
webpage:

http://evasion.imag.fr/Membres/Franck.Hetroy/Teaching/Geo3D/


