Creating and processing 3D geometry

Marie-Paule Cani Marie-Paule.Cani@imag.fr

Cédric Gérot Cedric.Gerot@gipsa-lab.inpg.fr

> Franck Hétroy Franck.Hetroy@imag.fr

http://evasion.imag.fr/Membres/Franck.Hetroy/Teaching/Geo3D/

Planning (provisional)

Part I – Geometry representations

- Lecture 1 Oct 9th FH
 - Introduction to the lectures; point sets, meshes, discrete geometry.
- Lecture 2 Oct 16th MPC
 - Parametric curves and surfaces; subdivision surfaces.
- Lecture 3 Oct 23rd MPC
 - Implicit surfaces.

Planning (provisional)

Part II – Geometry processing

- Lecture 4 Nov 6th FH
 - Discrete differential geometry; mesh smoothing and simplification (paper presentations).

• Lecture 5 – Nov 13th - CG + FH

- Mesh parameterization; point set filtering and simplification.
- Lecture 6 Nov 20th FH (1h30)
 - Surface reconstruction.

Planning (provisional)

Part III – Interactive modeling

- Lecture 6 Nov 20th MPC (1h30)
 Interactive modeling techniques.
- Lecture 7 Dec 04th MPC
 - Deformations; virtual sculpting.
- Lecture 8 Dec 11th MPC
 - Sketching; paper presentations.

Books

- This course is inspired from the two following presentations:
 - Mark Pauly, Efficient Simplification of Point-Sampled Surfaces
 - Markus Gross, Spectral Processing of Point-Sampled Geometry

http://graphics.ethz.ch/publications/tutorials/points/

 See also the books recommended during 1st session

Today's planning

1.Point set simplification 1.Local surface analysis 2.Simplification methods 3.Error measurement 2.Point set filtering

- 1.Context
- 2.Pipeline

Motivation

- Last week you have seen mesh simplification: why not directly work on the point set ?
 - No connectivity info => faster algorithms ?
 - Scanner acquisition: produces huge point sets
 - Need to be simplified before visualization

Local surface analysis

- Point set describing an underlying smooth manifold surface
- Local approximation of the surface
 Moving Least Squares (MLS)
- Local estimation of tangent plane and curvature
 - Principal Component Analysis (PCA)

Neighborhood

- No explicit connectivity info
- Use spatial proximity
 - Euclidean instead of geodesic distance
- Hyp.: sufficiently dense point set

Least Squares and Weighted Least Squares

 Least Squares Approximation of scattered data:

$$\min_{f\in\prod_m^d}\sum_i \|f(\mathbf{x}_i) - f_i\|^2$$

- f polynomial function
- Weighted Least Squares:

$$\min_{f \in \prod_{m}^{d}} \sum_{i} \theta(\|\overline{\mathbf{x}} - \mathbf{x}_{i}\|) \|f(\mathbf{x}_{i}) - f_{i}\|^{2}$$

• Weight related to distance to a point $\overline{\mathbf{x}}$

Moving Least Squares

- Move x over the parameter domain: $f(\mathbf{x}) = f_{\mathbf{x}}(\mathbf{x}), \min_{f_{\mathbf{x}} \in \prod_{m=1}^{d}} \sum_{i} \theta(\|\mathbf{x} - \mathbf{x}_{i}\|) \|f_{\mathbf{x}}(\mathbf{x}_{i}) - f_{i}\|^{2}$
- Useful to approximate or interpolate data
- Possible user control (weighting function)
- For more details see the 3-pages report by Andrew Nealen:

http://www.nealen.com/projects/mls/asapmls.pdf

Covariance analysis

• Covariance matrix of local neighborhood N:

$$\mathbf{C} = \begin{bmatrix} \mathbf{p}_{i_1} - \overline{\mathbf{p}} \\ \cdots \\ \mathbf{p}_{i_n} - \overline{\mathbf{p}} \end{bmatrix}^T \cdot \begin{bmatrix} \mathbf{p}_{i_1} - \overline{\mathbf{p}} \\ \cdots \\ \mathbf{p}_{i_n} - \overline{\mathbf{p}} \end{bmatrix}, \quad i_j \in N$$

• Centroid: $\overline{\mathbf{p}} = \frac{1}{|N|} \sum_{i \in N} \mathbf{p}_i$

K-nearest neighbors

- Can be quickly computed using spatial data structures (octree, BSP-tree, ...)
- Requires isotropic point distribution
- Improvement: angle criterion, local Delaunay

Covariance eigenvectors

- Eigenvector associated with lowest eigenvalue ~ surface normal
- Eigenvector associated with greatest eigenvalue = axis of greatest variation
- Surface variation:

$$\sigma_n(\mathbf{p}) = \frac{\lambda_0}{\lambda_0 + \lambda_1 + \lambda_2}, \qquad \lambda_0 \le \lambda_1 \le \lambda_2$$

variation along the normal: ~ curvature

Surface variation

 Comparison with mean curvature computed on a mesh representation:

original mean curvature variation n=20 variation n=50(n = number of neighboring points)

Courtesy M. Pauly

Today's planning

1.Point set simplification 1.Local surface analysis 2.Simplification methods 3.Error measurement 2.Point set filtering 1.Context 2.Pipeline

Simplification by subsampling ?

- Simplified point set not necessarily subset of input point set
- Advantage: reduce noise
- Cf. mesh case

Existing approaches

- Mesh simplification approaches:
 - Incremental or hierarchical clustering
 - Iterative simplification (e.g. edge collapse)
 - Particle simulation
- Each has its pros and cons
- Adapt them to point set surfaces

Incremental clustering

- Region-growing approach
 - Start with random seed point
 - Add nearest points until cluster reaches max size
 - Then choose new seed point from remaining points
- Minimum size threshold to avoid very small clusters
- Cluster size can be controlled by surface variation

Hierarchical clustering

- Top-down approach
- Split the point cloud while:
 - Size > max allowed cluster size
 - Surface variation > max variation
- Leaf nodes correspond to final clusters

How to split ?

- Split plane defined by
 - Point cloud centroid
 - Axis of greatest variation

Comparison

 Incremental clustering

 Hierarchical clustering

Iterative simplification

- Very similar to Garland and Heckbert's method to simplify a mesh:
 - Iteratively contract point pairs
 - Priority queue
 - Contraction cost and optimal position computed using quadrics
- Main difference: definition of approximating planes

Quadric error

- Squared distance to a set of planes
- Planes defined over edges of neighborhood

original model (187,664 points)

simplified model (1,000 points)

Courtesy M. Pauly

Particle simulation

- Randomly distribute desired number of points (= particles) on the surface
- Particles move on surface according to interparticle repelling forces
- End when equilibrium is reached

Repelling forces

- Linear repulsion force: $F_i(\mathbf{p}) = k(r \|\mathbf{p} \mathbf{p}_i\|) \cdot (\mathbf{p} \mathbf{p}_i)$
- r = neighborhood radius, k = cst
- Total force = sum of F_i over neighborhood
- Projection:
 - Onto tangent plane of closest point
 - MLS projection at the end

Result

Courtesy M. Pauly

Comparison

	Efficiency	Surface Error	Control	Implementation
Incremental Clustering	+	-	-	+
Hierarchical Clustering	+	-	-	+
Iterative Simplification	-	+	0	0
Particle Simulation	0	+	+	-

Courtesy M. Pauly

Today's planning

1.Point set simplification 1.Local surface analysis 2.Simplification methods 3.Error measurement 2.Point set filtering 1.Context

2.Pipeline

Distance between 2 pointsampled surfaces

• Maximum error: Hausdorff

$$\Delta_{\max}(S, S') = \max_{\mathbf{q} \in \mathcal{Q}} d(\mathbf{q}, S')$$

• Mean error: point to surface distance

$$\Delta_{\text{avg}}(S, S') = \frac{1}{|Q|} \sum_{\mathbf{q} \in Q} d(\mathbf{q}, S')$$

- Q up-sampled version of the point cloud that describes S
- d(q,S') uses MLS projection

Today's planning

1.Point set simplification
1.Local surface analysis
2.Simplification methods
3.Error measurement

2.Point set filtering

- 1.Context
- 2.Pipeline

Spectral filtering

- ~ Fourier transform for point sets
- Same idea than Taubin and Desbrun et al. for meshes
- Applications:
 - Fairing (noise removal)
 - Low-pass filter
 - Feature enhancement
 - High-pass filter

Fourier transform

• 1D example:

- Benefits:
 - Sound concept of frequency
 - Extensive theory
 - Fast algorithms

Fourier transform

- Requirements:
 - FT defined on Euclidean domain
 - Need of a global parameterization
 - Basis functions ~ eigenvectors of Laplacian operator (cf. Taubin)
 - Regular sampling pattern required for fast evaluation (analytical form)
- Limitation:
 - Lack of local control (basis functions globally defined)

Today's planning

1.Point set simplification
1.Local surface analysis
2.Simplification methods
3.Error measurement

2.Point set filtering

1.Context

2.Pipeline

Approach

- To meet the requirements, split the point cloud into patches that:
 - Are parameterized over the unit-square
 - Are re-sampled onto a regular grid
 - Provide sufficient granularity for intended application (local analysis)
- Process each patch individually and blend processed patches

Spectral pipeline

Courtesy M. Gross

The end

- Next week:
 - Surface reconstruction (Franck Hétroy)
 - Interactive modeling techniques (Marie-Paule Cani)
- These slides will be available on the course's webpage:
- http://evasion.imag.fr/Membres/Franck.Hetroy/Teaching/Geo3D/