December, 15th of 2005 exam

Duration: 2 hours.

All documents are allowed.

The clearness of the answers will be taken into account.

Both parts are independent from each other.

1 Part I: Interpolation and approximation (10 pts)

1.1 Kochanek-Bartels spline

A Kochanek-Bartels spline is the concatenation of first order Hermite splines (also called cubic Hermite splines), for which tangents in control points are controlled using three parameters t, b and c varying between -1 and 1.

Let P_0, \ldots, P_n be n+1 control points and, $\forall 0 \leq i \leq n-1, C_i$ be a first order Hermite spline defined between P_i and P_{i+1} . We denote D_i and $-S_{i+1}$ the tangents to C_i in its two endpoints (see figure 1).

Figure 1: Notation.

The Kochanek-Bartels spline with parameters (t, b, c) for points P_0, \ldots, P_n is defined as the union of splines $C_i, 0 \le i \le n-1$, for which $\forall i \in [1, n-1]$

$$S_{i} = \frac{(1-t)(1+b)(1-c)}{2}(P_{i} - P_{i-1}) + \frac{(1-t)(1-b)(1+c)}{2}(P_{i+1} - P_{i})$$
(1)

$$D_i = \frac{(1-t)(1+b)(1+c)}{2}(P_i - P_{i-1}) + \frac{(1-t)(1-b)(1-c)}{2}(P_{i+1} - P_i)$$
 (2)

1.2 Questions

- 1. Is a Kochanek-Bartels spline an interpolation spline or an approximation one?
- 2. To which known spline corresponds the Kochanek-Bartels spline for which (t, b, c) = (0, 0, 0)?
- 3. For each of the three parameters $t,\,b$ and c:
 - (a) explain its influence on a joining between two Hermite curves C_{i-1} and C_i ;
 - (b) illustrate this influence drawing sketches for different values of the parameter;
 - (c) explain to which "physical" quantity corresponds the parameter.

<u>Advice</u>: you can study the Kochanek-Bartels splines for which (t, b, c) = (1, 0, 0), (-1, 0, 0), (0, 1, 0), (0, -1, 0), (0, 0, 1) and (0, 0, -1).

- 4. Which other splines do you know, that allow to control more or less the same quantities?
- 5. Among interesting properties of splines we studied during the first lecture, which are verified by Kochanek-Bartels splines?

Part II: Position, orientation and motion (10 pts)

2.1 Attitude control of an aircraft

The orientation of an aircraft (or, more generally, of a flying object) in \mathbb{R}^3 , with respect to a reference frame $\mathcal{R}_0 = (O, \vec{\imath}_0, \vec{\jmath}_0, \vec{k}_0)$, is usually called *attitude*, and is defined by three successive rotations (see figure 2 (a)):

- 1. a yaw rotation (lacet in French) around the \vec{k}_0 axis;
- 2. a pitch rotation (tangage in French) around the axis deduced from $\vec{j_0}$ by previous rotation;
- 3. a roll rotation (roulis in French) around the axis deduced from \vec{i}_0 by the product of the two previous rotations.

Figure 2: (a) Aircraft attitude (image from Wikipedia). (b) Roundabout aircraft.

2.2Questions

- 1. Representation using Euler angles. In order to represent the attitude of an aircraft, the most natural solution is to use Euler angles (also called Cardan angles). Explain how.
- 2. However, this representation can create a problem, called gimbal lock (verrouillage de cardan in French), which consists in the loss of a degree of freedom. Explain how and give an example leading to a gimbal lock.
- 3. Representation using rotation matrices. In order to avoid this kind of inconvenience, it is adviced to represent attitude another way. Explain how to represent attitude using a matrix. What do you think about this solution?
- 4. Representation using quaternions. We decide to represent attitude with a quaternion; we denote ϕ , θ and ψ , respectively, the yaw, pitch and roll angles. Give the expression of the attitude quaternion with respect to ϕ , ψ and θ . Detail your calculations.
- 5. What do you think about this solution, compared to the two previous ones?
- 6. Computation of the motion of a roundabout aircraft. This question is independent from previous ones. Eventually, since controlling the attitude of an aircraft seems complex, we choose to restrict ourselves to the case of a roundabout aircraft (see figure 2 (b)). This aircraft is represented by a solid S whose frame is denoted \mathcal{R}_2 . It goes up and down in the roundabout with a sinusoidal speed: $v_{2,1} = \sin \alpha$. The roundabout, whose frame is denoted \mathcal{R}_1 , goes round the vertical axis \vec{k}_0 of the world's frame \mathcal{R}_0 , with constant angular speed ω . Compute the motion of the aircraft in the world's frame.