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Context
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Haar: multiresolution analysis of piecewise-constant functions
Any piecewise-constant function on [0,1] can be
decomposed into a weighted sum of a scale factor and
wavelets
Opposite idea: a recursive subdivision of a Haar scale
factor, using appropriate weights and wavelets, can lead to
any piecewise-constant function on [0,1]. This is called
multiresolution synthesis.
This is not sufficient for many applications (discontinuities)
⇒ need for generalization
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Uniform subdivision

We focus on multiresolution synthesis.

Idea:

Start from a piecewise-linear function f 0

Repeatedly refine it, to produce a sequence of increasingly
detailed functions f 1, f 2, . . .

These functions converge to a limit function f = lim
j→+∞

f j

 properties of f (continuity, . . . ) ?
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“Corner-cutting” procedure

f j piecewise-linear with vertices at i
2j (dyadic points)

 twice more control points at each stage
Let us note ∀i ,∀j , c j

i = f j( i
2j )

Splitting step:
c j

2i := c j−1
i , c j

2i+1 := 1
2(c j−1

i + c j−1
i+1)

Averaging step:
c j

i :=
∑

k
rk c j

i+k

 matricial notation: C j = RC j

r = (. . . , r−1, r0, r1, . . . ) = averaging mask
Uniform subdivision scheme if same mask everywhere
along the curve (i.e., r independent from i)
Stationary subdivision scheme if same mask used on each
iteration (i.e., r independent from j)
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Example: Chaikin’s algorithm (1974)

Example
r = (r0, r1) = 1

2(1,1). Start from some f 0 function with ∼ 10
points and draw f 1 and f 2. How does the matrix R look like ?
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Chaikin’s algorithm for a closed parametric curve

In 1975, Riesenfeld proved that curves generated by this
algorithm are in fact uniform quadratic B-splines
In 1980, Lane and Riesenfeld showed that it can be
generalized to produce uniform B-splines of any degree
using masks whose entries come from Pascal’s triangle
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Other uniform subdivision schemes

Linear B-splines: identity mask r = (r0) = (1)

Cubic B-splines: r = (r−1, r0, r1) = 1
4(1,2,1)

Daubechies scheme: r = (r0, r1) = 1
2(1 +

√
3,1 −

√
3)

Limit curve is nowhere differentiable (fractal)
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Interpolation
These are approximating schemes
If we want interpolating schemes, we just need to change
the averaging step:

c j
i =







c j
i if i is even

∑

k
rk c j

i+k if i is odd

Example (Dyn/Levin/Gregory scheme, 1987)
r = (r−2, r−1, r0, r1, r2) = 1

16(−2,5,10,5,−2).
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Subdivision and multiresolution synthesis

Since each splitting and averaging step is linear w.r.t. the
initial values c0

i , each f j(x), thus f (x), is a linear
combination of the c0

i :
f (x) =

∑

i
c0

i φ
0
i (x) = · · · =

∑

i
c j

iφ
j
i(x)

Functions φj
i are to be found

Let V j be the vector space generated by the φj
i :

we can easily show (next slide) that the V j are nested
spaces: V 0 ⊂ V 1 ⊂ . . .

As for Haar functions, these functions φj
i are called scale

factors of V j
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Nested spaces: a short proof

Matricial notation: ∀j , let Φj(x) = (φj
0(x)φj

1(x) . . . )
 we have ∀j , f (x) = Φj(x)C j

Remember that C j = RCj . Let us note C j = R′C j−1

 R′ is called a subdivision matrix
We thus have Φj−1(x) = R′Φj(x)

This refinement relation means each coarse scale factor
φ

j−1
i can be rewritten as a linear combination of the fine

scale factors φj
i
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Subdivision and multiresolution synthesis

We can apply multiresolution theory to curves generated by a
subdivision process:

Let V j be the vector space generated by the φj
i

These are nested spaces: V 0 ⊂ V 1 ⊂ . . .

Let W j be a (not necessarily orthogonal) supplement of V j

in V j+1

Let (ψj
i )i be a basis of W j ; ψj

i are called wavelets
If subdivision is uniform and stationary, we can prove that
φ

j
i(x) = φ(2jx − i) and ψj

i (x) = ψ(2jx − i)
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Basis functions φ and ψ

φ and ψ exist for each subdivision scheme, even if we don’t
know them beforehand.
Example (Linear B-spline)

Example (Daubechies)
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Subdivision surfaces

We are interested in two kinds of surface:
1 Spline surfaces (tensor product of spline curves);
2 Polyhedral meshes (faces are flat).

We would like to construct hierarchical representations of
both types of surfaces.
Possible applications: compression, progressive
transmission across a network, multiresolution editing,
shape matching, . . .
We restrict here the study to polyhedral meshes with
triangular or quadrangular faces
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Multiresolution analysis for surfaces
Idea remains the same:

Decompose a high-resolution surface into a low-resolution
part and a detail part, and iterate
Geometry (e.g. vertex positions) for the coarse version
computed as average of geometry for the fine version
Coarse surface computation = multiplication by a matrix Aj ,
detail computation = multiplication by a matrix B j
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Multiresolution synthesis

As for curves, made by successive subdivisions
Subdivision curve: iteratively refine a control polygon
Subdivision surface: iteratively refine a control
polyhedron/mesh M0

 sequence of increasingly faceted meshes M1,M2, . . . ,
converging to a surface M∞
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Tricky points

Remain the same:
Low-resolution versions must be good approximations of
high-resolution versions
Analysis and synthesis must be done in linear time wrt to
the number of surface’s vertices
The magnitude of a wavelet coefficient should provide
some measure of the error introduced when this coefficient
is set to zero
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Classification of subdivision schemes

Two types of subdivision schemes: approximating ones
and interpolating ones
One refinement step = splitting and averaging
Two types of splitting steps: split faces (primal schemes) or
split vertices (dual schemes)
If face split, two main types of faces: triangular and
quadrangular ones
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How to split a face or a vertex ?

Masks are represented using a picture:
new control point = black dot
coefficient associated with each neighboring vertex
= number next to the vertex
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Example of a subdivision scheme (1)

Example (Loop, 1987)
Face-split scheme for triangular meshes
Approximating scheme
Mask:

(left: mask for inserted vertices; right: mask for new
position of existing vertices, k = number of neighbors)
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Example of a subdivision scheme (1)

Example (Loop, 1987)
Limit surface has been proved to be C2-continuous
everywhere, except at some extraordinary vertices, where
it is C1-continuous
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Example of a subdivision scheme (2)

Example (Butterfly, 1990)
Face-split scheme for triangular meshes
Interpolating scheme
Proposed by Dyn/Levin/Gregory, limit surface
C1-continuous except at some extraordinary vertices
Mask:
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Example of a subdivision scheme (3)

Example (Catmull-Clark, 1978)
Face-split scheme for quadrangular meshes
Approximating scheme
Mask:

β = 3
2k , γ = 1

4k
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Example of a subdivision scheme (3)

Example (Catmull-Clark, 1978)
Generalizes tensor-product cubic B-splines
Limit surface C2-continuous except at some extraordinary
vertices, where it is C1-continuous
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Example of a subdivision scheme (4)

Example (Kobbelt, 1996)
Face-split scheme for quadrangular meshes
Interpolating scheme
Limit surface C1-continuous
Mask:
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Example of a subdivision scheme (5)

Example (Doo-Sabin, 1978)
Vertex-split scheme for quadrangular meshes
Approximating scheme
Mask:

α0 = 1
4 + 5

4k , αi = 3+2 cos (2iπ/k)
4k
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Example of a subdivision scheme (5)

Example (Doo-Sabin, 1978)
Generalizes tensor-product quadratic B-splines (Chaikin)
Limit surface C1-continuous
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Back to the classification of subdivision schemes

Face split:

Triang. Quad.
Approx. Loop (C2) Catmull-Clark (C2)
Interp. Butterfly (C1) Kobbelt (C1)

Vertex split:

Triang. Quad.
Approx. Doo-Sabin (C1)
Interp.

Note that the Doo-Sabin scheme can be generalized to
produce Cn-continous splines
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Comparison of several subdivision schemes (1)
Starting from a cube:
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Comparison of several subdivision schemes (2)
Starting from a tetrahedron:
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Applications of surface subdivision

Possible applications:
Surface compression
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Applications of surface subdivision

Possible applications:

Multiresolution editing
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Applications of surface subdivision

Possible applications:

Progressive transmission
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Book

Main stuff in this lecture has been inspired by the following
book:

E. Stollnitz, T. DeRose, D. Salesin
Wavelets for Computer Graphics

Morgan Kaufmann, 1996
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See you next week

The end !
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