Chapter 1

Geometric Modeling

This chapter introduces the required background on geometric modeling, focusing on poly-
hedral representations of solids.

This chapter is organized as follows:

1. Aims and scope of geometric modeling. The geometric modeling problem is formal-
ized by distinguishing between three separate levels of modeling: physical objects,
mathematical models and representations.

2. Mathematical models of solids. Point-set models for representing geometric objects
are discussed. Concepts such as two-manifolds and two-manifolds with boundary are
introduced.

3. Representation schemes for solids. The more popular representation schemes for solids
are presented: boundary representations, constructive models and decomposition mod-
els.

4. Photometry representation. This section discusses the representation of visual infor-
mation in 3D models due to its impact on appearance-preserving simplification.

5. Polyhedral representations. The boundary representation is described in detail, focus-
ing on polyhedral representations. Concepts such as genus and shells are reviewed.

6. Space decomposition models. Space decomposition models are introduced, focusing on
voxel-based and octree-based models. Surface reconstruction from space decomposi-
tion models is also discussed due to its impact on our simplification approach.



1.1 Aims and scope of geometric modeling

Geometric modeling deals with representation and processing of geometric information on
1D, 2D or 3D objects. A rigorous view of modeling is based on distinguishing between three
separate levels of modeling [Man88]:

e physical objects

The aim of modeling is to study and argue about some real or imaginary things of our
world which are called physical objects.

o mathematical models

A mathematical model is a geometric model that has a clear and intuitive mathematical
connection with its physical counterpart. Mathematical models are suitable for human
reasoning but often inappropriate for computer manipulation.

e representations

A representation scheme is a set of rules defining the mapping from a mathematical
model to another model suitable to computer manipulation. Such geometric model
is called a representation and consists of a finite collection of basic elements called
symbols. The domain of a representation scheme is the set of mathematical models
that can be modeled with such representation scheme.

Geometric modeling deals with several kinds of objects:

e curves and polygonal lines

Curves and polygonal lines are one-dimensional objects embedded in IR? or IR®. For
example, the idealization of a road in a Geographic Information System (GIS) is a
sequence of curved and straight-line segments.

o surfaces

Surfaces are two-dimensional subsets of IR?. For example, the hull of a ship in hydro-
dynamics applications could be represented with surface models. Surface models give
detailed information on the geometry of a curved surface but do not always give suffi-
cient information for determining all the geometric properties of the object potentially
bounded by the surface.

o solids

A solid is a three-dimensional object whose interior is considered homogeneous and
isotropic. For example, the model of an engine in a CAD system is described as an
assembly of solids.

o volume data

Volume data represents spatial properties of heterogeneous, anisotropic 3D objects.
For example, density values of a human tissue in medicine applications are described
through volume models. Volume models are broadly used in medicine, earth sciences,
biochemistry, biology and fluid dynamics.

o 3D models

A 3D model is a model including both geometric information (the geometric model)
and non-geometric information such as visual information. For example, a piece of
furniture in an interior design application is represented as a 3D model including its
geometry and visual properties such as color and texture.



1.2 Mathematical models of solids

As stated in the previous section, mathematical models are suitable for human reasoning but
often inappropriate for computer representation. The most common mathematical models
are point-set models. Point-set models describe geometric objects as a subset of points of
R? or R®. For example, a spherical object with radius R centered at the origin can be
described as the set of points {(z,y,2) | 22 +y% + 22 < R?}.

From the point of view of differential geometry, a single parameterized curve embedded in
3D space is a differentiable map a : I —IR3? of an open interval I = (a,b) of the real line R
into IR3. Polygonal lines are defined analogously through piece-wise linear functions. The
point-set models of these curves are the ranges of the map function.

A two-manifold with boundary is a topological space where every point has a neighborhood
topologically equivalent to an open disk of the two-dimensional Euclidean space E2, ex-
cept points on the edge of an open surface patch. Intuitively speaking, two-manifolds are
non-selfintersecting, open surfaces. Two-manifolds with boundary are the most common
mathematical models for surfaces not enclosing a volume.

A two-manifold is a topological space where every point has a neighborhood topologically
equivalent to an open disk of E2. Intuitively, two-manifolds are non-selfintersecting, closed
surfaces. A two-manifold is said to be realizable if it encloses a 3D volume [Man88]. Ori-
entable two-manifolds are the most common mathematical models for surfaces enclosing a
volume.

From the point of view of point-set models, a solid is a bounded, closed subset of E3.

The regularization of a point-set S, r(S), is defined by
r(S) = c(i(9)), (1.1)

where ¢(S) and i(S) denote the closure and interior of S, respectively. A set S is said to be
regular if 7(S) = S.

A solid is said to be walid if it is a bounded, regular set with a two-manifold, orientable
boundary [Man88]. Solid modeling deals with wvalid and complete geometric representa-
tions of solids. By complete we mean that representations must be adequate for answering
arbitrary geometric questions about the object [Man88].

1.3 Representation schemes for solids

Several representation schemes have been proposed in the literature for representing solids
and surfaces [Man88].

Constructive models represent a point-set as a combination of primitive point-sets. Each
primitive is represented as an instance of a primitive type and combination operations are
set boolean operations (union, intersection, difference, complement).

Boundary models represent point-sets in terms of their boundary. Objects are represented
by dividing their surface into a collection of connected components called faces. The division
is performed so that each face has a compact mathematical representation, e.g. the face lies
on a planar, quadratic or parametric surface. The portion of the underlying surface that
forms the face is trimmed out in terms of closed curves lying on such surface. This kind of
representation is called boundary representation (BRep for short).

Space decomposition models (SDM for short) represent a point-set as the union of disjoint
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regions of the space called cells. Cells that contain a part of the object are usually labeled
as black and the rest are labeled as white. SDM are approximate models, as they cannot
represent exactly most solids and surfaces (see [Req80], [Sam90b], [Sam90c]); the accuracy
of the SDM depends on the size of the cells.

1.4 Polyhedral models

A polyhedral model is a boundary model whose faces are connected subsets of the plane.
Each planar face is represented by one or more planar polygons. One polygon defines the
outer boundary of the face while the others (called rings or interior loops) represent interior
holes of the faces. Polygons are described by an ordered sequence of straight-line segments
called edges. Each edge is defined by its two endpoints, called vertices.

The number of faces, edges and vertices of a general polyhedral model are related by the
Euler-Poincaré formula:

v—e+f=2(s—g)+h, (1.2)

where v, e, f, s, g and h are resp. the number of vertices, edges, faces, shells, genus and
rings (interior loops in faces). A shell is a maximally connected set of faces. The genus of
the surface, which denotes the number of crossing holes, is defined as half the connectivity
number of the surface, i.e., ’;—1, where h; is the largest number of closed curves that can
be drawn on the surface without dividing it into two or more separate components. For
instance, cubes and spheres have genus 0 and a torus has genus 1.

A polygonal mesh is a polyhedral model whose faces are simply-connected, i.e. they can be
represented by a single polygon (see Figure 1.1).

A triangle mesh is a polygonal mesh whose faces are triangles (see Figure 1.1). In a two-
manifold triangle mesh 2e = 3f, so the Euler formula can be rewritten:

20— f=4(s —g). (1.3)

1.5 Photometry representation

Realistic visualization of geometric models often requires the representation of photometry
information such as normal vectors, colors and textures. Photometry study is relevant for
geometry simplification since photometry attributes are attached to the surface and therefore
simplified 3D models should retain their important photometry features.

Besides the sophisticated photometry of photo-realistic rendering, the most common pho-
tometry attributes of 3D models intended for real-time visualization are:

e color

Color is often defined as ambient, diffuse, emission and specular reflection coefficients,
whether in a per-object, per-face or per-vertex basis. In the first two cases, the final
color is affected by real-time lighting calculations, whereas in per-vertex color models
(e.g. on radiosity-lighted models) no lighting computations are required.
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Figure 1.1: Top: Geometric entities of a BRep; Bottom: polyhedral (left), polygonal (mid-
dle) and triangle mesh (right) representations of a simple object.

o translucency

Translucency is usually represented as an extra color component (called alpha value)
and it comes on a per-object, per-face or per-vertex basis.

o terture maps

Textures maps and some other texture mapping attributes are often defined on a
per-object or per-face basis.

o texture coordinates

Explicit texture coordinates are defined at corners or vertices and must be stored along
with the geometric model. High-end APT’s such as OpenGL provide several texture
mapping functions for automatic generation of texture coordinates. In this case, the
mapping parameters are usually defined at faces.

o surface normals

Real-time visualization systems use per-vertex normals for lighting computations. Un-
like per-face normals, which can be easily computed from the geometry, accurate per-
vertex normals usually require a little knowledge of the object’s shape. For instance,
the polyhedral representations of a cylinder and a cylindrical prism can be identical
regarding to their geometry but different according to their per-vertex normals.

1.6 Space decomposition models

Space decomposition models (SDM for short) represent a point-set as the union of disjoint
regions of the space called cells (see [Req80], [Sam90b], [Sam90c]). Cells containing part of
the object are labeled as black and the rest are labeled as white. Unlike BRep models,
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SDM are suitable for representing volume data. In this case, cells represent regions with
homogeneous interior with respect to the studied property.

SDM are approximate models as they cannot represent exactly most solids and surfaces (see
[Nav86] for an extended octree representation that can exactly represent polyhedral solids).
The accuracy of the SDM representation depends on the size of the cells. Tetrahedra, cubes
and boxes are the more relevant cells. SDM play a special role in geometry simplification
because solids and surfaces represented by these models can be trivially simplified, by just
gluing adjacent cells. Furthermore, SDM provide a simple and stable way of changing
topology.
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Figure 1.2: Rendering of a mug represented with a triangle mesh (left), a voxel decomposition
(middle) and a digital picture (right)

1.6.1 Voxel-based representations

A wvozel decomposition is a SDM whose cells are equal-sized cubes, called vozels, arranged in
a regular array. Voxel decompositions are suitable for representing solid objects and volume
data. Solid objects are represented by labeling interior voxels as black (or ‘1’) and voxels
outside the solid as white (or ‘0’) (see Figure 1.2). For volume data representation, voxels
are labeled according to the value of the property being modeled inside the voxel. In voxel
decompositions, the interior of each voxel is considered homogeneous.

A 3D picture is a set of points arranged in a regular grid defining equal-sized cubic cells.
Points of a 3D picture (called lattice points) are labeled according to the property being
studied. Eight neighbor lattice points define a voxel (see Figure 1.4). Unlike voxel decom-
positions, 3D pictures deal with voxels with non-homogeneous interior, since the property is
only known at the lattice points, which coincide with voxel’s vertices (see Figure 1.2). The
space of interest can be conveniently scaled so that lattice points have integer coordinates.
A 3D digital picture is a set B C Z3. The elements of Z2 are called points of the picture.
The points in B are called the black points of the picture; the points in Z3 — B are called
the white points of the picture.

Two points in 3D-space are said to be 26-adjacent if they are distinct and each coordinate
of one differs from the corresponding coordinate of the other by at most 1 (Figure 1.3); two
points are 18-adjacent if they are 26-adjacent and differ in at most two of their coordinates;
two points are 6-adjacent if they are 26-adjacent and differ in at most one coordinate. In
terms of voxels, 26-adjacent voxels share a face, edge or vertex; 18-adjacent voxels share a
face or edge, and 6-adjacent voxels share a face. An n-neighbor of a point (resp. voxel) p is
a point (resp. voxel) that is n-adjacent to p. A set S of points is n-connected if S cannot
be partitioned into two sets that are not n-adjacent to each other.
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Figure 1.3: A voxel (shaded) and its 6,18,26-neighbors
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Figure 1.4: Voxel decompositions and 3D pictures

1.6.2 Octree-based representations

The octree representation uses a recursive subdivision of a cubic universe into eight octants
that are arranged into an 8-ary tree. In the classical octree representation [Sam90a] (CO for
short), each node consists of a code (often called color) and eight pointers towards eight sons
(Figure 1.5). Nodes corresponding to cubic regions completely inside the object are labeled
as black (B). Nodes corresponding to cubic regions completely outside the object are labeled
as white (W). White and black nodes are leaves, i.e. they are no further subdivided. Nodes
containing a part of the boundary are labeled as grey (G) and are recursively subdivided.
Leaf grey nodes are called terminal grey (TG) nodes.

o
&

Iﬂé
\‘Q

2£Q
£Q
20
20

@)
£0
=0

o O O o O O
W W wW B W W W B

Figure 1.5: Octree representation of a simple object. The cube on the top right corner shows
the octant numbering.



The mazimal division classical octree [BINT94] (MDCO for short) is an extension of the
classical octree scheme where all terminal grey nodes belong to the same level of the octree
and hence have the same size (Figure 1.6). Given a solid P and a non-negative integer [,
MDCO(P,1) is an octree representation of P, containing W, B, G and TG nodes, where all
TG nodes belong to the deepest level [.

Figure 1.6: MDCO representation of a torus: BRep of a torus (upper left), cubic regions
corresponding to terminal grey nodes (lower left) and merged with the BRep model (right).

The boundary of the solid is completely contained in the set of TG nodes. The set of TG
nodes can be viewed as a voxelization of the object’s boundary with the hierarchical structure
of the MDCO on top of it. Unlike voxel-based representations, the adaptive decomposition
provided by octree cells allows data compression in homogeneous regions.

1.6.3 Surface reconstruction from space decomposition models

Isosurface extraction deals with generation of isosurfaces from volume data. Isosurfaces
approximate the points with a given property value, called isodensity value. Isosurface ex-
traction is a powerful tool for analysis and visualization of volume data. Surface fitting deals
with generation of surfaces approximating a set of points which are known to be on the sur-
face. These points are usually acquired from 3D digitizing techniques. Isosurface extraction,
surface fitting and SDM to BRep conversion are globally known as surface reconstruction.
Since surface reconstruction plays a special role in our simplification strategy, a brief survey
on this topic is presented in Section 4.5.1.

1.7 Conclusions

Solid modeling deals with valid and complete representations of solids. From a mathemat-
ical point of view, a valid solid is a regular set with a two-manifold boundary. Several
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representation schemes have been proposed for generating representations of solids suit-
able for computer manipulation. Boundary models represent point-sets in terms of their
boundary. Polyhedral models occupy a prevalent position in interactive computer graphics.
Space decomposition models, which provide approximate representations of solids, explicitly
represent the interior points through enumeration of occupied cells.



