
���������
	����
������������������	��������! #"� ��$�� ��%�&�
' ���!(����)�+* ��!(� ��

,.-0/�132$45176989-
/�:!;
<�=9> ; > /@?�ACB.:
6 = 2 > 6

-
/�D
E
FHGIF > 8JEK:
L�L >

MONQPSRUT�PVT0W

X :ZY�L�F =9> 6 <\[1 > / [�> B]69:ZFHL
E]-^6_;0-^6`D@aK/�1b; > 698_1 =Vc

X -
Yed�6`17DHG >
f�g -
8_8`- [Sh F�8 >i=_= 8

Fast Exact and Approximate Geodesic Paths on Meshes

Danil Kirsanov∗ Steven J. Gortler∗ Hugues Hoppe†

Abstract

In this paper, we develop simple and numerically stable family of algorithms for computing
geodesic paths on meshes. The exact version of the algorithm is based on the interval propa-
gation idea introduced by Mitchell, Mount, and Papadimitriou, and has the sameO(n2 log n)
worst case time complexity. The fastest approximate version works in roughlyO(n log n)
time and still guarantees computing exact geodesics on any subdivision of a plane. The de-
sired tradeoff between the time complexity and the error of the approximation can be achieved
by setting the interval simplification threshold. The algorithms were evaluated on meshes with
up to 100,000 vertices.

1 Introduction

In this paper we present practical methods for computing both exact and approximate geodesic
paths on triangular meshes. These paths typically cut across faces in the mesh and so are not
directly found by graph algorithms (such as Dijkstra’s shortest path algorithm).

Many mesh-processing algorithms require a subroutine that efficiently computes geodesic paths
between vertices on a triangular mesh. When parameterizing a complicated mesh, one often
breaks it up into a set of charts; (See, for example, [KL96] for a manual chartification system, and
[SWG∗03] for an automatic one). In these cases, the parameterization can be done more efficiently
(with less distortion and better packing efficiency) when the charts are bounded by geodesic paths.
Geodesic paths also are needed when segmenting a mesh into subparts, such as done in [KT03]. In
mesh editing systems, such as [KCVS98], one desires straight boundaries to define the bounding
extents of editing operations.

Many mesh processing algorithms require geodesic distances between vertices in a triangular
mesh. For example, radial-basis interpolation over a mesh requires point to point distances. This
type of interpolation is used in numerical applications, such as skinning [SIC01], and in mesh
watermarking [PHF99]. Shape analysis algorithms such as [HSKK01] use Morse analysis of a
geodesic distance field. Mesh parameterization methods [ZKK02] based on isomap type algo-
rithms [TdSL00] are also driven by point to point geodesic distances.

In this paper, we first give a simplified interpretation of, and describe a simple way to im-
plement, the “MMP exact geodesic algorithm” [MMP87]. The MMP algorithm has worst case
running time ofO(n2 log n) but runs much faster on most meshes. The original description of the
MMP algorithm is quite complicated, and has never been implemented as far as we can tell. Our
simplified interpretation makes an implementation very straightforward. In particular it involves

∗Harvard University,{kirsanov, sjg}@deas.harvard.edu
†Microsoft Research, hhoppe@microsoft.com

1

no special handling of saddle vertices, and guarantees no gaps in the distance field due to numeri-
cal errors (a saddle vertex is a vertex for which the sum of the angles of the adjacent mesh faces is
more than2π).

The MMP algorithm splits up each edge on the mesh into a set of smaller intervals over which
exact distance computation can be dealt with atomically. In the second part of this paper, we
explain how approximate geodesics can be computed by running a version of MMP that skips these
edge-splits. This approximate approach is (essentially) of comparable complexity to Dijskstra.
Our approximate algorithm also has the property that it computes the exact geodesics if given a flat
(planar) mesh.

1.1 Related Work

An exact geodesic algorithm with worst case time complexity ofO(n2) was described by Chen
and Han [CH96]. This algorithm was partially implemented by Kaneva and O’Rourke [KO00].
We show in our results section that our exact implementation runs many times faster than that
method.

An exact geodesic algorithm with worst case time complexity ofO(n log2 n) was described
by Kapoor [Kap99]. This is a very complicated algorithm which calls as “subroutines” many
other complicated computational geometry algorithms. It is not clear if this algorithm will ever be
implemented.

Approximate geodesics (with guaranteed error bounds) can be obtained by adding extra edges
into the mesh and running Dijsktra on the one-skeleton of this augmented mesh [KS01], [LMS97].
These algorithm requires the addition of numerous extra edges to obtain accurate geodesics. The
algorithms described in [KS01] relies on the selective refinement, and therefore significantly de-
pends on the first approximation path found. If this approximation is far from the actual solution,
the subdivision method might converge to the local minimal path (instead of the global geodesic
one), or it might take a very large number of iterations until the refinement area moves to the
vicinity of the actual geodesic and the process converge.

Approximate geodesics are computed by Kimmel and Sethian [KS98] using an algorithm that
runs inO(n log n) time. The approximate geodesics found by this method can be quite inaccurate,
even for planar meshes. We show in our results section that our approximate geodesic computation
is much more accurate than that method.

Polthier and Schmies [PS98] describe a different definition of a geodesic path on meshes us-
ing a notion of “straightest” instead of “shortest”. This notion may be inappropriate for some
applications of geodesics.

2 Exact Algorithm

Our implementation of the exact algorithm is based on a very simple idea. Let us fix the source
vertex on the mesh. The minimal distance from the source is a scalar function that is defined for
every point on the surface of the mesh. In particular, for every edgeei, that is parameterized by the
parameterx, theminimal distance functionDei

(x) is well defined.
Let us consider two edgese1 ande2 that belong to the same face. If the shortest path from

some pointx2 ∈ e2 goes through the pointx1 ∈ e1, then the distance function in the pointx2

2

x

∆(x,x2)

e1

e2

x2

Figure 1: If the shortest path from the pointx2 of the edgee2 crosses the edgee1, the distance
function in this point can be computed by theorem (2.1).

can be simply computed asDe2(x2) = De1(x1) + ∆(x1, x2), where the∆(x1, x2) is Euclidean
distance between these points across the face. Because this path is the shortest possible one, we
can generalize this observation.

Theorem 2.1. If the shortest path from the pointx2 ∈ e2 goes through the edgee1 that belongs to
the same face (fig. 1), then

De2(x2) = min
x∈e1

(De1(x) + ∆(x, x2)) (2.1)

Based on this theorem, we can write a simple algorithm (table 1) that is guaranteed to find all
the distance functions on the edges correctly. This algorithm works for any convex or non-convex
triangulated mesh with or without boundary. If the queue is sorted by the minimal value of the
edge distance function, we have a Dijkstra-style propagation of the distance function across the
surface.

The algorithm described above is a close relative of many algorithms developed for this prob-
lem before. On the one hand, it can be considered to be a continuous version of the discrete
subdivision algorithm described in [LMS97]. On the other hand, this interval-based algorithm is
also in the heart of [MMP87].

2.1 Back-tracing the shortest path

When all the distance functions on the edges are computed, tracing the shortest path is very simple.
Any geodesic path is piece-wise linear curve with nodes on the edges of the initial mesh. Geodesics
can be traced backward step-by-step by finding the next appropriate nodes. Let us take some initial
nodeq that belongs to facef with edgese1, e2 ande3. If q does not belong to any of the edges, the
next node of the shortest path is pointx̂ that minimizes the distance function

min
x∈{e1,e2,e3}

(D(x) + ∆(x, q)) (2.2)

Otherwise, ifq ∈ e1, the next node of the shortest pathx̂ minimizes

min
x∈{e2,e3,e4,e5}

(D(x) + ∆(x, q)) , (2.3)

wheree4, e5 are the edges of the other face adjacent toe1. We can keep tracing the shortest path
until we hit the origin.

3

algorithm FindMinimalDistanceFunctions

1. Compute distance functions for all edges that belong to the same faces as source. Put
these edges in the queue. Define distance functions to be infinite for the rest of the edges.

2. until the queue is empty

3. Remove the next edgee from the queue.

4. for all edgesei that belong to same faces ase.

5. ComputeD̂ei
(x) according to (2.1) for allx ∈ ei

6. Update distance function atei asDei
(x) = min

(
Dei

(x), D̂ei
(x)

)

7. If the functionDei
(x) is changed, put the edgeei on the queue.

8. end for

9. end until

Table 1: Simple algorithm for computing minimal distance functions on the edges.

2.2 Intervals of optimality

To derive the general representation of the distance functionsDei
(x), we briefly review the interval

theory developed in [MMP87].
First, let us consider convex polygons without boundary. The shortest path from some point

on the edge to the source crosses some set of facesF = {fi}. It can be shown that on a convex
polygon with no boundary the shortest path never goes through the vertices of the polygon, except
for the source vertex and, possibly, geodesic endpoint. We canunfold this sequence of faces to lay
them flat on a plane. In this unfolding, the shortest path must be a straight line. In fact, the sets
of points on an edge whose shortest pathes go through the same sets of faces, form the continuous
intervals of optimalityon the edge (fig. 2).

Using the cosine theorem, the distance function on such an intervalp can be represented as

Dp⊂ei
(x) =

√
x2 − 2xc cos θ + c2, (2.4)

wherex is a distance from the origin of the edge,c is a distance from the source to the edge origin
andθ is an angle is the angle between the edge and vector−→c .

In the presence of a boundary, or when the polygon is non-convex, shortest passes can go
through the vertices or follow edges of the polygon. In this case, other vertices can act aspseudo-
sourcesfor the intervals of optimality and one more parameter is needed to represent the distance
function on the interval.

Dp⊂ei
(x) = d +

√
x2 − 2xc cos θ + c2, (2.5)

whered is a distance from the source to the pseudo-source,c is now a distance from the pseudo-
source to the origin of the edge. The distance function on the interval can therefore be uniquely

4

x

c

θ

s

I

Figure 2: When the faces are unfolded on the plane, the shortest path from the the source (or
pseudo-source)s to any point on the interval of optimalityp is represented as a straight line.c is
the distance from the (pseudo-)source to the edge origin,x is a parameter along the edge.

defined by three parameters(d, c, θ).
In general, the distance function on the edge is a continuous piece-wise smooth function that

consists of the interval functions of the type (2.5).

2.3 Interval propagation

Given the distance functionDe1 on the edgee1, the propagated distance function on the adjacent
edgee2 is defined by formula (2.1). It is possible to solve this problem algebraically, using the
distance function representation (2.5), but it is much simpler to employ geometrical reasoning.
We can propagate intervals independently and denote asDe2|p⊂e1(x2) the distance function that is
created on the edgee2 by the intervalp ⊂ e1,

De2|p⊂e1(x2) = min
x∈p⊂e1

(De1(x) + ∆(x, x2)) . (2.6)

The equation (2.1) can be restated as minimum over the interval propagated functionsDe2,p,

De2(x2) = min
p⊂e1

De2|p⊂e1(x2). (2.7)

The interval propagation functionDe2|p⊂e1(x2) can be computed from the geometrical reasons
as follows. Part of the edgee2 can ”see” the pseudo-sourcesp of the intervalp directly through
the intervalp. Obviously, for the points in this region, the shortest path to the pseudo-source is a
straight line. Therefore, this whole region can be represented as an interval with the pseudo-source
sp (fig. 3).

The shortest path of the points to the ”left” side of this region have to pass through the ”left”
end of the intervalp. That is why these points can be represented as an interval with new pseudo-
sourcesp,l. Similarly, the points on the ”right” side of the edge can be represented as an interval
with new pseudo-sourcesp,r.

Summarizing, the interval propagation functionDe2|p⊂e1(x2) consist of up to three intervals
with different pseudo-sources. In theory, the shortest path cannot bend on the edge (it can bend
only at the saddle or boundary vertex) and construction of the ”left” and ”right” intervals might
seem unnecessary in many cases. However, by introducing these additional intervals, we achieve
two goals simultaneously. First, we do not have to come up with a special treatment of the saddle

5

p

sp

Ic sp,l

sp,r

l

Ir

Il

Figure 3: When intervalp propagates onto the adjacent edge, it can create up to three new intervals.
Central intervalsIc has its (pseudo-)source located in the same pointsp; left and right intervalsIl

andIr have their (pseudo-)sources located in the pointssl andsr respectively.

and boundary vertices. Second, and more important, this trick provides numerical stability of the
algorithm and covers small gaps in the ”wavefront”.

2.4 Interval intersection

In order to compute the minimum of two interval functions in formula (2.7) and algorithm (1), we
need to find the points where two interval functions are equal to each other. Unlike the interval
propagation, this operation is easier to do algebraically. Let us say that two different functions
D1(x) andD2(x) are defined on the edgee. We want to find such pointŝx thatD1(x̂) = D2(x̂).
When the pseudo-sources are the same distance from the initial source,d1 = d2, there is one
intersection at most.

x̂ =
c2
2 − c2

1

2 (c1 cos θ1 − c2 cos θ2)
(2.8)

In general, whend1 6= d2, we have to solve a quadratic equation

Ax̂2 + Bx̂ + C = 0, (2.9)

where

A = P 2 −D2, B = PQ− 2c1 cos θ1D
2,

C = Q2/4− c2
1D

2, P = c1 cos θ1 − c2 cos θ2,

Q = D2 + c2
1 − c2

2, D = d1 − d2.

2.5 Interval-based algorithm

Putting it together, we can now derive final interval-based algorithm. In this algorithm, each edge
distance functionDei

(x) is represented as a list of intervalsLei
. Therefore, when we propagate

an interval onto another edge, we create a new list of intervals that consist of up to three intervals
(section 2.3). When we find the minimum of two distance function, we intersect two lists of
intervals and take the smallest ones (section 2.4).

Obviously, all the edges that belong to the same faces as the source, can be seen from the source
directly and therefore have only one interval each.

6

algorithm IntervalPropagation

1. Represent each edge that belongs to the same face as source vertex by one interval. Put
these intervals in the priority queue.

2. until the queue is empty

3. Remove the next intervalp from the queue. It belongs to an edgee.

4. for all edgesei that belong to same faces ase.

5. Compute propagated interval listL̂ei,p.

6. Update the interval list of the edge atei asLei
= min

(
Lei

, L̂ei

)
.

7. Remove deleted intervals from the priority queue.

8. Add created intervals to the priority queue.

9. end for

10. end until

Table 2: Interval-based algorithm for computing minimal distance functions on the edges. When
the interval list is updated, some intervals might be deleted and/or created.

The interval propagation algorithm can be seen in the table (2). We maintain the interval pri-
ority queue sorted by the minimum value of the distance function on the interval. This queue
is described in [MMP87] in order to maintain a Dijkstra-style properties of the interval propaga-
tion. Computing the minimum value of the distance function on the interval is straightforward and
omitted here for the sake of space.

In our implementation of the algorithm, each interval also has a bit that shows the direction
of the interval propagation. Instead of propagating the interval into two directions, we propagate
it only into one direction. In practice it makes the code faster, because the interval propagation
procedure is computationally expensive.

2.6 Properties of the interval-based algorithm

Our interval-based algorithm is based on the algorithm developed in [MMP87], but has several
crucial differences.

We do not have to worry about saddle vertices and boundary vertices, which otherwise require
additional treatment. In the original algorithm, every saddle vertex became a pseudo-source of
intervals. Similarly, it was reported by [KO00] about Chen&Han algorithm, that such vertices re-
quired significant additional processing time in their implementation of the shortest path algorithm.

Even more important property is robustness. When the intervals are propagating, some of them

7

become very small. The processing of the small intervals can require a lot of time and memory,
and become a source of numerical instability. However, in MMP algorithm, it was not possible
to clip small intervals, because it could result in large gaps when the intervals are propagated.
By propagating side lobes of the intervals, we guarantee that all the gaps are covered in the very
beginning.

This robustness property gives us an opportunity to construct a wide class of the approximate
algorithms. We can simplify the intervals when they are small or when two neighboring intervals
are similar. By construction of our algorithm it will never lead to gaps when the intervals are
propagated.

Also, in contrast to [MMP87], we do not have to consider edge-face pairs and can treat each
edge independently of where the signal comes from. This simplifies algorithm implementation.

3 Merge simplifications

Unfortunately, the exact algorithm is in the worst case quadratic in memory andn2 log n in time
[MMP87]. When the mesh has hundreds of thousands of vertices, this non-linear growth can
become a bottleneck. The reason of such a growth is that far from the source intervals become
smaller and smaller. In many cases, a set of small intervals can be approximated by a single
interval with high precision.

In both MMP and Chen&Han algorithms, even the slightest modification of any interval could
lead to a potential distance function gap somewhere on the mesh. On the contrary, our algorithm
remains stable after interval approximation, which is demonstrated in the following lemma.

Lemma 3.1. Let us take the results of the exact algorithm, pick one of the edges,ek, and one
interval pm on this edge. Let us say that the distance function on this interval,Dpm⊂ek

(x) is
defined by the constantsd, c, θ. Let us also define a new distance functionD̄pm⊂ek

(x) by changing
these parameters arbitrarily and re-propagate the interval through the mesh. Then the resulting
distance field in any point of the mesh will not change more thanε, where

ε = max
x
|D̄pm⊂ek

(x)−Dpm⊂ek
(x)|.

To make a bridge to our flat-exact algorithm developed in the next chapter, here we describe a
possible simplification algorithm that is based on interval merging. Because of the perfect results
shown by the flat-exact algorithm, we did not implemented the merging algorithm described here.

The easiest merging strategy is to check the neighbors of the interval before its propagation,
and if their distance function are approximated by its distance function well enough, merge them
together.

There are still two issues remain. First, after a chain of simplifications the algorithm can
come to the loop, i.e. some interval become modified by its own ”children” intervals. Second,
simplifications can create local minimums in the distance field of the mesh and the tracing-back
algorithm that computes geodesics can stuck in such a minimum.

It is possible that both issues can be handled by applying some restrictions on the simplification
rules. We did not find the set of restrictions that is elegant and fast to compute; that is why we
resolve both issues by the following method.

8

Figure 4: Comparison of the approximate geodesics algorithms for the planar mesh, which is
subdivision of a triangle (top). The source is located in the leftmost corner of the mesh. Kimmel-
Sethian algorithm is on the left, our flat-exact one is on the right. Geodesics are shown in green,
iso-distant curves are shown in blue.

3.1 Dependence DAG

In our algorithm, every interval is a result of the propagation of another interval (for mathematical
accuracy, we have to mention that the intervals adjacent to the source vertex are the results of
the propagation of this vertex). We can consider a dependence graph. A vertex of this graph
corresponds to an interval of the mesh, and the edges of the graph are directed from the parent
intervals to their children. At every stage of our exact algorithm, this directed graph is acyclic
(DAG). The idea is to maintain such a dependence DAG for approximation algorithm.

In the exact algorithm, an interval has only one parent by construction. The only difference of
the approximation algorithm is that one interval can have many parents. Whenever the intervals
are merged, the resulting interval inherit all their children and parents. Similarly, whenever we
create new interval that covers the area of the edge that belonged to some other interval, it has only
one parent but inherits all children of this previous interval.

We merge or propagate intervals only if the dependence graph remains acyclic. This rule solves
the cycling problem automatically. By back-tracing the geodesics only from children to parents,
we make sure that the tracing algorithm always converge to the origin.

Checking whether the resulting graph remains acyclic in theory requires breadth-searching the
whole graph, and therefore ruins the complexity of our algorithm. However, in practice this check
is extremely fast, because most of the time we do not have to consider the entire graph. The
updated intervals are located on the frontier of the distance propagation wave, i.e. they are located
very close to the leaves of the DAG. Therefore, if the graph remains acyclic, the search will stop
after processing the few descendants of the updated interval.

4 Flat-exact algorithm

Though interval simplification improves both time and memory complexity of the algorithm, it is
even more complicated to implement this algorithm from scratch than the original exact algorithm.
That is why we focused on the approximation algorithm that is also very simple to implement.
Though it can be considered as an extreme case of the interval simplification described in the
previous chapter, this algorithm can also be related to algorithm described in [KS98].

The following section describes an approximation algorithm where each edge is represented

9

s
v2

v1

v3
e2

e1
e3

Figure 5: Edgee3 with sources is used to compute the propagated distance function in the vertex
v3.

by a single interval. Now terms ”edge” and ”interval” are equivalent and we will call interval
parameters to be edge parameters.

In the extreme case when the entire mesh is located in one plane, the resulting distance function
will coincide with the exact one. Because of this reason, we call the simplification to be flat-exact.
This property is extremely important in practice. For example, let us consider the planar mesh that
was created as a regular subdivision of a triangle 4, and put the source in the leftmost corner of the
mesh. For this simple mesh, the distance field computed by Kimmel-Sethian algorithm will be a
linear function with the gradient equal to1 everywhere. The resulting geodesics will be a set of
parallel lines, that can be very far from the actual geodesics.

The main structure of the interval-based algorithm remains unchanged. Initially, one interval is
created for all edges that belong to the same faces as the source. Then the intervals are propagated
by a very simple rules across the mesh.

4.1 Simplified interval structure and propagation rules

Another simplification we make is that the distance field on the whole mesh can be represented by
the distances values in the vertices of the mesh. In particular, the distance function on the edge is
defined by its values in the vertices of the edge,D(v1) andD(v2). The distance function on the
edge is still of the form (2.4), that has three parameters(d, c, θ). In order to compute them from
the two vertex distance values, from now on we considerd = 0, i.e. we ignore the pseudo-sources.
After this assumption, the one-to-one correspondence between the(c, θ) and (D(v1), D(v2)) is
trivial

D(v1) = c, (4.1)

D(v2)
2 = c2 + L2 − 2cL cos θ, (4.2)

whereL is the length of the edge. Our new construction also implies that the distance function is
continuous on the 1-skeleton of the mesh.

The propagation rules change as follows. Given the edgee3 to be propagated, we first define the
distance in the opposite vertex of the triangle (fig. 5). If the quadrilateral(s, v1, v3, v2) is convex,
i.e. the opposite vertex can ”see” the sources of the interval, the propagated distanceD̂(v3) is
computed as Euclidean distance between two points,D̂(v3) = d(se, v3). Otherwise, the distance
is computed along the edge,D̂(v3) = min(D(v1) + |e2|, D(v1) + |e2|).

If new distance in the vertexv3 is smaller than the old one, we update all the edges adjacent to
v3 and put them in a priority queue. The simplified algorithm is represented in the table 3.

10

v1

v3

e34

v2

v4
v5

e12

e24

e13

e32

v3

v2

v4
v5

s345

s234

Figure 6: Construction of the dependance DAG. The vertexv3 is updated from the edgee12 (red
arrow), the blue arrows show the desirable parent-children links. On the right, two possible pseudo-
sources for the edgee34 are located symmetrically to this edge.

4.2 Dependance DAG for the simplified algorithm

In order to avoid cycling, we use the same idea of the dependance DAG as before. Each edges
of the is represented by a vertex in the DAG. The dependence information is now maintained as
follows. Let us say that the vertexv3 has its distance updated from the edgee12 that belong to the
facef123 (fig. 6). The distance function over all the edges adjacent tov3 have now been affected by
e12. So to avoid cycling in the distance propagation, we add a pointer frome12 to all of the edges
adjacent tov3.

During shortest path back-tracing, we will only trace paths that go towards ancestors edges,
as recorded in the DAG. If an edge has no ancestor edges that it shares a face with, then we only
trace the path back to one of its vertices. So, whenv3 is updated to allow as much edge to edge
back-tracing when possible we would also like to other DAG edges.

We do this by ”estimating” the direction to the source and adding extra dependencies into the
DAG as follows. Consider edgee34, and assume that the weights of bothv2 andv5 are finite.
To assess direction of the source we compute the parameters(c35, θ35) and find the positions of
two possible pseudo-sources,s234 ands345. Then we also assess how well these pseudo-sources
approximate the distance function values in the verticesv2 andv5.

Q234 = |D(v4)− ‖s234 − v4‖|+ |D(v3)− ‖s234 − v3‖| ,
Q345 = |D(v4)− ‖s345 − v4‖|+ |D(v3)− ‖s345 − v3‖| .

If Q234 < Q345, we sete32 ande24 as parents ofe34 otherwise we sete35 ande54 to be parents of
e34.

If both of the verticesv2 andv5 have infinite weights, then no extra DAG information is added,
and back-tracing will have to go through edges in the graph.

Again, the initial vertexv3 is updated only in case that after this update the resulting dependency
graph remains acyclic.

Finally, we want to mention that the situations when the dependency graph may become cyclic
are very rare and have only been seen in hand-crafted examples.

11

algorithm SimplifiedIntervalPropagation

1. Compute the distance for all vertices adjacent to the source. Put all edges that belong to
the same faces as source in the priority queue.

2. until the queue is empty

3. Remove the next edgee from the queue.

4. for both facesfi adjacent toe.

5. Consider the vertexv opposite toe.

6. Compute updated distance functionD̂(v).

7. Update the dependence graph.

8. if D̂(v) < D(v) and the dependence graph is acyclic

9. D(v) = D̂(v)

10. Put all edges adjacent tov in a queue.

11. end if

12. end for

13. end until

Table 3: Simplified algorithm for computing minimal distance function.

5 Results

In order to test the algorithms, we compared them with several existing ones. The fastest (and least
precise) algorithm for approximate geodesic path computation is Dijkstra shortest path that runs
on the edges of the mesh. We also implemented an acute version of the approximation algorithm
proposed by Kimmel and Sethian [KS98] and used publicly available implementation of Chen and
Han’s algorithm by Kaneva and O’Rourke [KO00](due to unknown implementation reasons, we
were unable to test this algorithm to all the meshes we have). The algorithms were tested on an
Athlon 1.5GHz machine with 2Gb of memory.

To assess the relative error, we used the following test. Given the mesh and a randomly selected
source vertex, we computed the shortest paths to all vertices of the mesh. The relative error was
computed as a sum over all vertices

E =
1

Np

∑
i

∣∣∣∣
|p̄i| − |pi|
|pi|

∣∣∣∣ , (5.1)

where|pi| is the length of the shortest path obtained by the exact algorithm,|p̄i| is the length

12

Figure 7: Limitations of our flat-exact algorithms. In the areas where several wavefronts meet
together, the one-interval approximation of the edge distance function leads to geodesic distortion.
Enlarged area of the bunny head is shown in the middle (flat-exact). Result of the exact algorithm
is shown to the right. Geodesics are shown in green, iso-distance curves are shown in blue.

of the shortest path obtained by an approximation algorithm, andNp is the total number of the
computed paths.

The results of both exact and flat-exact algorithms are shown in figures 8, 9.
One of the interesting effects that we observed with our exact algorithms, is that it is usually

works much faster for the models with a lot saddle vertices and gives the slowest performance on
the saddle objects (comparesphere2vs. parasaurmodels). This happens because on the convex
models the intervals do not eliminate each and become smaller and smaller while the ”wavefront”
propagates further from the source.

The flat-exact algorithm runs a little bit slower than Kimmel-Sethian algorithm because of the
necessity to maintain the DAG structure, but gives significantly better results.

The only limitation of the flat-exact algorithm that we could find can be observed when the two
distance ”wavefronts” meet on the opposite sides of some obstacle. In this case our one-interval
simplification rule oversimplifies the distance field and the geodesics are visibly distorted (fig. 7).

References

[CH96] CHEN J., HAN Y.: Shortest paths on a polyhedron; part i: computing shortest paths.
Int. J. Comput. Geom. & Appl. 6, 2 (1996), 127–144.

[HSKK01] HILAGA M., SHINAGAWA Y., KOHMURA T., KUNII T. L.: Topology matching
for fully automatic similarity estimation of 3d shapes. InProceedings of ACM SIG-
GRAPH 2001(Aug. 2001), Computer Graphics Proceedings, Annual Conference Se-
ries, pp. 203–212.

[Kap99] KAPOOR S.: Efficient computation of geodesic shortest paths. InProc. 32nd Annu.
ACM Sympos. Theory Comput.(1999), pp. 770–779.

[KCVS98] KOBBELT L., CAMPAGNA S., VORSATZ J., SEIDEL H.-P.: Interactive multi-
resolution modeling on arbitrary meshes. InProceedings of SIGGRAPH 98(July
1998), Computer Graphics Proceedings, Annual Conference Series, pp. 105–114.

13

[KL96] KRISHNAMURTHY V., LEVOY M.: Fitting smooth surfaces to dense polygon meshes.
In Proceedings of SIGGRAPH 96(Aug. 1996), Computer Graphics Proceedings, An-
nual Conference Series, pp. 313–324.

[KO00] KANEVA B., O’ROURKE J.: An implementation of chen & han’s shortest paths algo-
rithm. In Proc. of the 12th Canadian Conf. on Comput. Geom.(2000), pp. 139–146.

[KS98] K IMMEL R., SETHIAN J. A.: Computing geodesic paths on manifolds.Proc. Na-
tional. Academy of Sciences 95, 15 (1998), 8431–8435.

[KS01] KANAI T., SUZUKI H.: Approximate shortest path on a polyhedral surface and its
applications.Computer-Aided Design 33, 11 (2001), 801–811.

[KT03] KATZ S., TAL A.: Hierarchical mesh decomposition using fuzzy clustering and cuts.
ACM Transactions on Graphics 22, 3 (July 2003), 954–961.

[LMS97] LANTHIER M., MAHESHWARI A., SACK J.-R.: Approximating weighted short-
est paths on polyhedral surfaces. InProc. 13th Annu. ACM Sympos. Comput. Geom.
(1997), pp. 274–283.

[MMP87] M ITCHELL J., MOUNT D. M., PAPADIMITRIOU C. H.: The discrete geodesic prob-
lem. SIAM J. Comput. 16(1987), 647–668.

[PHF99] PRAUN E., HOPPEH., FINKELSTEIN A.: Robust mesh watermarking. InProceedings
of SIGGRAPH 99(Aug. 1999), Computer Graphics Proceedings, Annual Conference
Series, pp. 49–56.

[PS98] POLTHIER K., SCHMIES M.: Straightest geodesics on polyhedral surfaces.Mathe-
matical Visualization, Ed: H.C. Hege, K. Polthier, Springer Verlag(1998), 391.

[SIC01] SLOAN P.-P. J., III C. F. R., COHEN M. F.: Shape by example. In2001 ACM
Symposium on Interactive 3D Graphics(Mar. 2001), pp. 135–144.

[SWG∗03] SANDER P., WOOD Z., GORTLER S., SNYDER J., HOPPEH.: Multi-chart geometry
images.ACM Symposium on Geometry Processing(2003).

[TdSL00] TENENBAUM J. B.,DE SILVA V., LANGFORD J. C.: A global geometric framework
for nonlinear dimensionality reduction.Science 290, 5500 (2000), 2319–2323.

[ZKK02] ZIGELMAN G., KIMMEL R., KIRYATI N.: Texture mapping using surface flatten-
ing via multidimensional scaling.IEEE Transactions on Visualization and Computer
Graphics 8, 2 (apr - jun 2002), 198–207.

14

Figure 8: The results of the our exact (top row) and flat-exact (bottom row) algorithms are shown
on the cat, bunny, and dragon models (366, 10000, and 50000 vertices respectively). Geodesics
are shown in green, iso-distant curves are shown in blue. In the bunny model, the source is on the
back side.

model number of
vertices

Dijkstra Kimmel-
Sethian

Chen-Han Our Exact Our Flat-
exact

cat 366 0/6.1 0.011/2.2 5.0/0 0.12/0 0.015/0.2
plane tri-
angulation

561 0/7.3 0.015/2.1 5.2/0 0.031/0 0.016/0

sphere1 1562 0.01/7.2 0.047/0.9 11.0/0 2.56/0 0.063/0.08
sphere2 6242 0.015/7.2 0.203/0.7 - 40.1/0 0.21/0.06
handmale 7609 0.023/5.7 0.26/1.7 - 11.5/0 0.34/0.22
bunny 10002 0.025/5.3 0.37/2.0 44160.0/0 12.5/0 0.41/0.25
buddhaf 14990 0.06/4.8 0.62/2.4 101500.0/0 10.9/0 0.85/0.36
parasaur 21935 0.082/6.3 0.78/1.9 - 45.5/0 0.86/0.32
rockerarm 40177 0.16/5.7 1.6/1.4 - 235.0/0 1.7/0.12
horse 48500 0.21/4.9 1.9/1.8 - 343.0/0 2.2/0.13
dragon 50000 0.23/6.4 2.3/2.3 - 64.0/0 2.7/0.42

Figure 9: Time/error statistics for the geodesics algorithms. Time is given in seconds, the relative
error is computed by 5.1 and shown in percents.

15

