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A Method for Registration of 3-D Shapes

Paul J. Besl, Member, IEEE, and Neil D. McKay

Abstract—This paper describes a general-purpose, representa-
tion-independent method for the accurate and computationally
efficient registration of 3-D shapes including free-form curves
and surfaces. The method handles the full six degrees of freedom
and is based on the iterative closest point (ICP) algorithm,
which requires only a procedure to find the closest point on a
geometric entity to a given point. The ICP algorithm always
converges monotonically to the nearest local minimum of a mean-
square distance metric, and experience shows that the rate of
convergence is rapid during the first few iterations. Therefore,
given an adequate set of initial rotations and translations for
a particular class of objects with a certain level of “shape
complexity,” one can globally minimize the mean-square distance
metric over all six degrees of freedom by testing each initial
registration. For example, a given “model” shape and a sensed
“data” shape that represents a major portion of the model shape
can be registered in minutes by testing one initial translation
and a relatively small set of rotations to allow for the given
level of model complexity. One important application of this
method is to register sensed data from unfixtured rigid objects
with an ideal geometric model prior to shape inspection. The
described method is also useful for deciding fundamental issues
such as the congruence (shape equivalence) of different geometric
representations as well as for estimating the motion between point
sets where the correspondences are not kmown. Experimental
results show the capabilities of the registration algorithm on point
sets, curves, and surfaces.

Index Terms— Free-form curve matching, free-form surface
matching, motion estimation, pose estimation, quaternions, 3-D
registration.

I. INTRODUCTION

LOBAL AND local shape matching metrics for free-
Gform curves and surfaces as well as point sets were
described in [3] in an attempt to formalize and unify the
description of a key problem in computer vision: Given 3-
D data in a sensor coordinate system, which describes a data
shape that may correspond to a model shape, and given a
model shape in a model coordinate system in a different
geometric shape representation, estimate the optimal rotation
and translation that aligns, or registers, the model shape and
the data shape minimizing the distance between the shapes
and thereby allowing determination of the equivalence of the
shapes via a mean-square distance metric. Of key interest to
many applications is the following question: Does a segmented
region from a range image match a subset of B-spline surfaces
on a computer-aided-design (CAD) model? This paper pro-
vides a solution to this free-form surface matching problem
as defined in [3] and [S] as a special case of a simple,
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general, unified approach, which generalizes to n dimensions
and provides solutions to 1) the point-set matching problem
without correspondence and 2) the free-form curve matching
problem. The algorithm requires no extracted features, no
curve or surface derivatives, and no preprocessing of 3-D data,
except for the removal of statistical outliers.

The main application of the proposed method as described
here is to register digitized data from unfixtured rigid objects
with an idealized geometric model prior to shape inspec-
tion. When inspecting shapes using high-accuracy noncontact
measurement devices [4] over a shallow depth of field, the
uncertainty in different sensed points does not vary by much.
Therefore, for purposes of simplicity and relevance to inspec-
tion applications based on thousands of digitized points, the
case of unequal uncertainty among points is not considered.
Similarly, the removal of statistical outliers is considered a
preprocessing step, is probably best implemented as such,
and will also not be addressed. In the context of inspection
applications, the assumption that a high-accuracy noncontact
measurement device does not generate bad data is reasonable
since some sensors have the ability to reject highly uncertain
measurements.

The proposed shape registration algorithm can be used with
the following representations of geometric data:

1) Point sets

2) line segment sets (polylines)

3) implicit curves: §(z,y,z) = 0

4) parametric curves: (z(u),y(u), z(u))

5) triangle sets (faceted surfaces)

6) implicit surfaces: g(z,y,z) = 0

7) parametric surfaces: (x(u,v), y(u,v), 2(u,v)).

This covers most applications that would utilize a method
to register 3-D shapes. Other representations are handled by
providing a procedure for evaluating the closest point on the
given shape to a given digitized point.

This paper is structured as follows: Several relevant papers
from the literature are first reviewed. Next, the mathematical
preliminaries of computing the closest point on a shape to a
given point are covered for the geometric representations men-
tioned above. Then, the iterative closest point (ICP) algorithm
is stated, and a theorem is proven concerning its monotonic
convergence property. The issue of the initial registration
states is addressed next. Finally, experimental results for point
sets, curves, and surfaces are presented to demonstrate the
capabilities of the ICP registration algorithm.

II. LITERATURE REVIEW

Relatively little work has been published in the area of regis-
tration (pose estimation, alignment, motion estimation) of 3-D
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free-form shapes. Most of the existing literature addressing
global shape matching or registration have addressed limited
classes of shapes, namely, 1) polyhedral models, 2) piecewise-
(super)quadric models [2], [27], and 3) point sets with known
correspondence. The reader may consult [6] and [14] for pre-
1985 work in these areas. For a sampling of other more recent
related work not discussed below, see [8], [10], [12], [13],
(19], [20], [24], [26], [34], [35]. [37], [39], [44], [46], [48],
(53], (58], [59]-

Historically, free-form shape matching using 3-D data was
done earliest by Faugeras and his group at INRIA [18], where
they demonstrated effective matching with a Renault auto part
(steering knuckle) in the early 1980’s. This work popularized
the use of quaternions for least squares registration of cor-
responding 3-D point sets in the computer vision community.
The alternative use of the singular value decomposition (SVD)
algorithm [23], [1], [49] was not as widely known in this time
frame. The primary limitation of this work was that it relied
on the probable existence of reasonably large planar regions
within a free-form shape.

Schwartz and Sharir [50] developed a solution to the free-
form space curve matching problem without feature extraction
in late 1985. They used a nonquaternion approach to comput-
ing the least squares rotation matrix. The method works well
with reasonable quality curve data but has difficulty with very
noisy curves because the method uses arclength sampling of
the curves to obtain corresponding point sets.

Haralick et al. [28] addressed the 3-D point-set pose es-
timation problem using robust methods combined with the
least squares SVD registration approach, which provided a
robust statistical alternative to the least squares quaternion or
SVD point set matching. This algorithm is able to handle
statistical outliers and could theoretically be substituted for
our quaternion-based algorithm as long as the determinant of
the orthonormal matrix is strictly a positive one. A recent
conference proceedings [47] contains new contributions on
this subject.

Horn [31] derived an alternative formulation of Faugeras’s
method [18] of least squares quaternion matching that uses
the maximum eigenvalue of a 4 X 4 matrix instead of the
minimum eigenvalue. Horn [30] and Brou [11] also developed
the extended Gaussian image (EGI) methods allowing the
matching of convex and restricted sets of nonconvex shapes
based on surface normal histograms.

Taubin [55] has done some interesting work in the area of
implicit algebraic nonplanar 3-D curve and surface estimation
with applications to position estimation without feature ex-
traction. He describes a method of approximating data points
with implicit algebraic forms up to the tenth degree using
an approximate distance metric. Global shapes (not occluded
shapes) can be identified based on generalized eigenvalues, and
the registration transformation can be recovered. The method
is shown to be useful for complete planar curve and space
curve shapes, but it is unclear that the effectiveness generalizes
well to more complicated surfaces, such as terrain data or a
human face. Taubin has stated that the numerical methods of
the approximate distance fit tend to break down above the tenth
degree. He later [56] extended his work in shape description

by investigating shape matching based on generalized shape
polynomials. This demonstrated some interesting theoretical
results but remains to be demonstrated for practical use on
complex surfaces.

Szeliski [54] also describes a method for estimating motion
from sparse range data without correspondence between the
points and without feature extraction. His primary goal was
to create a method for estimating the motion of the observer
between two range image frames of the same terrain. Given
the set of points from one frame, he applies a smoothness
assumption to create a smoothing spline approximation of the
points. Then, a conventional steepest descent algorithm is used
to rotate and translate the second data set so that it minimizes
the sum of the covariance-weighted 2 differences between the
points and the surface. His approach is based on a regular
zy-grid structure, and true 3-D point-to-surface distances are
not computed. The steepest-descent approach is a slower
alternative to reaching the local minima than our proposed
ICP algorithm described below. Szeliski uses optimal Bayesian
mathematics to allow him to downweight noisier values at
longer ranges from a simulated range finder. For navigation
range imaging sensors, the uncertainty in data points vary
significantly from the foreground to the background. For high-
accuracy sensors with shallow depths of field, the uncertainty
variation between points is orders of magnitude less and is
of much less concern. Szeliski provides experimental results
for synthetic terrain data and a block. The terrain data motion
test was a simple translation along one axis: a 1-D correlation
problem. His block test did involve six degrees of freedom,
but the block is a very simple shape. Overall, this work
presents some interesting ideas, but the experimental results
are unconvincing for applications.

Horn and Harris [33] also addressed the problem of es-
timating the exact rigid-body motion of the observer given
sequentially digitized range image frames of the same terrain.
They describe a range rate constraint equation and an elevation
rate constraint equation. The result is a noniterative least
squares method that provides a six-degree-of-freedom motion
estimate as long as the motion between frames of data is
relatively small. This method is much quicker than the one
proposed by Szeliski, but it is not clear that this method
generalizes to arbitrary rotations and translations of a shape.

Kamgar-Parsi er al. [36] also describe a method for the
registration of multiple overlapping range images without
distinctive feature extraction. This method works very well
using the level sets of 2.5-D range data but is essentially
restricted to the three degrees of freedom in the plane since the
work was addressed toward piecing together terrain map data.

Li [38] addressed free-form surface matching with arbitrary
rotations and translations. His method forms an attributed
relational graph of fundamental surface regions for data and
model shapes and then performs graph matching using an
inexact approach that allows for variability in attributes as
well as in graph adjacency relationships. This seems to be
a reasonable approach but relies on extraction of derivative-
based quantities. Experimental results are shown for a coffee
cup and the Renault auto part; see also Wong et al. [60] for
other related work using attributed graphs for 3-D matching.
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The work of Gilbert and Foo [21] and Gilbert et al. [22]
is related in that it addresses the computation of distance
between two object shapes. Such methods could be the basis
for similar shape matching techniques as are described below.
The major inconvenience with their method, though, is that
object shapes must be decomposed into convex subbodies,
which is a problem that, in general, is not trivial for arbitrary
CAD models or for digitized 3-D data.

III. MATHEMATICAL PRELIMINARIES

In this section, methods for computing the closest point to
a given point on the various geometric representations listed
above are described. First, the basic geometric entities are
covered, followed by parametric entities, and, finally, implicit
entities. The reader might consult Mortenson [42] on some of
the items below for additional information.

The Euclidean distance d(7,7) between the two points
1 = (z1,y1,24) and 7 = (23,y9,20) is d(f1,7) =
7 = 72l = /(22 ~ 21)2 + (y2 — y1)? + (22 — 21)%. Let A
be a point set with N, points denoted @;: A = {d;} for

¢ =1,..., N,. The distance between the point 7 and the point
set A is
d(p, A) = i d(p, a;). 1
(P.4) = min_  d(p,d:) @

The closest point @; of A satisfies the equality d(p,d;) =
d(p, A).

Let [ be the line segment connecting the two points 7; and

7. The distance between the point 7 and the line segment [ is

A5 D = mi o S o

(F.1) = min [lufy + v — ]| @

where u € [0,1] and v € [0,1]. The required closed-form

computations are straightforward. Let L be the set of N; line

segments denoted [;, and let L = {I;} for ¢ = 1,..., N;. The
distance between the point p’ and the line segment set L is

d(f,L) = min

i€{1,....N;}
The closest point §; on the line segment set L satisfies the
equality d(p,9;) = d(g, L).
Let ¢t be the triangle defined by the three points 7 =

(zlvylvzl)a Ty = (3727312722), and 73 = (173,313,23)- The
distance between the point 7’ and the triangle ¢ is
d(p,t) = i B T s — P
(p,t) wmn llury + v + wi — | 4

where u € [0,1}, v € [0,1], and w € [0,1]. The required
closed-form computations are again straightforward. Let T
be the set of N, triangles denoted ¢;, and let T = {¢;} for
t = 1,...,N;. The distance between the point § and the
triangle set T is given by

®)

,,,,,

The closest point §; on the triangle set T satisfies the equality
d(@,g5) = d(p.T).
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A. Point to Parametric Entity Distance

In this section, a parametric curve and a parametric surface
are treated as a single parametric entity 7(u), where @ =
u € R' should be substituted for parametric curves, and
% = (u,v) € R? should be substituted for parametric surfaces
(R denotes the real line). The evaluation domain for a curve
is an interval, but the evaluation domain for a surface can be
any arbitrary closed-connected region in the plane. For more
information on parametric entities, such as Bezier and B-spline
curves and surfaces, see [9], [15]-[17], [42], [52].

The distance from a given point 'to a parametric entity F is

d(p. E) = Ao d(p, 7(@))- (6)
The computations to compute the distance are not closed form
and are relatively involved. One method for computing point-
to-curve and point-to-surface distances is described below.
Sets of parametric entities are again straightforward once the
distance metric for an individual entity is implemented. Let
F be the set of N, parametric entities denoted E;, and let
F = {E;} for i = 1, N.. The distance between a point  and
the parametric entity set F' is

d(p, F) = d(p, Er). ™

min
i€{1,....N.}
The closest point i; on the parametric entity set F satisfies
the equality d(p, ;) = d(p, F).

Our first step towards computing the distance from a point to
a parametric entity is creating a simplex-based approximation
(line segments or triangles). For a parametric space curve
C = {(u)}, one can compute a polyline L(C, §) such that the
piecewise-linear approximation never deviates from the space
curve by more than a prespecified distance 6. By tagging each
point of the polyline with its corresponding « argument values
of the parametric curve, one can obtain an estimate of the u,
argument value of the closest point from the line segment
set.

Similarly, for a parametric surface S = {7{(u,v)}, one
can compute a triangle set 7°(S,§) such that the piecewise-
triangular approximation never deviates from the surface by
more than a prespecified distance §. By tagging each triangle
vertex with the corresponding (u,v) argument values of the
parametric surface, one can obtain an estimate (u,, v, ) of the
argument values of the closest point from the triangle set. As a
result of these curve and surface procedures, one can assume
that an initial value &, is available such that 7(i,) is very
close to the closest point on the parametric entity.

The point-to-parametric-entity distance problem is ideal for
employing a pure Newton’s minimization approach when a
reliable starting point @, is available. The scalar objective
function to be minimized is

(@) = ||7(@) - 7. ®

Let V = [9/0d]" be the vector differential gradi-
ent operator (where ¢ implies vector transpose). The
minimum of f occurs when Vf = 0. When the
parametric entity is a surface, the 2-D gradient vec-
tor is Vf = [fu, fu]’, and the 2-D Hessian matrix
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is

fuu fU‘U
fuv f‘l]’U
where the partial derivatives of the objective function are given
by

TVH(f) = [ ©

fulit) = 27, (@)(7(@) - P) (10)
folit) = 27, (@)(7(@) - p) an
Fun (@) = 27, (@)(F(@) — p) + 27, (D)Fu(@)  (12)
fouli) = 27, (@)(7(@) - p) + 27, (@), (7)) (13)
funl@) = 27, (D) (7(@) — p) + 27, (D)7 (7). (14)

The curve case requires only computation of f, and

fuu. The Newton’s update formula for either entity
is

kg1 = @k — [VVI(F)(@)] 7V F(T@) (15)
where @y = u,. When using the starting point selection

method described above based on a simplex approximation
with a reasonably small §, Newton’s method for computing
the closest point generally converges in one to five iterations
and typically in three. The computational cost of Newton’s
method is very low in contrast with finding good starting
points.

B. Point to Implicit Entity Distance

An implicit geometric entity is defined as the zero set of

a possibly vector-valued multivariate function §(7) = 0. The

distance from a given point § to an implicit entity I is

d(F.1) = min d(p,¥) = min [F=7].  (16)

g(7=0 §(7=0

The calculations to compute this distance are also not closed

form and are relatively involved. One method for computing

point-to-curve and point-to-surface distances is outlined below.

Sets of implicit entities are straightforward once the distance

metric for an individual entity is implemented. Let J be the

set of Ny parametric entities denoted Ij and J = {I;} for

k = 1, N;. The distance between a point § and the implicit
entity set J is

d(p,J) = min_d(p I).

17
ke{l,“.I,IN,} an

The closest point #; on the implicit entity I; satisfies the
equality d(p,7;) = d(p, J).

Our first step towards computing the distance from a point
to an implicit entity is creating a simplex-based approximation
(line segments or triangles) as was done for parametric entities
[7]. Computing the point-to-line set or point-to-triangle set
distance yields an approximate closest point 7, which can be
used to compute the exact distance.

The implicit entity distance problem is quite different from
the parametric entity case where unconstrained optimization
suffices. To find the closest point on an implicit entity
defined by §() = 0 to a given point {5, one must
solve a constrained optimization problem to minimize

a quadratic objective function subject to a nonlinear

constraint

Minimize f(7) = || — p]||? where §(7) = 0.  (18)
One approach to this problem is to form the augmented
Lagrange multiplier system of equations [40]:

V() + XV§() =0
g(m =0

where V = [8/07]" and solve this system of nonlinear
equations via numerical methods. The number of equations
and unknowns for the nonlinear system is three for planar
curves, four for surfaces, and five for implicitly defined space
curves. Continuation methods [41] can be used to solve this
problem for algebraic entities even without a good starting
point, but a good starting point will allow the use of faster
methods, such as the multidimensional Newton’s root finding
method. From a numerical point of view, the parametric
methods are much easier to deal with. From an applied
point of view, no industrial CAD systems store free-form
curves or surfaces in implicit form. For this reason, implicit
surfaces of interest are dealt with in our implemented system
either via special case mathematics (e.g., spheres) or via
a parametric form. Of course, if there were an application
where it was necessary to handle free-form implicit entities
in their implicit form [51], the above algorithm could be
implemented.

Taubin [55] uses an approximate distance algorithm that
implies a simple update formula for surfaces and planar curves
when ¢(7) is nearly zero:

(19)

_ Vg(7i)g(Tk)
IVa(Fll?

This method is only exact if the infinite line with the direction
Vg(7) at the starting point 7 intersects the implicit entity at a
point where the normal vector has that same direction. This is
not true in general, and the approximation is generally worse
the further the point is from the implicit entity. Therefore,
this result cannot be used if precise distance results are
required.

Tht1 = Tk (20)

C. Corresponding Point Set Registration

All closest point (minimum distance) algorithms have been
mentioned in forms that generalize to n dimensions. One more
necessary procedure for yielding the least squares rotation and
translation is reviewed. For our purposes, the quaternion-based
algorithm is preferred over the singular value decomposition
(SVD) method in two and three dimensions since reflections
are not desired. The SVD approach, based on the cross-
covariance matrix of two point distributions, does, however,
generalize easily to n dimensions and would be our method of
choice for n > 3 in any n-dimensional applications. The basic
solution of Horn [31] is described below, although the method
of Faugeras [18] is equivalent. Our summary stresses the role
of the SVD cross-covariance matrix, which is an important
relationship not discussed in other work.
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The unit quaternion is a four vector ¢r = [gog192¢s]*, where
go >0, and g3 + q? + q3 + ¢3 = 1. The 3 x 3 rotation matrix
generated by a unit rotation quaternion is found at the bottom
of this page. Let §r = [gag5ge]® be a translation vector. The
complete registration state vector ¢ is denoted § = [Jr|qr]’.
Let P = {;} be a measured data point set to be aligned with
a model point set X = {;}, where N, = N,, and where each
point F; corresponds to the point Z; with the same index. The
mean square objective function to be minimized is

N,
- 1 s e o
@)=+ > 11 — R(@r)F: — ar1*. (22)
Pi=1

The “center of mass” /i, of the measured point set P and the
center of mass [, for the X point set are given by

1 Ny 1 N
ﬁp=ﬁp;ﬁi and iy = 1 l@. (23)
= P

The cross-covariance matrix X, of the sets P and X is given
by

N, N,
I e v o L ety = =
Zpz = 3 > 1 — )& — fi)'] = oA > PE] — fps-
P =1 P =1
(24
The cyclic components of the anti-symmetric matrix A;; =
(Zpe — ng)ij are used to form the column vector A =

[A2s  As;  App]T. This vector is then used to form the
symmetric 4 x 4 matrix Q(3,.)

AT

Spe + B, — tr(Tpe )13 (25)

Q) =| ")

where I3 is the 3 x 3 identity matrix. The unit eigenvector
gk = {90 @1 g2 g3]° corresponding to the maximum
eigenvalue of the matrix Q(X,,) is selected as the optimal
rotation. The optimal translation vector is given by

gr = iz — R(qR)ilp- (26)
This least squares quaternion operation is O(N,) and is
denoted as

(@ dms) = Q(PvX) (27)
where d,, s is the mean square point matching error. The nota-

tion g(P) is used to denote the point set P after transformation
by the registration vector q.
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IV. THE ITERATIVE CLOSEST POINT ALGORITHM

Now that the methods for computing the closest point on
a geometric shape to a given point and for computing a
least squares registration vector have been outlined, the ICP
algorithm can be described in terms of an abstract geometric
shape X whose internal representation must be known to
execute the algorithm but is not of concern for this discussion.
Thus, all that follows applies equally well to 1) sets of points,
2) sets of line segments, 3) sets of parametric curves, 4) sets
of implicit curves, 5) sets of triangles, 6) sets of parametric
surfaces, and 7) sets of implicit surfaces.

In the description of the algorithm, a “data” shape P is
moved (registered, positioned) to be in best alignment with
a “model” shape X. The data and the model shape may be
represented in any of the allowable forms. For our purposes,
the data shape must be decomposed into a point set if it is
not already in point set form. Fortunately, this is easy; the
points to be used for triangle and line sets are the vertices
and the endpoints, and if the data shape comes in a surface or
curve form, then the vertices and endpoints of the triangle/line
approximation (as described above) are used. The number
of points in the data shape will be denoted N,. Let N, be
the number of points, line segments, or triangles involved in
the model shape. As described above, the curve and surface
closest-point evaluators implemented in our system require a
framework of lines or triangles to yield the initial parameter
values for the Newton’s iteration; therefore, the number NV, is
still relevant for these smooth entities but varies according to
the accuracy of the approximation.

The distance metric d between an individual data point 7
and a model shape X will be denoted

d(p, X) = min [|Z - . (28)
FexX

The closest point in X that yields the minimum distance is
denoted ¥ such that d(p, ) = d(p, X), where § € X. Note
that computing the closest point is O(N,) worst case with
expected cost log (V). When the closest point computation
(from g'to X) is performed for each point in P, that process is
worst case O(N,N_.). Let Y denote the resulting set of closest
points, and let C be the closest point operator:
Y = C(P, X). (29)
Given the resultant corresponding point set Y, the least squares
registration is computed as described above:
(7.d) = QPY). (30)
The positions of the data shape point set are then updated via

P = q(P).

@+ai-a -4
2(q192 + qo43)
2(q193 — 90g2)

2(q192 — 0gs)
@%+a -9 -4
2(g293 + q0q1)

2(q193 + q042)
2(q293 — qoq1)
B+ah-ad-a

1)
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A. ICP Algorithm Statement

The ICP algorithm can now be stated:

* The point set P with N, points {p;} from the data shape
and the model shape X (with N, supporting geometric
primitives: points, lines, or triangles) are given.

* The iteration is initialized by setting Pp = P, §o =
[1,0,0,0,0,0,0]* and k& = 0. The registration vectors
are defined relative to the initial data set Py so that the
final registration represents the complete transformation.
Steps 1, 2, 3, and 4 are applied until convergence within
a tolerance 7. The computational cost of each operation
is given in brackets.

a.  Compute the closest points: Y, = C(Px, X) (cost:
0(NpN;) worst case, 0( N, log N,.) average).

b. Compute the registration: (gi,dr) = Q(Po, Yi)
(cost: O(Np)).

c. Apply the registration: Pry1 = ¢i(P) (cost:
O(N, ).

d.  Terminate the iteration when the change in mean-
square error falls below a preset threshold 7 > 0
specifying the desired precision of the registration:
di — (ik+1 <T.

If a dimensionless threshold is desired, one can replace 7
with 7./tr(X;), where the square root of the trace of the
covariance of the model shape indicates the rough size of the
model shape.

B. Convergence Theorem

A convergence theorem for the ICP algorithm is now stated
and proved. The key ideas are that 1) least squares registration
generically reduces the average distance between correspond-
ing points during each iteration, whereas 2) the closest point
determination generically reduces the distance for each point
individually. Of course, this individual distance reduction also
reduces the average distance because the average of a set of
smaller positive numbers is smaller. We offer a more elaborate
explanation in the proof below.

Theorem: The iterative closest point algorithm always con-
verges monotonically to a local minimum with respect to the
mean-square distance objective function.

Proof: Given P, = {pir} = §(FPo) and X, compute the
set of closest points Y = {} as prescribed above given
the internal geometric representation of X. The mean squared
error e, of that correspondence is given by

z\f
1 &y s .
er = A Z G ~ Firl?- (31)
P =1

The Q operator is applied to get g} and dj from that corre-
spondence:

N,
lFix — R(qkr)Fio — qrr || (32)
=1

i=

1
di = —
k N,

It is always the case that dy < ej. Suppose that dy > ey. If
this were so, then the identity transformation on the point set

would yield a smaller mean square error than the least squares
registration, which cannot possibly be the case. Next, let the
least squares registration gj, be applied to the point set Py,
yielding the point set P ;. If the previous correspondence to
the set of points Y, were maintained, then the mean square
error is still dy, that is

(33)

1 &
di = = DIk = o[
P =1

However, during the application of the subsequent closest
point operator, a new point set Y3 is obtained: Yz, =
C(Py+1,X). It is clear that

NTik+1 = i+l < |Fik — Piksa|] for each o =1, N, (34)

because the point #;; was the closest point prior to transforma-
tion by g} and resides at some new distance relative to 5 x41.
If §; k+1 were further from P x1 than iy, then this would
directly contradict the basic operation of the C closest point
operator. Therefore, the mean square errors e and dj must
obey the following inequality:

0 <dps1 <epy1 < di < e forall k. 35)

The lower bound occurs, of course, since mean-square €ITors
cannot be negative. Because the mean-square error sequence
is nonincreasing and bounded below, the algorithm as stated
above must converge monotonically to a minimum value.
Q.E.D.

Experimentally, we find fast convergence during the first
few iterations that slows down as it approaches the local
minimum. Even at this slow pace, somewhere between 30
and 50 iterations yields excellent results: di =~ 0.1% of model
shape size. The convergence can be accelerated using a simple
additional operation described in the next section.

C. An Accelerated ICP Algorithm

The accelerated ICP algorithm uses a minor variation on
the basic line search methods of multivariate unconstrained
minimization [45]. As the iterative closest point algorithm
proceeds, a sequence of registration vectors is generated: ¢,
G2 43, 41, G5, {6, - - -, Which traces out a path in the registration
state space from the identity transformation toward a locally
optimal shape match. Consider the difference vector sequence
defined by

Adk = Gk — Gr-1 (36)

which defines a direction in the registration state space. Let
the angle in 7 space between the two last directions be denoted

) = cos™! <4A§k ‘Adis )
| AGK I AGk—1 ]l

and let 66 be a sufficiently small angular tolerance (e.g., 10°).
If

(37

B < 80 and 6j_, < 60 (38)

then there is good direction alignment for the last three
registration state vectors: Gk, qk—1, and gr—o. Let dg, dr_1,
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The Accelerated
ICP Algorithm

Plane
Represents

Linear Approximation

Parabola

Linear Update

30(1-1)

61

Parabola Update

Fig. 1. Consistent direction allows acceleration of the ICP algorithm.

and di_, be the associated mean Square errors, and let vy,
Vk—1, and vi_, be associated approximate arc length argument
values:

Uk = 0,051 = —[|AGk|l, vh—s = ~[[AG-1]l + vk-1. (39)

See Fig. 1 for a picture of the situation. Next, a linear
approximation and a parabolic interpolant to the last three
data points are computed:

di(v) = eyv + by d2(v) = az20® + byv + ¢y (40)
which gives us a possible linear update, based on the zero
crossing of the line, and a possible parabola update, based on
the extremum point of the parabola:

v = —bl/al >0 vy = —b2/2(l2. (41)
To be on the safe side, we adopt a maximum allowable value
Umax- The following logic is used to perform an attempted
update:

1) Ifo < vy < v < Vmax Or 0 < 2y < Unax <
v1, use the parabola-based updated registration vector:
7y = g + v2Ak/||Agk|| instead of the usual vector
@k when performing the update on the point set, i.e.,
Piii = qi(Py).

2) If0 < vy < V2 < Upax Or 0 < o < Vmax < ¥ Or
V2 <0 and 0 < vy < v,y use the line-based updated
registration vector ¢ = g, + v1AGr /|| Adx|| instead of
the usual vector g.

3) If both v; > Umax and va > .., use the maximum
allowable update 7% = Gr + VmaxAdk /||Agk|| instead
of the usual vector .

We have found experimentally that setting v,,,, = 25||Ag]|
adaptively has provided a good sanity check on the updates
allowing the iterative closest point algorithm to move to the
local minimum with a given degree of precision in many fewer
steps. A nominal run of more than 50 basic ICP iterations for a
given value of 7 is typically accelerated to 15 or 20 iterations,
If the updated registration vector were somehow to over-
shoot the minimum enough to yield a worse mean square
error, it would be advantageous to construct a new parabola
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Fig. 2. Various quantities plotted against iteration count for the basic
nonaccelerated ICP algorithm.

using the new registration with the last two steps and move
to the appropriate minimum. This has not been necessary in
our experience. To be rigorous, one can simply ignore the
suggested update if it causes a worse mean square error.

To give a quantitative example comparison, the registration
values, RMS error, maximum error, angular change, and cu-
mulative arc length values were recorded during 50 iterations
of both the basic and accelerated ICP algorithms during the
same free-form surface matching test. The results for the basic
ICP algorithm are shown in Fig. 2. Note the smooth character
of all the curves. The most important feature is that the cos(66)
plot indicates a consistent direction of updates for all but the
first few iterations. In contrast, the accelerated ICP algorithm
shows the desirable jumpy behavior as seen in Fig. 3. In
addition, note how most quantities get close to their final
values after the first acceleration step and very close after two.
The acceleration steps occur whenever a V-shaped dip occurs
in the plot of cos(é§) versus the iteration count.

D. Alternative Minimization Approaches

The ICP algorithm allows us to move from a given starting
point to a local minima in 7 space relatively quickly in
comparison with other possible alternatives. Each iteration
requires only one evaluation of the closest point operator:
the most expensive computation. Any optimization method
that does not use explicit vector gradient estimates, such
as Powell’s direction set method, the Nelder-Mead downhill
simplex method, or simulated annealling, requires literally
hundreds to tens of thousands of closest point evaluations.
These numbers are based on tests done to simulate the action
of the least squares registration step involved in one ICP
iteration but using instead Powell’s direction set method and
the Nelder-Mead method from [45].
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Fig. 3. Various quantities plotted against iteration count for the accelerated
ICP algorithm.

Any optimization method that uses explicit vector gradients,
such as steepest descent, conjugate gradient, and variable
metric schemes, will require at least seven closest point
evaluations for each numerical gradient evaluation. Therefore,
such a method would have to converge in three or four
iterations to be competitive with the accelerated ICP method.
Such generic methods generally require many more than three
iterations with the number of required closest point evaluations
running well over 100 even in ideal circumstances. If a pure
numerical Hessian-based Newton’s method were used, the
numerical gradient and Hessian computations would require
at least 13 closest point evaluations per iteration, implying
that the iteration would have to converge in two iterations
to be competitive with the accelerated ICP algorithm. A pure
Newton’s method might require only three iterations if the
initial point were already well into the region of attraction
surrounding a local minimum, but the initial iterations would
not be handled well by Newton’s method.

Whenever an accelerated parabolic update takes place after
three basic ICP steps, we can get nearly quadratic convergence
for less than steepest descent cost. This is an interesting
accomplishment for a function where derivatives cannot be
evaluated. Note that the steepest descent gradient direction
is not deliberately computed; we merely observe when a
consistent direction is being followed.

Other problems involved with using general-purpose op-
timization methods are the following: 1) If any angles are
used as in [54], angular cycles across 360° must be handled
correctly, and 2) if a unit quaternion becomes a nonunit quater-
nion, as would be expected taking arbitrary direction steps
in 4 space, the quaternion must be renormalized somewhere.
Unfortunately, if the objective function evaluator changes the
values in the state vector during the optimization iteration, this

has a bad effect on most nonlinear optimization algorithms.

To summarize, any method that allows one to move from
an initial state to its corresponding local minimum could
theoretically be used in place of the ICP algorithm. For
example, consider Szeliski’s [54] work with steepest descent
and three rotation angles. However, the arguments above
indicate that one would have a hard time trying to find an
algorithm that was only ten times slower on average. The key
benefit of the ICP algorithm is that the convergence is fast and
monotonic. No expensive closest point evaluations are spent
on registration vectors that have worse mean square errors than
the current state. Because of the ICP convergence theorem, one
does not have to “feel around” in the multidimensional space
to determine the direction in which to move.

V. THE SET OF INITIAL REGISTRATIONS

Even though the ICP algorithm must converge monotoni-
cally to a local minimum from any given rotation and trans-
lation of the data point set, it may or may not converge on
the desired global minimum. The only way to be sure is to
find the minimum of all the local minima. The problem with
reaching the desired global minimum with certainty is that it
is difficult to precisely characterize in general the partitioning
of the registration state space into local minima wells (regions
of attraction) because this partitioning is potentially different
for every possible different shape encountered.

To be precise, consider a 6-D state space {2, where the
quaternion component qq is determined from the other quater-
nion components: go = +/1 — (¢% + g5 + ¢2). The actual
state space {2 is a subset of the space Q' = [—1,1]3 x R3,
where R = (—oc,+00) is the real line. The subset 2 is
specified by the “inside or on the unit 3 sphere” constraint
that ¢? + g% + g2 < 1. Therefore,  may be viewed as a type
of hyper-cylinder in 6 space.

For any given nonpathological shape X that represents
a real-world surface or object (e.g., pathological shape de-
scriptions based on sin(1/z) near zero not allowed) and for
any given point set Preg already correctly registered with
X, consider that any initial state ¢ € {2 of the point set
P = §(Preg) will converge to a local minimum as it is
matched to X. There are a finite number of local minima
N (X, P) after one has fixed X and P. (The shape X is
considered pathological if this is not true.) Let ¥(X, P) be
the set of all local minima:

(X, P) = {¢n}i. 42)

This induces a natural partitioning of §2 into equivalence
classes, labeled ¥,,, where every value of ¢ that converges
via the ICP algorithm to 1, is a member of the class ¥,,.
This allows us to state that
N
Q=) V,and U, N, =@ if n# m.

n=1

(43)

Let ¥; be the equivalence class that maps to the correct global
minimum ;.

To guarantee that the global minimum is found for a given
shape X and a given set P not already registered with X, one
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must use an appropriate set of initial states so that transforming
P by at least one initial registration will place the point set
into the correct equivalence class W, of registrations. This
allows it to converge to the correct global minimum %);. Two
fundamental questions are 1) how to construct an initial set
of states for any given object that guarantees a correct global
minimum and 2) how to construct an initial set of states that
guarantees all shapes in a given class of shapes when those
shapes converge to the correct respective global minimum.

By using a sufficiently dense uniform sampling of quater-
nions on the unit sphere combined with a sufficiently dense
sampling of translation vectors occupying the total volume
about the shape X, it is possible to determine the complete
finite set of local minima with a sufficiently small probability
of error for one given object. One could construct a set of
initial states to include all these local minima solutions along
with the halfway states between the k nearest neighbors (e.g.,
k = 12) to attempt to avoid having a set of initial states that
lie on or near the boundaries between the equivalence classes.

A method that could be useful for computing guaranteed
initial states for a set of model shapes is to use a 6-D
occupancy array to compute hypervoxel-based descriptions
of the equivalence classes for each shape of interest and
then computing an overall partitioning by refining the first
shape’s partition by intersecting the equivalence classes of
each subsequent shape. Such methods can be very memory
intensive; a 20 x 20 X 20 x 20 x 20 X 20 hypercubic-hypervoxel
grid of the smallest hypercylinder containing all relevant
registrations of all shapes of interest requires an 8-Mbyte
(64 Mb) array for a single object. Clearly, this is a test of
patience for anyone wishing to construct an initial set of states
customized to a given set of objects to yield guaranteed results,
but indeed, it is possible and relatively straightforward, except
for the high dimension of the problem.

A. Initial States for Global Matching

There are simpler methods of dealing with the initial state
problem that are very effective on most shapes one comes
across. Let us adopt the following definition of the first two
moments of the distribution of geometry in P and X: [, =
E[f\f € P), ji = E[f17 € X], 5, = E((5—i,) (F— i)' 7 €
Pl, and £, = E[(F - [f.)(F — G.)!|7¥ € X], where E[]
represents the sample expectation (averaging) operator. If the
point data set P covers a significant portion of the model
shape X such that the condition

aVitr(Ee) < 4/tr(E,) < Vir(E:)

holds for a sufficiently large factor, say a; = 1/v/2 = 0.71,
then we have found that it is generally not necessary to use
multiple initial translation states, as long as enough rotation
states are used. This factor «; is the allowable occlusion
percentage for global matching. The exact value of a; could be
computed for any given class of object shapes via exhaustive
testing if that is desired.

There are two reasonable options for the initial translation
state: 1) Apply the ICP algorithm directly to the point set P
using multiple rotation states about its center of mass [i,,, or

(44)
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2) transform it first so that the centers of mass of P and X
coincide, and then apply ICP. We have found no differences
in the final registration results between 1) not translating and
2) pretranslating the point set when using an adequately large
set of initial rotations (e.g., 24). In fact, any translation state
suffices because the ICP algorithm is very insensitive to the
initial translation state when used for global shape matching.
We have observed that pretranslating the data point set’s center
of mass to the model shape’s center of mass generally saves
a few iterations (e.g., 2 to 4) out of the usual 20 or so total.

A further simplification in the global shape matching al-
gorithm can be accomplished for most generic shapes, where
principal moments demonstrate some level of distinctness. Let
Pz > Py > P, be the square roots of the eigenvalues of X,
and let r, > r, > r, be the square roots of the eigenvalues
of ¥,. If the following sets of conditions hold:

(43)
(46)

Pz < a2py
T, < agTy

Py S 5} 2
Ty S QoTy

for a specified value of «y, e.g., ag = 1/\/5 =~ 0.71, one
can reliably match the basic shape structure of data and model
using only the eigenvectors of the matrices ¥, and ¥;. Again,
the exact value of cs could be computed for any given set of
objects and any given level of sensor noise via exhaustive
testing if needed. In this case of eigenvalue distinctness,
the identity transformation and the 180° rotations about the
eigenvector axes corresponding to r, 7y, and 7. provide a
very good set of only four initial rotations that will yield the
correct global minimum for a wide class of model shapes.

If two of the three eigenvalues are approximately equal but
significantly different from the third for both data and model
shapes, the number of initial states need only be expanded for
rotations about the nonambiguous axis, thereby reducing the
total number of initial rotational states.

If neither of the above cases for global matching hold true
(i.e., pr = py = p; and r; =~ ry, = r.), then one must use a
fine sampling of quaternion states that cover the entire surface
of the northern hemisphere of the unit 4 sphere uniformly.

The rotation groups of the regular polyhedra, which have
been well known to crystallographers since the 1800’s [29],
provide a convenient set of uniformly sampled initial rotations:
(a) 12 tetrahedral group states, (b) 24 octahedral/hexahedral
group states, and (c) 60 icosahedral/dodecahedral group states.
The tetrahedral states are a proper subset (subgroup) of the
octahedral/hexahedral states and the icosahedral/dodecahedral
states. The octahedral/hexahedral states are not properly con-
tained in the icosahedral/dodecahedral states. For a convenient
listing of these rotations in quaternion form, see Appendix A
of [32].

From an implementation point of view, one has the option
of using precomputed lists or nested loops. For the nested
loop case, all normalized combinations of go = {1,0}, ¢; =
{+1,0,-1}, g2 = {+1,0,—1},and g5 = {+1,0, —1} provide
an easy-to-compute set of 40 rotation states that includes the
tetrahedral and the octahedral/hexahedral groups. (One must
ensure that the first nonzero quaternion component is positive
to avoid duplication of states.) For a really complicated set
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of shapes, all normalized combinations of g9 = {1,0.5,0},
a1 = {+1,0.5,0,-0.5,-1}, g2 = {+1,0.5,0,-0.5, -1},
and g3 = {+1,0.5,0,—0.5,—1} provides another easy-to-
compute set of 312 initial rotation states. Another scheme for
a very dense sampling of states is to refine the 60 states of
the icosahedral group by subdividing triangles using a 1 to 4
split and using an increased number of rotations about each
axis specified by each vertex of the refined icosahedron.

The general rule of thumb is the more complicated the
object, the more initial states required. Any method of getting
a sufficiently dense, uniform distribution of quaternions over
the northern hemisphere of the unit 4 sphere (or over the
full interior and surface of the unit 3 sphere) is adequate. In
general, every application may want to use a customized set
of initial quaternions that will maximize the probability of
choosing a good starting point early for the shapes of interest.

B. A Counter Example

Although the above methods for global shape matching will
work very well for many shapes with a small probability of
error, we can also state categorically that for any given fixed
set of initial rotation states, one can construct a shape X that
cannot be correctly registered by the algorithm. Begin with
a sphere of radius R. Add a thin spike of length S to the
surface of the sphere for each specified axis and for each
rotation about that axis as indicated by the fixed set of initial
rotation states. Next, add one or more spikes of length S + ¢
anywhere that the extra spikes will fit. If the extras will not
fit, make the original spikes thinner. Then, sample points on
the surface of this shape with any desired scheme so that there
is at least one point per spike, including one at the tip of each
spike. The ICP algorithm combined with the given fixed set
of initial rotation states will not be able to register a generic
repositioning of this point set with the original object in such a
way that the longer (or shorter) spikes are correctly registered
with each other. It can safely be predicted that the proposed
registration algorithm will have difficulty correctly registering
“sea urchins” and “planets.” These shapes are characterized
as having almost exactly equal eigenvalues of the covariance
matrix X, and as having small shape features at a fine scale
relative to the overall shape. Of course, for any given fixed set
of object shapes, the set of initial rotations can be increased
to guarantee correct registration.

C. Local Shape Matching

The proposed registration algorithm is definitely not useful
if only a subset of the data point shape P corresponds to
the model shape X or a subset of the model shape X, that
is, the data point set includes a significant number of data
points that do not correspond to any points on the model
shape. Unfortunately, this is a trait of the majority of the
shape matching algorithms that have ever been implemented.
Moreover, this is a common problem in computer vision since
data segmentation algorithms often misgroup one set of data
points with another distinct group of points that should not be
grouped together.

The ICP algorithm is still useful for local matching problems
where the entire set of data points P matches a subset of
the model shape X. The drawback is that more than one
initial translation must be used, which increases the cost of
computing the correct registration. If N, is the number of
initial translation states, N, is the number of initial rotation
states, and each closest point evaluation of P relative to X
costs O(N,N,.), in the worst case, the total cost of local
matching is O(N,NyN;N,) as opposed to the cost of global
matching O(NyN,N,). The number of initial translations is
also dependent on the relative size of the data point set P
compared with the model shape X. By defining a quantity n
as the ratio of the “sizes” of the data and model shapes

m(X)

n=py 21 @7)
where m(-) is a general measure that measures approximate
1) arc length if X is a curve, 2) area if X is a surface, and 3)
volume if X is a volumetric point configuration, then one can
estimate the basic qualitative behavior of the required number
of translation states as Ny = c¢(X)n for most shapes, where
¢(X) is an approximate proportionality factor that depends on
the complexity of the shape X being matched.

Computing such an estimate m(X) is straightforward for
the shape X, but evaluating m(P) is more difficult because P
may simply be a point set, and the corresponding length, area,
and volume on the shape model X is unknown. One can use
a convex hull, surface Delaunay, or closest point connection
algorithm to get accurate measures for volumes, areas, and
arc lengths, but it is more likely that one would design an
algorithm to tolerate up to a particular percentage of occlusion,
and a fixed set of translations would be computed to handle
all objects in a given class of objects with up to that level of
occlusion. Examples of local shape matching are demonstrated
in the next section.

VI. EXPERIMENTAL RESULTS

This section is divided into three sections: 1) point set
matching, 2) curve matching, and 3) surface matching. All
programs were written in C. Any quoted approximate times are
given for execution on a single-processor computer rated at 1.6
Mflops on the 100 x 100 double-precision Linpack benchmark.

A. Point Set Matching

In this section, we demonstrate the ability of the ICP
algorithm to perform local point set matching without cor-
respondence. Table I lists a point set with eight points that
is to be matched against a set of 11 points. Fig. 4 shows the
two point sets prior to registration. Fig. 5 shows the two point
sets after registration by the ICP algorithm after six iterations,
which took less than 1 s. The computed registration is

-48.078 6.65685 119.479
(0.0321865 0.998188 -0.0508331)
55.7188 degs

0.437608 mm

Translation:
Rotation Axis:
Rotation Angle:
RMS Error:

The algorithm does not pay attention to the extra points or
to the ordering of the points because it always pairs a given
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Fig. 4. Set 1 and set 2 prior to registration.

Fig. 5. Set 1 and set 2 after ICP registration.
TABLE 1
TWO 3-D POINT SETS: SET 1 1S A SUBSET OF SET 2
xl yl z1 x2 y2 22

43.89 -5.88 106.99 72.78 7.12 146.10
42.02 20.52 112.52 70.19 24.80 148.67
42.01 25.39 113.25 76.21 18.28 147.20
44,95 4.69 112.60 72.71 17.69 148.09
44.12 17.96 115.15 70.67 4.62 145.95
48.26 -1.37 113.59 64.38 -5.40 143.59
46.28 7.03 114.58 72.47 -1.16 143.85
47.00 18.52 117.65 69.82 19.81 148.32

77.00 25.00 150.00

80.00 -10.0 140.00

83.00 30.00 145.00

point on the first set to the closest point on the other set. Only
one initial rotation state and one initial translation state were
used in this example of local matching. In general, one must
use an initial set of rotations combined with an initial set of
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translations to achieve local matching. Compared with basic
point set matching, which requires the same number of points
listed in direct correspondence, we are essentially trading off
additional CPU time for local matching capability and point
order insensitivity.

1) Computational Issues: 1f one were to use a brute-force
tree search (testing every possible correspondence and choos-
ing the best one) in order to find the best match, this type
of registration would require (Nleﬂm, operations of the basic
least squares quaternion match. For the simple example of
local matching above with NV, = 8 and N, = 11, a brute
force test would require 6 652 800 quaternion registration
operations. The above registration required only six operations
since the initial state was already a member of the equivalence
class of the global minimum. Even with 24 initial translation
states and 60 initial rotation states allowing ten iterations for
each combined initial state, we would require only 14 400
operations to provide an exhaustive and very capable matching
ability. Moreover, it only takes a few minutes for these types of
small point sets. The computation reduction ratio of the ICP
algorithm compared with brute-force testing for this simple
case is 462:1. Of course, other alternatives are possible, but
we see that considering 1440 initial states is not unreasonable
when the ICP algorithm is used to move from initial state to
local minimum.

In the African mask example in the surface section below,
we accurately registered a point set with N,=2500 points
to a point set with N,=4200 points using 60 initial rotation
states in less than 8 min. The amount of brute-force enumer-
ation testing required for this case is ridiculously large; more
than 1700%%0(> 107990) operations are required. Even at 1
TeraOp/s (10'2) for the age of the universe 108 s, this exact
brute-force enumeration of all possible combinations would
require well over 10250 universe lifetimes!

B. Curve Matching

In this section, the ability of the ICP algorithm to do local
free-form curve matching is demonstrated. A 3-D parametric
space curve spline was defined as a linear combination of
cubic B-splines and control points. A copy of it was translated
and rotated to be relatively difficult to match. The rotated
and translated curve was converted to a polyline description
with 64 points. Each z,y, z component of each point of the
polyline was then corrupted by zero-mean Gaussian noise with
a standard deviation of o = 0.1 (compared with a curve size
of 2.3 x 2 x 1 units). The +3¢ range of 0.6 units is clearly
visible compared with the size of the object. We then cut off
over half of the noisy polyline leaving a partial noisy curve
shape. Fig. 6 shows the two space curves prior to registration.
Fig. 7 shows the two space curves after ICP registration using
12 initial rotation states and six initial translation states for a
total of 72 initial registration states. If the registration to move
the curve away from the original curve is post-multiplied by
the registration recovered using the ICP algorithm, we should
obtain a matrix close to the identity matrix except for the
effects of noise. The match of the partial noisy curve to the
original spline curve yielded the following registration matrix,
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Fig. 6. Ideal and a partial noisy space curve before registration.

Fig. 7. Ideal and a partial noisy space curve after registration.

which is very close to the identity matrix:

Translation: 0.023540 0.006925 -0.015471
Rotation: 0.999925 -0.012227 -0.001007
Matrix: 0.012262 0.998647 0.050550
0.000387 -0.050557 0.998721

C. Surface Matching

In this section, the ability of the ICP algorithm to register
free-form surface shapes is demonstrated.

1) A Bezier Surface Patch: A simple parametric Bezier sur-
face patch was constructed for quick testing of the free-form
surface matching capability of the ICP algorithm. A set of
250 randomly positioned points was evaluated in the interior
of the domain of the surface patch and translated and rotated
in a random manner. The points of this point set are connected
by lines indicating the point list sequence; they do not indicate
line geometry to be matched. The surface patch is drawn

Fig. 8. Noisy point set and surface patch prior to registration: 250 points
matched to 450 triangles.

Fig. 9. Noisy point set and surface patch after registration.

via isoparametric lines indicating 450 triangles and fits in a
3 x 3 x 1 units box. Following the space curve example, 3-
D vector noise with a standard deviation of 0.1 units in each
direction was added to the point set data to create a noisy
point set. The surface patch and the noisy point set are shown
prior to registration in Fig. 8. After running the ICP algorithm
with same 24 initial rotation states for a total of about 3 min,
we obtained the result shown in Fig. 9. The initial positioning
transformation multiplied by the recovered transformation for
the noisy point set yields the following approximate identity
transformation:

Translation: -0.057329 0.013923 0.018430
Rotation: 0.999357 0.034041 0.011264
Matrix: -0.033883 0.999328 -0.013935
-0.011731 0.013545 0.999840

This demonstrates that global matching under noisy condi-
tions works quite well.

A subset of 138 noisy points was used to test the local
matching ability. The surface patch and the noisy point subset
are shown prior to registration in Fig. 10. After running the
ICP algorithm with 24 initial rotation states and six initial
translation states for a total of about 6 min, we obtained
the result shown in Fig. 11. The initial positioning trans-
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Fig. 10. Noisy point subset and surface patch prior to registration: 138 points

and 450 triangles.

Fig. 11.

Noisy point subset and surface patch after registration.

formation multiplied by the recovered transformation for the
noisy point subset yields the following approximate identity

transformation:

Translation:
Rotation:
Matrix:

-0.166476

0.990806
-0.113595
-0.073474

0.159480 0.128289
0.113548 0.073548
0.993521 -0.003545
-0.004842 0.997285

This matrix approximation to the identity is much less
precise than the global matching case, but the data is so noisy
and the shape is so featureless that we found it surprising that
the registration came out as well as it did.

2) The NRCC African Mask: In this experiment, range data
from the National Research Council of Canada’s African
mask example was obtained using the commercially available
Hyscan laser triangulation sensor from Hymarc, Ltd. A low-
resolution 64 x 68 gridded image was computed from the
original data set for use in our experiments and is shown in
Fig. 12. This data will serve as the model surface description
with 8442 triangles (4221 quadrilateral polygons). A thinned
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Fig. 12. Model surface: Range image of mask: 8442 triangles.

Fig. 13. Data: Rotated and translated point set of mask: 2546 points.

version of the measured data point set containing 2546 points
is used as the data point set and is shown as scan lines in a
test registration view in Fig. 13.

All trial positionings of the 90-mm object, including the
one shown above, converged to the correct solution in about
10 min, and all cases had a 0.59-mm RMS error. This includes
six iterations worth of testing on each of 24 initial state vectors
and full iteration on the best state of the six initial iterations. A
side view of both the digital surface model and the measured
point set as registered is shown in Fig. 14. The registration
is quite accurate.

A Bezier surface patch model of the mask was created to
test the parametric surface matching capability on the given
shape. This model is shown in in Fig. 15. The point set
in various rotations and translations was then registered to
the parametric surface model. We had expected about a 1.2-
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Fig. 14.  Side view of range image model and registered point set.

mm rms distance, but the final solution had a 3.4-mm rms
distance. After examining the results closely, we discovered
that surfaces had not been created in regions where there were
measured points. Note the extra data points for which there
was no possible surface correspondence and the evidence of
misregistration in Fig. 16. Overall, this match was not bad
considering the circumstances. After a post-processing step
to ignore any measured points whose point-to-surface vectors
were not within a few degrees of the surface normal at the
corresponding points, the misregistration disappeared, and the
data locked in on the surface with the expected rms distance.
Although the ICP algorithm is not designed to handle data
points that do not correspond to the model shape, one can
conclude that 2 minor misgrouping of nearby points will
usually have a minor effect. Another important point to keep
in mind is that the matching algorithm does not care about
the partitioning of the composite surface model into separate
surface patches.

As a final test on the mask, about 30% of the points from
the measured data point set were deleted as shown in Fig.
17. The registration algorithm locked in on the solution and
gave a slightly improved rms distance in less time than the
full data set.

3) Terrain Data: For the final set of experimental results,
some terrain data for an area near Tucson was obtained from
the University of Arizona. Fig. 18 shows a shaded image
of the rugged terrain. The dimensions of the model surface
are 6700 x 6840 x 1400 units. A point set was extracted
by performing 56 planar section cuts at regular intervals
along one axis and then thinning out the data using a chord
length deviation check. An interior section of this data set
was extracted such that about 60% of the surface area of
the original data set was covered. The resulting data set

Fig. 15. Surface patch boundaries of a set of parametric surfaces: 97 cubic
Bezier patches.

Fig. 16. Side view of parametric surface model and registered point set.

contained 13 655 points and is shown in Fig. 19. The data
point set was then lifted above the model surface and rotated
to be approximately orthogonal to the model set as shown
in Fig. 20. The ICP algorithm performed local matching to
the model surface using 24 initial rotations and one initial
translation. The registration process for these larger data sets
took about 1 hr. The results are shown in Fig. 21. The
initial positioning transformation multiplied by the recovered
transformation yields the following approximate identity trans-
formation, which demonstrates that surface matching for very
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Fig. 18. Model surface: Rugged terrain near Tucson, AZ: 45 900 triangles.

complex surface shapes works quite well:

Translation: -11.330336 1.404177 0.934043
Rotation: 0.999994 0.003308 -0.000231
Matrix: =~0.003309 0.999994 -0.000505

0.000230 0.000505 1.000000

VII. CONCLUSIONS

The iterative closest point (ICP) algorithm is able to register
a data shape with N, points to a model shape with N,
primitives. The model shape can be a point set, a set of
polylines, a set of parametric curves, a set of implicit curves,
a set of triangles, a set of parametric surfaces, or a set of
implicit surfaces. Any other type of shape representation can
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Fig. 19. Data: Rugged terrain near Tucson, AZ: 13 655 points.

Fig. 20. Data and model of rugged terrain prior to registration.

Fig. 21.

Data and model of rugged terrain after registration.

be incorporated if a procedure for computing the closest point
on the model shape to a given point is available. If a data shape
were to come in a form other than point set form, a dense set
of points on the data shape can serve as the data point set.
The accelerated ICP algorithm converges to a local mini-
mum quickly in comparison with generic nonlinear optimiza-
tion methods. It is fast enough that global shape matching
can be achieved using a sufficiently dense sampling of unit
quaternions used as initial rotation states, and local shape
matching can be achieved by combining a sufficiently dense
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sampling of relevant translations. The complexity of a single
ICP iteration is O(N,N,) in the worst case. For N, initial
translations and N, initial rotations, the overall worst case
complexity of local matching is O(N,N,N,N,).

The advantages of the ICP shape matching algorithm are
as follows:

* It handles the full six degrees of freedom.

* It is independent of shape representation.

* The surface patch or curve segment partitioning of para-
metric or implicit entities is essentially ignored by the
matching procedure. This is important for using CAD
data in its native form without elaborate user-guided
preprocessing.

* It does not require preprocessing of 3-D point data,
such as smoothing, as long as the number of statistical
outliers is near zero. This is usually the case with accurate
noncontact sensors used for inspection purposes.

* It does not require any derivative estimation or any local
feature extraction.

* Almost all aspects of the algorithm are ideally suited
for coarse-grain or fine-grain parallel architectures. For
large problems, even remote execution procedures and
distributed file systems on networks of workstations can
provide worthwhile speedup without significant overhead.

* Global matching is achieved at predictable cost based on
shape complexity.

* Local matching is achieved at predictable cost based

on shape complexity and the percentage of allowable

occlusion.

It can handle a reasonable amount of normally distributed

vector noise, with standard deviations of up to 10% of

object size demonstrated above.

* The method generalizes to n dimensions by substituting
the SVD algorithm [23] for the quaternion algorithm with
the added feature that reflections are allowed.

* The method can be made statistically robust by substitut-

ing iterations of the SVD-based algorithm by Haralick er

al. [28] for the quaternion algorithm to identify outliers.

The increased computational requirements are significant.

It can easily be used in conjunction with other algorithms,

such as the covariance matrix alignment, which preorient

the data so that fewer initial rotation states are necessary.

* Shapes with three sufficiently distinct principal moments
(eigenvalues) can be globally matched at a cost of only
four initial rotation states.

* It is relatively insensitive to minor data segmentation
errors as indicated by the performance of the registration
of points with the African mask parametric surface model.

* The results of the last iteration of closest point registra-
tion can be used directly as inspection results since the
distance to the closest point on a surface is computed as
a byproduct.

* The accelerated ICP algorithm can achieve Newton-type
quadratic convergence steps at less cost than a numerical
steepest descent step. No time is spent evaluating the
objective function to find worse mean square errors off
the path to the local minimum goal.

The disadvantages of the ICP shape matching algorithm are

as follows:

It is susceptible to gross statistical outliers unless a
statistically robust method is substituted at some point
(either in preprocessing or registration computation) for
outlier detection.

* The fast least squares quaternion and SVD methods are
not so easily adapted to weighted least squares extensions,
meaning that it is difficult to extend the fast algorithm to
allow the assignment of unequal uncertainties to points,
as was done in [54]. This is not a major inconvenience
for inspection applications but would yield noticably
suboptimal results for navigation laser radars and long
depth of field triangulation systems, where uncertainty
increases significantly with range.

* The cost of local matching can get quite large for small
allowable occlusion percentages, e.g., 10% or less. We do
not advocate our proposed method if feature extraction
techniques will successfully solve the problem.

* The generalization to matching deformable models with
high order deformations [57] is not straightforward with-
out, e.g., enumerating a dense set of possible deforma-
tions.

* As an extension of the outlier rejection issue, the stated
algorithm does not solve the segmentation problem, of
course. If data points from two shapes are intermixed and
matched against the individual shapes, the registrations
will be wrong, and the mean square distance metric will
be large. This is a problem with almost all of the shape
matching algorithms in the literature.

* For any given fixed initial set of rotations, the global
shape matching capability can be defeated even without
sensor noise by constructing “sea urchin” or “planetoid”
shaped objects based on the set of rotations such that
correct registration cannot be guaranteed. On the other
hand, for a fixed set of objects and no sensor noise, one
can determine an initial set of registrations in a finite
amount of time such that one can guarantee registration
in a finite amount of time with a sufficiently small
probability of error.

* In the limit of very complicated sea urchins or perfectly
spherical planets with a single 1 zm bump or in the limit
of very localized matching (1% of object shape or less) on
any object, the ICP algorithm degenerates to brute-force
3-D template matching. Feature extraction techniques, if
possible, are preferable in such circumstances.

VIII. FUTURE DIRECTIONS

Although we have tried to present compelling results, no
method with such promise is likely to be widely accepted until
more testing has been done. We believe the algorithm for point
sets, polyline sets, and triangle sets are simple enough to be
widely implemented and tested.

The accelerated ICP algorithm is quite efficient, but there
is plenty of room for further computational speedup. For
example, we have not discussed the use of k—d trees to ensure
expected cost of O(log N,) rather than the worst case O(N,,)
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performance in the closest point operation. Actual testing on
parallel architectures also needs to be done.

Given a large but finite amount of off-line processing, it
seems reasonable to make the following statements: For a fixed
set of objects, a given level of allowable occlusion, a given
maximum possible (Gaussian) noise level, and a set of initial
registration states, it is possible to estimate the probability of
registration failure by carrying out exhaustive tests. For a 1%
(of the smallest shape size) noise level and a 40% maximum
allowable occlusion, our tests indicate that very low probabil-
ities of failure should be achievable with minimal extra work.
The method needs to be characterized in such detail.

A single complicated object in a set of simpler objects may
require a large set of initial registrations to handle the entire
set of objects with certainty. Unfortunately, much time is then
spent testing initial registrations with simpler objects such that
one is continually homing in on the same local minimum
over and over again. With some extra bookkeeping, it may
be possible to quickly recognize a familiar local minimum
well that you have already fallen into a few times and abort
that iteration or to use penalty function methods to penalize
walking down a path that has already been explored. The
appropriate shape of the penalty functions would depend on
the shape of the region of attraction in 6-D, which is difficult
to quantify and analyze.

It may be possible to extend the basic least squares registra-
tion solution to allow deformations (independent axis scaling
and bending) of the model shapes when matching to the
data shapes. Shears and separate axis scaling can be easily
accomodated by allowing a general affine transformation;
allowing even quadratic bending about the center of mass
significantly complicates matters.

Finally, these free-form shape matching methods are likely
to be useful as part of a 3-D object recognition system.
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