
Feature Article

vfaces:

lanar polyhedra are used for geometric P modeling of solid objects in a wide vari-
ety of applications. A major benefit of modeling with
polyhedral meshes lies in the simplicity of the repre-
sentation. Since planar polygons-and triangles in par-
ticular-are standard rendering primitives, they are
especially useful in modeling objects for visualization.

A fundamental disadvantage, however, is that many
planar faces are required to accu-
rately describe complex shapes. This
problem is frequently compounded
by the algorithms used to construct
the meshes. For example, almost all
algorithms for creating polyhedral
surfaces from data sampled on a
regular 3D grid produce meshes
with many small faces. This is
because the grid spacing limits the
maximum face size. With tilingalgo-
rithms that connect contours lying
on a pair of adjacent 2D slices, the
mesh faces can span no more than
two slices.

Voxel-based algorithms construct
isosurfaces by tessellating the 3D
data into cubic or tetrahedral cells

and computing where the isosurfaces pass through
each cell. The faces produced by these algorithms are
even more limited in size, since each face lies within a
single cell (which is at most the size of a voxel). As a
result, a typical mesh of a human sltull produced from
a 3D computed tomography (CT) study can contain
from 250,000 to over 1 million triangles.

We present a general-purpose algorithm for simpli-
fying polyhedral meshes by reducing the number of ver-
tices, edges, and faces. This algorithm, called
Superfaces, makes two major contributions to the
research in this area:

This algorithm simplifies

polyhedral meshes within

prespecified tolerances

based on a bounded

approximation criterion. The

vertices in the simplified

mesh are a proper subset of

the original vertices.

H It uses a bounded approximation approach, which
guarantees that a simplified mesh approximates the

Alan D. Kalvin
IBM T.J. Watson Research Center

Russell H. Taylor
Johns Hopkins University

original mesh to within a prespecified tolerance. That
is, everyvertexv in the original mesh will lie within a
user-specified distance E of the simplified mesh.
Its face-merging procedure is efficient and “greedy”-
that is, it does not backtrack or undo any merging
once completed. Thus, the algorithm is practical for
simplifymg very large meshes.

As the title of this article suggests, we are primarily
concerned with creating geometrically accurate simpli-
fications. We believe that it is far more useful and mean-
ingful to consider “simplification quality” in terms of 3D
approximation errors than it is to make subjective visu-
al assessments based on 2D renderings of the simplifi-
cations. Of course, simplifying meshes in a way that
yields nice-looking pictures is desirable, but it is not the
driving issue here.

Related work
Schmitt et a1.l used a top-down approach to simplify

a regular rectangular mesh by refining a coarse approx-
imating mesh of piecewise bicubic patches until it was
within a given error bound of the original mesh.
DeHaemer and Zyda2 developed a variation of this
method, using planar rectangular patches. Kalvin et al.3
simplified isosurfaces generated from sample points on
regular 3D volumes;-the algorithm adaptively merges
redundant coplanar polygon faces, preserving the shape
of the original polyhedron.

Schroeder et al.4 used a method called “triangle dec-
imation,” which reduces the number of faces in a trian-
gular mesh by a specified percentage through iterative
removal of vertices. Hamann’ described a method that
uses iterative removal of triangular faces ranked byver-
tex curvature estimates and shape. Turk6 “re-tiled”
polygonal surfaces by triangulating a new set of vertices
that replaces the original one. Hoppe et al.7 developed
a mesh optimization algorithm that uses an energymin-
imization scheme to simplify meshes. A method pre-
sented by Gukiec and Dean8 simplified isosurface
meshes derived from a tetrahedral tessellation of a 3D

64 May 1996 0272-1 7-1 6/96/$5 00 0 1996 IEEE

grid; the algorithm successively removes edges, favor-
ing removals in regions of low curvature.

Rossignac and Borrel developed a multiresolution
approximation scheme that produces a series of approx-
i m a t i o n ~ . ~ This scheme was developed for real-time
visualization, and its goal was to preserve the appear-
ance of 2D renderings of a 3D scene as the viewpoint
varies. Unlike the other methods described in this sec-
tion, this algorithm was not concerned with preserv-
ing the topology or geometric accuracy of the original
mesh objects.

Hinker and Hansenl’ developed a simplification
method called “geometric optimization.” This algo-
rithm was developed at about the same time as
Superfaces.” Like Superfaces, it simplifies by first merg-
ing quasicoplanar faces and then triangulating the
perimeters of these merged faces (the so-called super-
faces). Despite the apparent similarity between these
algorithms, they differ in many ways. For one thing, the
geometric optimization algorithm solves a much sim-
pler problem, since it simplifies without limiting
approximation errors. Another major difference is that
geometric optimization assumes that degenerate poly-
gons are not created during the face-merging phase. It
therefore does not check for them, as the Superfaces
algorithm does. Since degenerate polygons can indeed
occur, the geometric optimization algorithm can pro-
duce degenerate results.

Superfaces is also computationally more efficient. In
both algorithms, the total running time is dominated
by the initial face-merging step, which processes each
of the N original polygon faces individually. For this
step, Superfaces performs an O(N) time greedy merge,
compared with the O(N1ogN) process used by the geo-
metric optimization algorithm. Since the need for mesh
simplification tends to grow with the mesh size (num-
ber of polygons), this difference in computational effi-
ciency is important in practical applications.

The Superfaces algorithm also appears to be far more
effective in reducing the total polygon count. Currently,
we cannot state this with complete certainty (since we
have not yet compared the two algorithms directly
using common data sets), but two arguments suggest
its likely truth.

First, at each step of the face-merging phase,
Superfaces controls the merging by considering an infi-
nite number of possible “approximating planes” solu-
tions (see below, “The approximating planes of a
superface”). The merging of new faces into the current
superface stops only when this solution set of approxi-
mating planes disappears. The geometric optimization
algorithm controls the merging process by what is
essentially a single approximating plane. This greatly
limits the amount of face-merging possible, especially
when this single plane is not well chosen.

Second, before triangulation of the superface
perimeters, the Superfaces algorithm reduces the size
of these perimeters by merging quasilinear edges (while
preserving the error bound). In contrast, geometric
optimization merges strictly colinear edges only. Since
the number of triangles in the simplified mesh is essen-
tially the same as the number of perimeter edges,

l.-lll”*lll“.”ll“.l.l~l-̂ ll~~l-”l-.l, - -_. -11-1 -_*_

Simplifying models of human anatomy

major motivation for its development is our interest in geometric
modeling of human anatomy. In medicine, particularly in areas of
patient therapy (for example, surgical planning, computer-assisted
surgery, and radiotherapy treatment planning), it is critical to
provide physicians with accurate models of the patient’s anatomy.
For simplified models to be accepted in clinical use, they must
preserve some useful, quantifiable measure of fidelity to the
original models.

Judging the quality of simplifications by visual inspection of 2D
renderings of the simplified models is not sufficient. For this reason,
clinicians are generally hesitant to base therapeutic treatment on
models produced by existing simplification algorithms. The
concerns about geometric inaccuracies usually outweigh the
advantages of working with smaller data sets. The Superfaces
algorithm explicitly addresses this concern and provides what we
believe is a practical solution.

Although the Superfaces algorithm is domain-independent, one

Superfaces will produce a simplified mesh with a small-
er number of triangles for a given set of merged faces.

Preserving geometric accuracy
The important goal of ensuring that the reduced

mesh is a good geometric approximation of the origi-
nal mesh has been considered in a number of ways.
Schroeder et al.4 used a simplification criterion mea-
sure based on the distance of avertex to a plane or edge.
These distances were measured relative to intermediate
mesh approximations, not the original mesh. For tri-
angular meshes produced from bivariate functions,
Hamann’s method’ computed a root-mean-square
approximation error and used it as a stopping criterion
for the simplification process. Turk6 used a “point repul-
sion” method of uniformly distributing the set of sim-
plified vertices over the original mesh to preserve the
fidelity of the simplified mesh to the original.

Gueziec and Dean’ focused on preserving accuracy in
high-curvature regions. They reported results showing
that their method produced more accurate meshes in
these regions than were created by subsampling the ini-
tial 3D volume before isosurface generation.

Hoppe et al.7 defined the approximation error of a
simplified mesh to be the sum of squared distances from
the original vertices to the simplified mesh. They used
this error measure as the “distance energy” term in the
energy function that is minimized.

The only methods we are aware of that actually main-
tain bounds on the approximation errors introduced in
the simplification process are the algorithms of Schmitt
et a1.l and DeHaemer and Zyda.2 Both methods apply
only to regular rectangular meshes.

An essential advantage of the Superfaces algorithm
accrues from the following properties:

it provides a provable bound on the approximation
error, and
it applies to any polyhedral mesh that is a valid man-
ifold (the mesh need not be regular or closed, and its
faces need not be triangles).

IEEE Computer Graphics and Applications 65

Feature Article

1 A polyhedral
model of a skull
partitioned into
superfaces.

2 Detail of the
skull model
shown in
Figure 1.

66

The Superfaces algorithm
In describing the Superfaces algorithm, we use the

following terms: A surface patch is a set of connected
polyhedral faces, and the boundary of a surface patch is
the set of vertices lying on its perimeter. The boundary
of each surface patch forms a nonplanar polygon, called
asuperface. We say that a superface subsumes the faces,
vertices, and edges of the underlying surface patch. The
faces that surround a surface patch (that is, those faces
adjacent to a surface patch) are called borderfaces ofthe
corresponding superface.

In simplifymg a polyhedral mesh PO, the Superfaces

May 1996

algorithm partitions the faces inPo into a set of surface
patches and approximates PO by approximating each
surface patch with a triangulation of its corresponding
superface. The algorithm has the following key features:

1. The simplified mesh approximates the original mesh
to within a given tolerance. That is, no vertex in the
original mesh is more than a user-specified distance
E from the simplified mesh. Since the vertices of the
simplified mesh come from the original mesh (see
point 5 below), the converse is obviously true as
well. That is, no vertex in the simplified mesh is
more than E from the original mesh.

2. The algorithm is very efficient, and it is a practical
method for simplifymg very large meshes, such as
those derived from medical CT and MRI data (see
sidebar on previous page).

3. The topological properties of the original mesh are
preserved.

4. The method is domain-independent; it does not
require any knowledge about the nature of the data
to perform the simplification.

5. The vertices on the superface boundaries form a
proper subset of the set of original vertices, so the
algorithm is particularly suitable for building hier-
archical representations of polyhedral meshes.

The Superfaces algorithm simplifies a mesh in three
phases:

1. Superface creation. A face-merging procedure par-
titions the original faces into superface patches.
Figure 1 shows a polyhedral object partitioned into
superfaces, which are the colored patches sur-
rounded by black perimeters. Figure 2 shows a
close-up view of the skull in Figure 1 (near the teeth)
with the original mesh shown in black to illustrate
a typical relationship between the sizes of super-
faces and the faces in the original mesh.

2. Borderstraightening. The borders of the superfaces
are simplified by merging boundary edges. We call
these merged edges superedges.

3. Superface trianplation. Triangulation points for the
superfaces are defined. In this phase, a single super-
face can be decomposed into many superfaces, each
with its own boundary and triangulation point.

Phase I : Superface creation
Superface growing is based on a bottom-up, face-

merging procedure It is a “greedy” method-that is, it
does not backtrack or undo any merging once done. A
major reason for the algorithm’s efficiency is that the
face-merging runs in time linear in the number of faces.

The creation of a superface begins with the selection
of an initial “seed” face that grows through a process of
accretion. Border faces (that is, faces on the current
superface boundary) are merged into the evolving
superface if they satisfy the required merging criteria.
A superface eventually stops growing when there are no
more faces on its boundary that can be merged.

The “seed’ faces for growing the superfaces are select-
ed randomly from the set of (unmerged) faces in the

original mesh. The superface creation process ends
when all the original faces have been merged.

The approximating planes of a superface.
Associated with each superface F is a set E of feasible
approximating planes. Every plane p E E satisfies the
bounded approximation constraint, which stipulates that
all vertices subsumed byFlie within a bounded distance
of p, together with some other constraints that we will
discuss below.

Also associated with each superface F is a “nominal”
coordinate system N = [R, vel, where R is a rotation
matrix and vo is the coordinate system origin in global
coordinates. Nis somewhat arbitrary, but chosen so that
the outward facing normal ofF is aligned approximate-
lywithRz (the z-axis ofnr), and vo is located somewhere
“Within”F. In the following discussion, we assume that
all vertices and planar faces have been transformed into
this coordinate system.

Choosing N in this way is convenient, since if we con-
sider the “direction form” of the equation of a plane, ax +
by + z = d, then E corresponds to the set of all points in
(a, b, d) space that obeya set of constraints C[(a, b, d) 5 0.
In this discussion, we use linear constraints of the form

so that E forms a polytope in (a, b, d)-space,

E = {k = [a, b, dITI C . k 5 C)

Asuperface is grown by the successive merging of indi-
vidual faces. The addition of each individual facefb gen-
erates additional constraints C, . k 2 c,, which are used to
“lop off” pieces ofE. This greedymethod stops when the
addition of a face would cause E to become empty.

In general, the number of constraints will grow lin-
early with the number of faces being subsumed into
superface F, and the polytope itself can become rather
unwieldy for computation. Therefore we approximate
the set E with a conservative ellipsoidal approximation

where Q is orthogonal and all the P1 are positive real
numbers (see Figure 3) .

The fundamental growing step. The basic
growing step is the expansion of the superface bound-
ary through the merging of all acceptable border faces.
A border facefb is accepted if it satisfies a set of merging
conditions (see below, “The merging rules”). Each con-
dition is expressed in the form of a linearized constraint
that defines a half-space in (a, b, d)-space:

If E n His empty, thenfb does not satisfy the merging
conditions and is rejected. Otherwise,fb is merged into
the growing superface, and the ellipsoidal subset of fea-
sible planes E is adjusted to satisfy Equation 1. This is
shown schematically in Figure 4.

\ I

\

/

While the ellipsoidal approximation ofE can result in
overly conservative solution sets,E can be adjusted in
constant time. Therefore, the runtime face-merging pro-
cedure is linear in the number of polyhedral faces being
merged.

Perimeter validity. To triangulate superfaces in
phase 3 of the algorithm, we need to ensure that each
superface is valid in the sense that projecting its perime-
ter into the nominal approximating plane yields a sim-
ple 2D polygon that does not self-intersect.

Checking perimeter validity is expensive because it
involves the pairwise testing of all perimeter edges for
intersection. We therefore use the following strategy to
keep down the number of perimeter checks:

Grow the superface to completion, ignoring the valid-
ity of the intermediate perimeters.

IEEE Computer Graphics and Applications

3 Apolytope
and i t s
approximating
ellipsoid.

4 Adjusting the
set of feasible
solutions.

67

Feature Article

68

If the final perimeter in not valid, “fix up” the super-

- Regrow the superface, starting again from the
original seed face.
- Check perimeter validity after each iteration of
perimeter expansion.
- Stop growing as soon as an invalid perimeter is
found.

face by regrowing it as follows:

This approach works well, since the merging rules inhib-
it the creation of invalid superfaces. Consequently, most
superfaces need just one perimeter check, and only a
small fraction of them require regrowing (in our exper-
iments, at most 3 percent of the total number of super-
faces).

The merging rules. The linear constraints that
control superface growing are derived from a set of
merging rules. In the current implementation of the
Superfaces algorithm, we use three merging rules.

Tneplanarity rule: All vertices on facefb must be with-
in a distance of ~ / 2 from each approximating planep :
ax + by + z = d .

That is, for each v = (vx, v,, v,) E fb,

This gives the pair of linear constraints on (a, b, d):

- ~ / 2 - vz 2 av, + bv, - d 5 E/Z - v,

This rule is used to ensure that each vertex in the
original mesh is within E of the simplified mesh being
created.

The face-axis rule: The orientation of face fb must be
similar to the orientation of each approximating plane
p : ax + by + z = d . This rule is expressed by

where (n,, n,, n,) is the outward-facing unit normal of
face fb; (a, b, 1) is the outward-facing normal of planep
: ax + by + z = d; and e,, is the maximum allowable
angle between these two normals.

Since the choice of Omax is somewhat arbitrary, noth-
ing is “lost” in approximating the above constraint by
the linearization:

a . n x + b.ny2 (a2 + b2 + 1) cos(OmaX) -n,
2 COS(^^^^) - n,

The noyoldover rule: Face fb must not “fold over” or
tuck under the superface. This condition is enforced by
requiring that in the orthogonal projection into each
approximating plane, the vertices of fb lie outside the
projected superface perimeter.

Let (vx, v,, v,) denote the 3D coordinates of a vertex
v, and let v‘be its orthogonal projection into planep : ax
+ by + z = d. If (u, w) is the edge offb lying on the super-

May 1996

face perimeter, and ifvis any other vertex in fb, then we
wish to ensure that d lies to the right of edge (u’, w’) .,
That is,

Le tpnom be the nominal approximating plane offb, and
let 3 be the projection of vertexv intop,,,, along (a, b,
1) (the outward-facing normal of plane p). Then $ =
(vx - avz, v, - bvZ, 0). Since the angle between the out-
ward-facing normals of p and pnom is less than 90
degrees, v‘ lies to the right of edge (u’, w‘) if and only if
$ lies to the right of edge (6, G). Hence, we can lin-
earize the no-foldover constraint by substituting 6, $,
&for u’, v‘, w‘ in Equation 2 to give

(uy - w,)vx + (wx - UXIV, + uxwy - wxuy

I a [(wz - u,)v, + Cu, - wy)vz + w,u, - uyw,l
- b [(wz - U z h x + (ux - wxlvz + wxuz - uxw,l

Gerrymandering check. An additional constraint
on superface growth can be enforced by a heuristic “ger-
rymandering “ or “irregularity” check that prevents
superfaces from becoming too long, thin, or grossly
irregular. A simple estimate of the irregularity of a super-
face is the ratiop2/R, wherep is the length ofthe super-
face perimeter, and Cl is the area of the surface patch
spanned by the superface. The threshold of acceptable
irregularityis estimated as [2(1 + h)I2/h, the ratio of
perimeter squared to area of a 1 x h rectangle.

We are especially interested in applying the Superfaces
algorithm to simplify polyhedra that have been con-
structed from 3D data using the Alligator algorithm3 or
the Marching Cubes algorithm.12 In these polyhedra, all
the faces are of similar size, and so too are the edges. So
the superface perimeterp and area Cl can be approxi-
mated by the number of perimeter edges and subsumed
faces, respectively. Since both these values are calculat-
ed during the regular course of superface growth, the
estimated superface irregularity can be calculated with
just three additional floating-point multiplications.

Phase 2: Superface border straightening
Suppose for the moment that we think of surface area

as a measure of “face size” and scalar length as a mea-
sure of “edge size.”Then the merging of faces into super-
faces in phase 1 produces a change of scale in face she
without a corresponding change of scale in edge size:
The edges on each superface perimeter are simply edges
of the original mesh, In this second phase of the
Superface algorithm, we make an appropriate change
of scale in edge size, creating superedges by straighten-
ing the superface perimeters in two steps: maximal edge
merging and edge spli(ting, as illustrated in Figure 5.

Maximal edge merging. The perimeter between
each pair of adjacent superfaces is merged into a single
superedge. That is, if F is a superface with perimeter P =
(VI, v2, . . . , vn), and Fl is a neighboring superface, then
the segments, = (~ ~ 1 , VQ, . . . , vir) of maximal common
boundary betweenF and4 is replaced by the superedge
L] =v,,.

Edge splitting. Maximal edge merging can produce
an “oversimplified mesh that is not within the required
E limit of all the vertices of the original mesh. To com-
pensate for any possible oversimplification, the
superedges are split. Typically, oversimplification occurs
when a “tongue-like’’ region of one superface “shifts” to
a neighboring superface. The result is that some of the
vertices that shift from superface F1 to superface Fz are
no longer within E of either superface. This is because

in the orthogonal projection into every one of the F1

approximating planes, the vertices lie outside the
perimeter ofF1, and
the vertices are either (a) not within E of any of the FZ
approximating planes or (b) outside the perimeter of
FZ in the orthogonal projection into every one of the
FZ approximating planes.

We use a standard polyline approximation method to
split each superedge L J = G . Let vJt be that vertex in the
segments, = (v]~ , V,Z, . . . , vir) that is furthest froml,. If the
distance fromv,, toL, is greater than some threshold d,,,
we recursively split the lines L1 =v,,V,, and L~=v ,v f , .

Asufficient condition for the bounded approximation
criterion to hold after superedge splitting is that the
splitting threshold d,,, satisfies

I& 0 deg 5 e,,, <: 30 deg

where e,,, is maximum allowable angle used by the
face-axis rule (see above, “The merging rules”).

Alternative border-straightening method.
The two-step method described above is a very conser-
vative way to straighten borders, since it requires every
vertex to be within E of its subsuming superface, even
though the bounded error condition is less restrictive
and requires only that every vertex be within E of any
superface. The advantage of this approach is its effi-
ciency. We do not have to explicitly identify exposed ver-
tices that lie too far from the simplified mesh.

A more aggressive way to straighten borders is to split
the initial superedge L between adjacent superfaces F1

and F2 only if necessary. That is, we subdivide only if
there is at least one vertex subsumed byF1 or FZ that is
further than E from both these superfaces. This
approach produces fewer superedges (and fewer trian-
gles and therefore a better simplification) than the con-
servative method described above, but it is
computationally more expensive (for comparisons, see
“Experimental results”).

Phase 3: Computing triangulation points
Recall that each superface is a polygon correspond-

ing to the boundary of a surface patch in PO, the mesh
being simplified. We want to approximate PO by approx-
imating each surface patch by a triangulation of its sub-

suming superface. In this phase of the algorithm, we cal-
culate triangulation points for the superfaces.

To find a suitable triangulation point for a nonplanar
superface fb, we computefb, the projection of fb into its
nominal approximating plane. We then search for astar
point of planar polygonfb, that is, a point v insidefb that
is visible from each of its vertices.

This method of triangulation reduces the 3D problem
to a 2D problem and guarantees a superface triangula-
tion in which no two triangles intersect. If a star point v
is found,fb is a starpolygon, and v (treated as a point in
3D lying on the approximating plane) is used as the tri-
angulation point for superface fb. If a star point is not
found, thenfb is decomposed into a set of star polygons
f bl,fbZ, . . .fbk, with a corresponding decomposition of
fb into superfaces f b l , fb2, . . . , fbk.

IEEE Computer Graphics and Applications

5 Superface
borders
(a) before
straightening,
(b) after edge
merging, (c)
after edge
splitting.

69

Feature Article

6 Monotone
polygon P.

70

L, = R,

Finding the star point of a polygon. Letfi be
the projection of superface f b into its approximating
plane, and let (VI, VZ, . . . , vn) be a counterclockwise
ordering of the vertices on the perimeter offb.

A star point v = (x, y) o f f b will lie to the left of each
edge (v~, v,+I). So v will satisfy a set of constraints
C,(v,, v,+1), linear in (x,y), ofthe form

011+1 -yJx + (xi-xi+l)y~xS/i+l-xi+lyi

The CI)s define a polytope KCfb), called the kernel of
y b . The Superfaces algorithm computes a set of feasible
star pointsKc K, using the technique described earlier
for approximating a polytope with a circumscribed ellip-
soid (see “The approximating planes of a superface”).

Since is a conservative approximation of the kernel,
it can be empty when K is not. The method might then
fail to find any feasible star points for a true star poly-
gon. In this case, the algorithm will decompose a star
polygon into multiple star polygons.

The advantage of using this suboptimal approach for
finding feasible star points is that it is both efficient, run-
ning in linear time, and trivial to implement, employing
the same polytope approximation technique used for
finding feasible approximating planes. An alternative
method for finding feasible star points is the algorithm
of Lee and Preparata.” Their algorithm is optimal and
linear, but much more complicated to implement than
the method described above.

Decomposing a polygon into star polygons.
If a simple, planar r-sided polygon has no holes, it can be
decomposed (partitioned) into at most Lr/3l star poly-
gons in O(r log r) time,13 and it can be decomposed into
a minimum number of star polygons in O(r5k2 log r)
time13 (where k is the number of reflexvertices).

However, neither of these methods can handle poly-
gons with holes, and so neither is suitable for decom-
posing 2D projections of superfaces. Since decomposing
a polygon with holes into a minimum number of star
polygons is not practical (it is NP-hard), we have devel-
oped an O(?) algorithm that will decompose a polygon,
possibly having holes, into a small (rather than mini-
mum) number of star polygons.

This algorithm does the decomposition in two phas-
es, first decomposing the polygon into monotone poly-
gons, then decomposing each monotone polygon into
star polygons.

May 1996

Frompolygorzs with holes to monotonepolygons. Let
C = (v,l, v12, . . . , v,~) be a segment or chain of polygon
P = (VI, v2, . . , v,). Cis said to be monotone with respect
to a line L if the projections of v,~, v,~, . . . , v,, onto L have
the same ordering as in the chain. In other words, any
line orthogonal toL will intersect Cin at most one point.
A polygon is monotone if it can be partitioned into two
chains that are monotone with respect to the same line
(see Figure 6).

Apolygonvertexv, is reflex if its interior angle is larg-
er than 180 degrees. A reflex vertex vi is called an inte-
rior cusp if they-coordinates of its adjacent vertices, vL-l
andv,+l, are either bothlarger or both smaller than the
y-coordinate of v,. Garey et aI.l3 showed that a polygon
with no interior cusps is monotone (with respect to the
y-axis).

Lee and Preparata developed an algorithm that
decomposes a polygon without holes into monotone
polygons by using a “plane sweep” technique to remove
all interior cusps.13 We have extended this algorithm to
handle polygons with holes and use it in the first step of
our algorithm for decomposing polygons with holes into
star polygons.

From monotone polygons to starpolygons. After parti-
tioning a polygon P (that may have holes) into monot-
one polygons PI, Pa, . . . , P,, we decompose each P, into
star polygons. (Note that in this step we don’t need to
worry about holes, since a monotone polygon cannot
have any.) The decomposition is done without intro-
ducing new vertices (also called Steiner points).

It is possible, of course, to adapt an algorithm for tri-
angulating monotone polygons so that it produces a star
decomposition by eliminating some of the internal diag-
onals created for the triangulation. This is the approach
of Avis and Toussaint.13 The difficulty for us with this
strategyis that it does not necessarily lead to decompo-
sitions with small numbers of star polygons. For exam-
ple, a straightforward modification of the O(r log r)
triangulation algorithm of Garey et a l l3 (and one that
preserves the algorithm’s computational efficiency)
does not allow much control over the number of star
polygons that will be produced.

Therefore we developed a new decomposition algo-
rithm that specifically attempts to keep the number of
star polygons small. To describe our star decomposition
algorithm, suppose polygon P is a monotone with
respect to the y-axis and has a left chain (L1, Lz, . . . , L,)
and a right chain (R1, Rz, . . . , Rr) as shown in Figure 6.
The algorithm visits the vertices of P in order of descend-
ing height (that is, y-coordinate), creating all the star
partitions in one top-to-bottom scan ofP.

Starting at the top ofP, the algorithm searches for the
first two reflex vertices. If P has no reflex vertices, it is
convex and any vertex can be chosen as the star point.
If P has exactly one reflex vertex, then this vertex is a
star point.

Otherwise, letA and B be the first and second reflex
vertices found. The basic step in the algorithm is to cre-
ate an internal diagonal fromvertexB to some vertex C
that lies belowB and on the opposite chain. This diago-
nal partitions P into

a star polygonPstar = (C, . . . ,A, . . . , B) with star point

a truncated monotone polygon Ptrunc = (C, B, . . . , Ls) .
A, and

We repeat this process, lopping off a star polygon from
the monotone polygon, until the bottommost vertex in
Pis reached, at which stage we are done.

For simplicity, we describe the process of finding the
vertex C used to define the internal diagonal [B, C] for
the case when vertexB is on the left chain. ForB on the
right chain, the method is the same with the terms “left”
and “right” interchanged. The method is described by
the pseudocode shown in Figure 7, using the following
notation:

Li and Rj are the most recentlyvisited vertices on the

(v, w) represents the directed line segment from ver-
left and right chains, respectively.

tex v to vertex w.

To find C, we descend polygon P, maintaining two
bounding line segments, (SI, Sz) and (RJ-1, A). We stop
at the first R,, the current vertex on the right chain, that
does not lie between the bounding lines segments.R,-I
becomes vertex C, and diagonal [B, C] is created (see
Figure 8). The line segment (SI, SZ) ensures that no
edges below B on the left chain will intersect diagonal
[B, C], and the line segment (RJ-l,A) ensures that allver-
tices on the right chain up to and including vertex Cwill
be visible from A.

If C is not visible fromB-that is, if C is not on the right
of (B, A)-then [B, RJ-l] is not an internal diagonal (see
Figure 9). This can occur only for termination on the con-
dition that R, is not on the right of (SI, &). The method
for handling this case is given in Figure 10 (next page).

Computational complexity
As noted earlier, the face-merging procedure in phase

1 runs in O(n) time, where n is the number of faces in
the original mesh. However, the complete algorithm
does not necessarilyrun in O(n) time. All other steps in
the algorithm (perimeter validity checking, border
straightening, and superface triangulation) require
more than linear running time in the size of the super-
face perimeters.

Nevertheless, from a practical standpoint, the number
of original faces (n) is typically much greater than the
sizes of the superface perimeters. Therefore, the crucial
issue-and the reason the Superfaces algorithm is effi-
cient-is that the initial, face-merging step is linear.

Experimental results
We now discuss some results of using the Superface

algorithm, presenting tables of error measures as well as
rendered images.
As stated previously, one of our primary interests in

simplifying polyhedral meshes is to obtain results that
preserve geometric accuracy rather than results that
simply look good. Bearing this in mind, together with
the fact that there is no single “correct” way to shade
surfaces, we have not used the same shading technique
for all renderings (even though this approach might

SE;

ex in descending order of height;
eft chain then

= FALSE) do

L , t w,
if L,lies to the right of (SI, S2) then (SI, S2) t (L,., B);

else
S t W;

if Rl is not on the left of (R,-i, A) then
terminate t TRUE:

else if R, is not on the right of (SI, SZ) then
terminate t TRUE;

f Rj\

IEEE Computer Graphics and Applications

7 When [B, c] is
an internal
diagonal,
(C, _ . _ , A , ... , B)
is a star polygon
with star point A.

8 Creating star
polygon (C, . . . ,
A, ... , B).

9 Thecase
where [B, c] is
not an internal
diagonal.

71

Feature Article

10 Creating
star polygons
when [B, c] is
not an internal
diagonal.

12 Simplified
skull (a) mesh
and (b) coior-
coded
approximation
errors in pixel
units: E = 0.5
(36.60 percent
of original
triangles).

13 Simplified
skull (a) mesh
and (b) color-
coded
approximation
errors in pixel
units-with
aggressive
border
straightening: E

percent of
original
triangles).

= 0.5 (15.58

in (B, ... , f.,,,) visible from Ln ;

.. , Lm , , ... , Ln) with star point Ln,

C, ._. , A) with star point A;

11 Original
ikull model
:349,792
triangles).

72 May 1996

make direct visual comparisons a bit easier). Rather, we
applied Gouraud shading to those meshes that have
been only slightly simplified, and we used flat shading
for the others. For the flat shading, the normal used in
rendering each triangle is a weighted sum of the trian-
gle’s surface normal and the nominal normal of the
superface to which the triangle belongs.

Human skull
We applied the Superfaces algorithm on a polyhedral

mesh of the human skull that contains 349,792 triangu-
lar faces and 174,834vertices.

The mesh was constructed by the Alligator surface
construction algorithm3 from a 170 x 170 x 173 3D vol-
ume. This volume was produced by subsampling the
slices from a CT scan of a life-size plastic replica of a
human skull consisting of 173 slices of 512 x 512 pixels.
The subsampling was done to handle current memory
limitations associated with the implementation of the
winged-edge polyhedral modeling system used in this
work. Alternatively, we could have retained the original
512 x 512 slices and constructed a partial skull from a
subvolume (for example, quadrant or octant) of the CT
scan. However, this would have led to polyhedral mesh-
es with large artificial planar regions along the subvol-
ume boundaries, which would skew the results of the
simplification. The dimensions of the bounding box

0.43

0.40

0.33
0.30

0.25

0,m
0.15
0.10

0.03

0.00

(width x depth x height) of the orig-
inal skull are 109 x 177 x 168 pixel3
= 156.5 x 254.1 x 241.2mm3, and
the unit of distance used for E is one
pixel.

Figure 11 shows the original skull
mesh, and Figure 12 shows the sim-
plified mesh that approximates the
original with a maximum error
bound of E = 0.5, using conservative
border straightening. Figure 12a
shows the simplified mesh itself, and
Figure 12b shows a color-coded
illustration of the corresponding
approximation errors (in pixel
units). Figure 13 shows the results
for simplificationwiths = 0.5, using
aggressive border straightening.

Figures 14 and 15 show the sim-
plified meshes that approximate the
original with a maximum error
bound of E = 4.0, with conservative
and aggressive border straighten-
ing. Here the simplifications are pro-
duced using flat shading.

Table 1 shows results for a range
of values for the approximation
bound E and a fixed 0,,, = 45
degrees (see above, “The merging
rules”). Each row in Table 1 shows

E the mean approximation error,
the maximum approximation
error,

the number of triangles in the
simplified mesh,
the percentage of triangles
remaining after simplification,
and
simplification running time on an
RS/6000 model 550 uniprocessor
workstation.

Note that for allvalues of& the aver-
age approximation error is approxi-
mately an order of magnitude below
the maximum allowable error.

Table 2 shows the improvements
achievable using the more aggres-
sive (and expensive) border
straightening described in the dis-
cussion of phase 2. Recall that this
approach consists of (a) straighten-
ing borders as much as possible by
creating a single superedge L
between each adjacent superface
pair (F1, F2)-maximum border
straightening-and then (b) subdi-
viding eachL only if necessary. That
is, we subdivide only if there is at
least one vertex subsumed byF1 or
FZ that lies beyond the E limit from
the simplified mesh.

Table 2 shows the results of the
first stage of this approach-maxi-
mum border straightening. Here,
setting e,,,,, = 60 degrees produced
the best results. The two additional
columns in this table are

the number of vertices in the orig-
inal mesh that lie beyond e from
the simplified mesh, and
the number of superfaces that
must have their borders adjusted
over the total number of super-
faces.

These results are very encourag-
ing and show two things:

Aggressive border straightening
improves simplification signifi-

0.M

0.40

035
0.50

0.a

0.20

0.15
0,fO

0.05

0.00

0.49

0.40

0.35
0.50

0.83

0.2Q

0.15
0.10

0.W

0.00

14 Simplified
skull (a) mesh
and (b) color-
coded
approximation
errors in pixel
units: E = 4.0
(6.91 percent of
origin a I
triangles).

15 Simplified
skull (a) mesh
and (b) color-
coded
approximation
errors in pixel
units-with
aggressive
border
straightening:

percent of
original
triangles).

E = 4.0 (2.55

Table 1. Results of simplifying the skull mesh of 349,792 triangles. ~ - - ~ ~ ~ --
Error - Trianqles - Running

Bound bproximation Error Percent of Time
E Mean Max. Count Original (m:ss)

0.5 0.0544 0.4723 128,040 36.60 9 5 2
8:03 1 .o 0.1289 0.9231 78,002 22.30
7:34 1.5 0.201 7 1.4387 50,442 14.42

2.0 0.2559 1.8690 37,438 10.70 6:41
3.0 0. 3088 2.61 19 28,388 8.1 2 6:26
4.0 0. 3358 2.7684 24,170 6.91 6:OO

__
-.

Table 2. Results of simplifying the skull mesh of 349,792 triangles-with aggressive border straightening.

Trianqles Running Vertices Superfaces Error ~ ._
Bound Approximation Error Percent of Time above to adjust/

1811 4,403 0.5 0.0947 1.4240 53,790 15.38 8:49 31
1 .o 0.21 87 1.3973 23,704 6.78 7:12 36 91 5,626
1.5 0.3402 2.371 3 15,470 4.42 6:28 56 71 3,606
2.0 0.4523 5.81 17 11,994 3.43 6:20 184 51 2,738
3.0 0.5984 3.3584 9,820 2.81 6:03 19 11 2,299

_ _ W _ _ , - - p ~ ~ - ~ ~ ~ - ~ ~ ~ - ~ ~
E Mean Max. Count Original (m:ss) c limit total superfaces

_ _

- 4.0 0.671 4 3.6544 8,934 2.55 5:52 0

IEEE Computer Graphics and Applications 73

Feature Article

16 Original
Femur model
(179,916
triangles).

17 Simplified
femur (a) mesh
and (b) color-
coded
approximation
errors in pixel
units: E = 4.0
(12.14 percent
of original
triangles).

18 Simplified
femur (a) mesh
and (b) color-
coded
approximation
errors in pixel
units-with
aggressive
border
straightening:

percent of
original
triangles).

E = 4.0 (4.41

74

3.5

30

2.5

8.0

15

1.0

0.5

00

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

cantly. For the skull we see improvements by factors
between 2.38 to 3.29. While this improvement will
drop somewhat after the necessary superface borders
are subdivided, the results should not change appre-
ciably because so few subdivisions are needed.
Very few of the vertices lie beyond the E limit. In the
worst case (E = 0.5), just 27 vertices out of 174,834

May 1996

lie beyond the limit; and for E = 2.5 and 4.0, no ver-
tices are out of range. Therefore, only a small fraction
(in the worst case, less than a fifth of one percent) of
the superfaces require border-adjustments to make
the simplified mesh satisfy the &-tolerance criterion.

These results show the significant improvements pos-
sible from using the more aggressive border-straight-
ening approach and suggest that most of the extra
expense comes from detecting out-of-range vertices.
Very little additional work (or possibly none) is required
to correct the oversimplification of the mesh and to get
the vertices back within range.

Human femur
Figure 16 shows a polyhedral model of a human

femur consisting of 179,916 triangles obtained from a
CT scan. The dimensions of its bounding box are 231 x
197 x 585 pixels3 = 90.2 x 76.8 x 228.6 mm3, and as
with the skull, E is given in pixel units.

Figure 17 shows the simplified mesh and correspond-
ingerrormap ObtainedbysimplifymgwithE = 4.0 using
conservative boundary straightening. Figure 18 shows
the results of simplifymg with E = 4.0 using aggressive
boundary straightening at em, = 60 degrees.

Tables 3 and 4 summarize the results of simplifying
over a range of E, with emax = 45 degrees used for con-
servative boundary straightening and e,,, = 60
degrees for aggressive boundary straightening.

Topographic map of the earth
Figure 19 shows a map of topographic data of the sur-

face of the earth exhibiting a range of heights from
-6,819.7 meters below sea level to 5,487.4 meters above
sea level. The mesh was produced by triangulation of a
360 x 180 rectangular mesh. (Note that the vertical res-
olution of the original data is at best 1 meter, and the
horizontal resolution is at best 5 minutes of latitude and
longitude, assuming that the earth is flat-a claim now
disputed in some quarters. In reality, the resolution is
much lower in some parts of the earth.)

Figure 20 shows the result of applying the Superface
algorithm with E = 32 meters. The approximation con-
sists of 53.2 percent of the original 128,522 triangles,
and it has mean and maximum errors of 1.27 and 26.83
meters. Running time was 3 minutes, 56 seconds.

With this data set, aggressive border straightening
was not as useful as in the previous examples. With
E = 32 meters, the aggressive straightening gives a mesh
with 32.25 percent of the original triangles, and while
the mean error of 4.63 meters is still quite reasonable,
the maximum errorjumps to 387.79 meters.

Comparing simplification algorithms
Table 5 gives a general idea of the range of running

times for different algorithms and, in particular, how
these algorithms compare in simplifying meshes of sim-
ilar sizes to the some of the meshes we have simplified
with the Superfaces algorithm.

The obvious caveat here is to avoid overinterpreting
these results. Making meaningful comparisons is not a
simple task, first because there is no consistency in the

Table 3. Results of simplifying the femur mesh of 179,916 triangles.

Error Triangles Running
Bound Approximation Error Percent of Time

E Mean Max. Count Original (m:ss)

0.5 0.0378 0.4826 97,010 53.92 4 5 4
1 .o 0.1 060 0.8821 66,318 36.86 3:31
1.5 0.1 708 1.3265 46,748 25.98 3:lO
2.0 0.2263 1.7860 36,018 20.02 2 5 4
2.5 0.2745 2.2530 30,766 17.1 0 2:45
3.0 0.31 96 2.7049 26,832 14.91 2:36
4.0 0.3921 3.5481 21,840 12.14 2:28

Table 4. Results of simplifying the femur mesh of' 179,916 triangles-with aggressive border straightening.
~ - * I I ~ ~ ~ I I - I ~ ~ ~ ~ ~ - ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ - ~ , ~ " " ~ ~ - ~ ~ , , " ~ ~ ~ ~ ~ ~ , ~ " * I Y ~ " ~ , , ~ ~ * I , ~ ~ Y I I I 1 * * ~ W I i l u i l (u _ u v n u / _ ~ _ _ L I _ _ - ~ ~ ~ ~ ~ ~ ~ - ~ ~ ~

Triangles Running Vertices Superfaces Error __
Bound Approximation Error Percent of Time above to adjust/

E Mean Max. Count Original (m:ss) F limit total superfaces -
0.5 0.0733 0.9509 56,294 31.29 4:22 12 1 O/ 18,792

1.5 0.2778 1.6823 1 9,348 10.75 2:46 2 2/ 4,908
2.0 0.4000 2.3609 1 2,762 7.09 2:33 42 41 3,016

21 2,152
4.0 0.6797 4.1972 7,942 4.41 2:17 4 11 1,885

1 .o 0.1 797 2.1814 28,216 15.68 3:07 17 81 7,599

3.0 0.551 6 3.7760 9,046 5.03 2:21 59 . __

hardware or in the test data sets used in published exper-
iments. Moreover, the algorithms do not all solve the
same problem. For example, Table 5 shows the triangle
decimation, mesh optimization, and multiresolution
approximation algorithms all having faster running
times than the Superface algorithm for an approxi-
mately 300,000-triangle model, but the first two meth-
ods do not guarantee an error bound and the third one
does not preserve topology.

Nevertheless, we have compiled these summary
results to give a rough idea of the relative speed of dif-
ferent algorithms. Efficiency was an important design
factor in developing the Superfaces algorithm, and we
believe we have succeeded in producing a fast algorithm.

Mesh simplification and rapid prototyping
Rapid prototyping systems are used to fabricate phys-

ical 3D parts from computer-based geometric models.
This "3D printing" process has many of the same prob-
lems in handling large meshes as are encountered with
standard graphics rendering and 2D printing: Large
meshes take a long time to process, and verylarge mesh-
es cannot be processed at all.

The Rapid Prototyping System (WS) recently devel-
oped at IBM Research can currently process models with
up to about 50,000 faces. We have used the Superfaces
algorithm to facilitate the fabrication of much larger
models. Figure 21 shows a photograph of a part pro-
duced by RPS from a simplified model of the skull
described in our experimental results.

Future work
One limitation of the current version of the

Superfaces algorithm (as well as of all the other simpli-
fication methods discussed earlier) is that the resulting

IEEE Computer Graphics and Applications 75

19 Map of
topographic
data of the
earth.

20 Simplified
map of
topographic
data of the
earth: E = 32.0
meters.

Feature Article

Table 5. Running times of different iiiesh simplification
ii I gorit hms.

Algorithm Triangles Running

Hardware Configuration Original Reduced Times
Mesh Mesh (seconds)

DLm~~yuI ‘ I I I ” JU 3 1 we.-, I l l . . u , S W . “ I ~ * ~ ” ~ ~ D l S y

~

Superhce, 30,876 2,038 27
IBM RSi6000 (model 550) 1 79,9 16 2 1,840 148

............ 349,792 24,170 360
irianqlc decimation’-’ 38,394 17,799 8

.........

SGI Onyx Redlily Enqinci 186,630 71,485 33
2-processor model 334,643 84,342 90
-~1,049,476 29,507 _ _ 322
Cieonietric 31 5,812 295,636 96
(hardware not specified) 1,019,373 642,204 538
Mesh optimiiatiori.’ 3,832 432 600

M tiltiresolu tion

IBM RS/6000 (iiiodel 560)

~ DCC Alpha l8,272 ‘1,348 2,820

approximiition‘ 349,792 N!A 8 0

....

21 3D hard
copy of a
simplified skull
(9,820
triangles).

76

simplified mesh can self-intersect when the original
mesh does not-that is, two triangles from different
superfaces might intersect. We still need to extend the
algorithm to detect and avoid intersections.

We are currently working on improving the “gerry-
mandering” strategy to produce more regularly shaped
superfaces and to eliminate “island” superfaces that are
completely surrounded by a single neighboring
superface.

Our experimental results show that significant
improvements are possible by using the more aggres-
sive strategy for border straightening in phase 2. The
extra expense of this approach comes from

May 1996

identifymg those vertices in the original mesh that
are not within &-tolerance of the simplified mesh, and
splitting the edges of the superfaces that subsume
these vertices.

The experimental results indicate that very few vertices
lie beyond the allowable limit and that very little edge
splitting will be required. We plan to complete imple-
mentation of the aggressive straightening method Soon.

We also plan to extend the algorithm to other types of
simplifications. For example, we can produce a simpli-
fied mesh that always lies inside (or outside) the original
model simply by eliminating one of the two planarity
rule constraints. More generally, we can use the algo-
rithm to approximate different kinds of geometric mod-
els by changing the merging constraints. For example,
models with curved surfaces can be simplified byreplac-
ing the planarity rule with a rule that produces super-
faces approximating higher order surface patches.

Another possible extension applies the Superface algo-
rithm to the problem of mesh smoothing. By using high-
er order approximating surfaces, rather than
approximating planes, we can produce a simplified mesh
that is a curved approximation of the original mesh. The
original mesh can then be smoothed, with &-tolerance, by
projecting each of i t s vertices onto the nominal approx-
imating surface of its subsuming superface.

Since the vertices of a simplified mesh are a subset of
the vertices of the original one, we have a natural way
of using the Superfaces algorithm to construct a mul-
tiresolution representation of nested simplifications
with graded degrees of detail at each level in the
hierarchy.

References
1. F.J.M. Schmitt, E. Barsky, andW.-H. Du, “&Adaptive Sub-

division Method for Surface-Fitting from Sampled Data,”
Computer Graphics (Proc. Siggraph), Vol. 20, No. 4,1986,
pp. 179-188.

2. M.J. DeHaemer, Jr. and M.J. Zyda, “Simplification of
Objects Rendered by Polygonal Approximations,” Com-
puter Graphicr,Vol. 15, No. 2,1991, pp. 175-184.

3. A.D. Kalvin et al., “Constructing Topologically Connected
Surfaces for the Comprehensive Analysis of 3D Medical
Structures,” in Medical Imaging V: Image Processing, SPIE
Proc. Conf. 1445, SPIE, Bellingham, Wash., 1991, pp. 247-
258.

4. W.J. Schroeder, J.A. Zarge, and W.E. Lorensen, “Decima-
tion of Triangle Meshes,” Computer Graphics (Proc. Sig-
graph),Vol. 26, No. 2, July 1992, pp. 65-70.

5. E. Hamann, “A Data Reduction Scheme for Triangulated
Surfaces,” Computer Aided Geometric Design, Vol. 11, No.
2, Apr. 1994, pp. 197-214.

6. G. Turk, “Re-tiling of Polygonal Surfaces,” Computer Graph-
ics (Proc. Siggraph), Vol. 26, No. 2, July 1992, pp. 55-64.

7. H. Hoppe et al., “Mesh Optimization,” Computer Graphics
(Proc. Siggraph), Vol. 17, No: 3; Aug. 1983, pp. 19-25.

8. A. Gueziec and D. Dean, “The Wrapper Algorithm: A Sur-
face Optimization Algorithm That Preserves Highly Curved
Areas,” in ViruaZization inBiomedical Computing 94, SPIE,

,

Bellingham, Wash., 1994, pp. 631-642.
9. J. Rossignac and P. Borrel, “Multi-resolution 3D Approxi-

mations for Rendering Complex Scenes,” in Modeling in
Computer Graphics, B. Falcidieno and T. L. Kunii, eds.,
Springer-Verlag, Berlin, 1993, pp. 455-465.

10. P. Hinker and C. Hansen, “Geometric Optimization,”Proc.
Visualization 93, IEEE Computer Society Press, Los Alami-
tos, Calif., 1993, pp. 189-195.

11. A. D. Kalvin and R. H. Taylor, “Superfaces: Polyhedron
Approximation with Bounded Error,” Research Report RC
19135, I.B.M. Thomas J. Watson Research Center, York-
town Heights, New York, Apr. 1993.

12. W.E. Lorensen and H.E. Cline, “Marching Cubes: A High-
Resolution 3D Surface Construction Algorithm,” Comput-
er Graphics (Proc. Sigggraph),Vol. 21, No. 3, July 1987, pp.
311-317.

13. J. O’Rourke, Art Gallery Theorems andAlgorithms, Oxford
University Press, New York, 1987.

14. W.E. Lorensen, “Marching Through the Visible Man: on the
World Wide Web at http://www.ge.com/crd/ivl/vm/vm.
html.

Alan KaZVin is a research staff mem-
ber in the Computer-Assisted Surgery
Group at the IBM ZJ. Watson
Research Center. His research interests
include medical imaging, geometric
modeling, computer-assisted anthro-
pology and archaeology, and comput-

er graphics. Kalvin received a BSc degree from the
University of the Witwatersrand, South Africa, a BSc Hon-
ors degreefrom the University of Cape Town, SouthAfrica,
and MS and PhD degrees in computer science from the
Courant Institute of Mathematical Sciences, New York Uni-
versity, in 1975, 1976,1985, and 1991, respectively.

Russell H. Taylor became aprofes-
sor of computerscience at Johns Hop-
kins University in September 1995.
From 1976 to 1995, he was a research
staff member and research manager
at IBM ZJ. Watson Research Center.
His research interests include robot

systems, programming languages, model-based planning,
and (most recently) the use of imaging, model-basedplan-
ning, and roboticsystems to augment human pedormance
in surgical procedures. Taylor received a BES degree from
Johns Hopkins University in 1970 and a PhD in computer
science from Stanford in 1976. He is editor emeritus of the
IEEE Transactions on Robotics andAutomatioq a Fellow
of the IEEE, and a member of various honorary societies,
panels, program committees, and advisory boards.

Readers may contact Kalvin at IBM T.J. Watson
Research Center, PO Box 704 Yorktown Heights, NY
10598, e-mail kalvin@watson.ibm.com and Taylor at
Computer Science Dept., Johns Hopkins Universiq, New
Engineering Bldg. 224, 3400 N. Charles St., Baltimore,
MD 21218, e-mail rht@cs.jhu.edu.

Distributed

Systems Software
by Nayeem Islam

Companies that build software are
now focusing on building application-specific
systems software. This is a difficult task that many
researchers have been trying to cope with for a
number of years. To help solve such problems, the
author presents a new approach to designing
customized system software that is application-
specific and based on object-oriented frameworks.
The technology presented has been influential in
the design and implementation of several products
at Microsoft, IBM and SUN Microsystems.
275 pages. March 1996. Hardcover. ISBN 0-8186-71 93-9.

Catalog # BP07193 - $39.00 Members / $48.00 List

is

The Search for
Simplicity

Essays in Parallel
Programming
by Per Brinch Hansen

is the first collection of clas-
sic papers by renowned computer scientist and au-
thor Per Brinch Hansen. These writings, written over
a period of thirty years, demonstrate the author’s
ability to recognize the essence of complex software
problems and design simple working systems of
nontrivial size. The essays describe a relentless search
for simplicity demonstrated by the:

RC4000 multiprogramming system
Solo operating system
Monitor notation for modular parallel programming
Parallel programming languages Concurrent Pascal,

Scientific programs for parallel architectures
Edison, Joyce, and Superpascal

844 pages. April 1996. Hardcover. ISBN 0-8186-7866-7.
Catalog # BP07866 - $28.00 Members / $35.00 List II

C~MPUTER
SOCIETY@

77

http://www.ge.com/crd/ivl/vm/vm
mailto:kalvin@watson.ibm.com
mailto:rht@cs.jhu.edu

