
Feature Article 

vfaces: 

lanar polyhedra are used for geometric P modeling of solid objects in a wide vari- 
ety of applications. A major benefit of modeling with 
polyhedral meshes lies in the simplicity of the repre- 
sentation. Since planar polygons-and triangles in par- 
ticular-are standard rendering primitives, they are 
especially useful in modeling objects for visualization. 

A fundamental disadvantage, however, is that many 
planar faces are required to accu- 
rately describe complex shapes. This 
problem is frequently compounded 
by the algorithms used to construct 
the meshes. For example, almost all 
algorithms for creating polyhedral 
surfaces from data sampled on a 
regular 3D grid produce meshes 
with many small faces. This is 
because the grid spacing limits the 
maximum face size. With tilingalgo- 
rithms that connect contours lying 
on a pair of adjacent 2D slices, the 
mesh faces can span no more than 
two slices. 

Voxel-based algorithms construct 
isosurfaces by tessellating the 3D 
data into cubic or tetrahedral cells 

and computing where the isosurfaces pass through 
each cell. The faces produced by these algorithms are 
even more limited in size, since each face lies within a 
single cell (which is at most the size of a voxel). As a 
result, a typical mesh of a human sltull produced from 
a 3D computed tomography (CT) study can contain 
from 250,000 to over 1 million triangles. 

We present a general-purpose algorithm for simpli- 
fying polyhedral meshes by reducing the number of ver- 
tices, edges, and faces. This algorithm, called 
Superfaces, makes two major contributions to the 
research in this area: 

This algorithm simplifies 

polyhedral meshes within 

prespecified tolerances 

based on a bounded 

approximation criterion. The 

vertices in the simplified 

mesh are a proper subset of 

the original vertices. 

H It uses a bounded approximation approach, which 
guarantees that a simplified mesh approximates the 
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original mesh to within a prespecified tolerance. That 
is, everyvertexv in the original mesh will lie within a 
user-specified distance E of the simplified mesh. 
Its face-merging procedure is efficient and “greedy”- 
that is, it does not backtrack or undo any merging 
once completed. Thus, the algorithm is practical for 
simplifymg very large meshes. 

As the title of this article suggests, we are primarily 
concerned with creating geometrically accurate simpli- 
fications. We believe that it is far more useful and mean- 
ingful to consider “simplification quality” in terms of 3D 
approximation errors than it is to make subjective visu- 
al assessments based on 2D renderings of the simplifi- 
cations. Of course, simplifying meshes in a way that 
yields nice-looking pictures is desirable, but it is not the 
driving issue here. 

Related work 
Schmitt et a1.l used a top-down approach to simplify 

a regular rectangular mesh by refining a coarse approx- 
imating mesh of piecewise bicubic patches until it was 
within a given error bound of the original mesh. 
DeHaemer and Zyda2 developed a variation of this 
method, using planar rectangular patches. Kalvin et al.3 
simplified isosurfaces generated from sample points on 
regular 3D volumes;-the algorithm adaptively merges 
redundant coplanar polygon faces, preserving the shape 
of the original polyhedron. 

Schroeder et al.4 used a method called “triangle dec- 
imation,” which reduces the number of faces in a trian- 
gular mesh by a specified percentage through iterative 
removal of vertices. Hamann’ described a method that 
uses iterative removal of triangular faces ranked byver- 
tex curvature estimates and shape. Turk6 “re-tiled” 
polygonal surfaces by triangulating a new set of vertices 
that replaces the original one. Hoppe et al.7 developed 
a mesh optimization algorithm that uses an energymin- 
imization scheme to simplify meshes. A method pre- 
sented by Gukiec and Dean8 simplified isosurface 
meshes derived from a tetrahedral tessellation of a 3D 
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grid; the algorithm successively removes edges, favor- 
ing removals in regions of low curvature. 

Rossignac and Borrel developed a multiresolution 
approximation scheme that produces a series of approx- 
i m a t i o n ~ . ~  This scheme was developed for real-time 
visualization, and its goal was to preserve the appear- 
ance of 2D renderings of a 3D scene as the viewpoint 
varies. Unlike the other methods described in this sec- 
tion, this algorithm was not concerned with preserv- 
ing the topology or geometric accuracy of the original 
mesh objects. 

Hinker and Hansenl’ developed a simplification 
method called “geometric optimization.” This algo- 
rithm was developed at about the same time as 
Superfaces.” Like Superfaces, it simplifies by first merg- 
ing quasicoplanar faces and then triangulating the 
perimeters of these merged faces (the so-called super- 
faces). Despite the apparent similarity between these 
algorithms, they differ in many ways. For one thing, the 
geometric optimization algorithm solves a much sim- 
pler problem, since it simplifies without limiting 
approximation errors. Another major difference is that 
geometric optimization assumes that degenerate poly- 
gons are not created during the face-merging phase. It 
therefore does not check for them, as the Superfaces 
algorithm does. Since degenerate polygons can indeed 
occur, the geometric optimization algorithm can pro- 
duce degenerate results. 

Superfaces is also computationally more efficient. In 
both algorithms, the total running time is dominated 
by the initial face-merging step, which processes each 
of the N original polygon faces individually. For this 
step, Superfaces performs an O(N) time greedy merge, 
compared with the O(N1ogN) process used by the geo- 
metric optimization algorithm. Since the need for mesh 
simplification tends to grow with the mesh size (num- 
ber of polygons), this difference in computational effi- 
ciency is important in practical applications. 

The Superfaces algorithm also appears to be far more 
effective in reducing the total polygon count. Currently, 
we cannot state this with complete certainty (since we 
have not yet compared the two algorithms directly 
using common data sets), but two arguments suggest 
its likely truth. 

First, at each step of the face-merging phase, 
Superfaces controls the merging by considering an infi- 
nite number of possible “approximating planes” solu- 
tions (see below, “The approximating planes of a 
superface”). The merging of new faces into the current 
superface stops only when this solution set of approxi- 
mating planes disappears. The geometric optimization 
algorithm controls the merging process by what is 
essentially a single approximating plane. This greatly 
limits the amount of face-merging possible, especially 
when this single plane is not well chosen. 

Second, before triangulation of the superface 
perimeters, the Superfaces algorithm reduces the size 
of these perimeters by merging quasilinear edges (while 
preserving the error bound). In contrast, geometric 
optimization merges strictly colinear edges only. Since 
the number of triangles in the simplified mesh is essen- 
tially the same as the number of perimeter edges, 
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Simplifying models of human anatomy 

major motivation for its development is our interest in geometric 
modeling of human anatomy. In medicine, particularly in areas of 
patient therapy (for example, surgical planning, computer-assisted 
surgery, and radiotherapy treatment planning), it is critical to 
provide physicians with accurate models of the patient’s anatomy. 
For simplified models to be accepted in clinical use, they must 
preserve some useful, quantifiable measure of fidelity to the 
original models. 

Judging the quality of simplifications by visual inspection of 2D 
renderings of the simplified models is not sufficient. For this reason, 
clinicians are generally hesitant to base therapeutic treatment on 
models produced by existing simplification algorithms. The 
concerns about geometric inaccuracies usually outweigh the 
advantages of working with smaller data sets. The Superfaces 
algorithm explicitly addresses this concern and provides what we 
believe is a practical solution. 

Although the Superfaces algorithm is domain-independent, one 

Superfaces will produce a simplified mesh with a small- 
er number of triangles for a given set of merged faces. 

Preserving geometric accuracy 
The important goal of ensuring that the reduced 

mesh is a good geometric approximation of the origi- 
nal mesh has been considered in a number of ways. 
Schroeder et al.4 used a simplification criterion mea- 
sure based on the distance of avertex to a plane or edge. 
These distances were measured relative to intermediate 
mesh approximations, not the original mesh. For tri- 
angular meshes produced from bivariate functions, 
Hamann’s method’ computed a root-mean-square 
approximation error and used it as a stopping criterion 
for the simplification process. Turk6 used a “point repul- 
sion” method of uniformly distributing the set of sim- 
plified vertices over the original mesh to preserve the 
fidelity of the simplified mesh to the original. 

Gueziec and Dean’ focused on preserving accuracy in 
high-curvature regions. They reported results showing 
that their method produced more accurate meshes in 
these regions than were created by subsampling the ini- 
tial 3D volume before isosurface generation. 

Hoppe et al.7 defined the approximation error of a 
simplified mesh to be the sum of squared distances from 
the original vertices to the simplified mesh. They used 
this error measure as the “distance energy” term in the 
energy function that is minimized. 

The only methods we are aware of that actually main- 
tain bounds on the approximation errors introduced in 
the simplification process are the algorithms of Schmitt 
et a1.l and DeHaemer and Zyda.2 Both methods apply 
only to regular rectangular meshes. 

An essential advantage of the Superfaces algorithm 
accrues from the following properties: 

it provides a provable bound on the approximation 
error, and 
it applies to any polyhedral mesh that is a valid man- 
ifold (the mesh need not be regular or closed, and its 
faces need not be triangles). 
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1 A polyhedral 
model of  a skull 
partitioned into 
superfaces. 

2 Detail of the 
skull model 
shown in 
Figure 1. 
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The Superfaces algorithm 
In describing the Superfaces algorithm, we use the 

following terms: A surface patch is a set of connected 
polyhedral faces, and the boundary of a surface patch is 
the set of vertices lying on its perimeter. The boundary 
of each surface patch forms a nonplanar polygon, called 
asuperface. We say that a superface subsumes the faces, 
vertices, and edges of the underlying surface patch. The 
faces that surround a surface patch (that is, those faces 
adjacent to a surface patch) are called borderfaces ofthe 
corresponding superface. 

In simplifymg a polyhedral mesh PO, the Superfaces 
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algorithm partitions the faces inPo into a set of surface 
patches and approximates PO by approximating each 
surface patch with a triangulation of its corresponding 
superface. The algorithm has the following key features: 

1. The simplified mesh approximates the original mesh 
to within a given tolerance. That is, no vertex in the 
original mesh is more than a user-specified distance 
E from the simplified mesh. Since the vertices of the 
simplified mesh come from the original mesh (see 
point 5 below), the converse is obviously true as 
well. That is, no vertex in the simplified mesh is 
more than E from the original mesh. 

2. The algorithm is very efficient, and it is a practical 
method for simplifymg very large meshes, such as 
those derived from medical CT and MRI data (see 
sidebar on previous page). 

3. The topological properties of the original mesh are 
preserved. 

4. The method is domain-independent; it does not 
require any knowledge about the nature of the data 
to perform the simplification. 

5. The vertices on the superface boundaries form a 
proper subset of the set of original vertices, so the 
algorithm is particularly suitable for building hier- 
archical representations of polyhedral meshes. 

The Superfaces algorithm simplifies a mesh in three 
phases: 

1. Superface creation. A face-merging procedure par- 
titions the original faces into superface patches. 
Figure 1 shows a polyhedral object partitioned into 
superfaces, which are the colored patches sur- 
rounded by black perimeters. Figure 2 shows a 
close-up view of the skull in Figure 1 (near the teeth) 
with the original mesh shown in black to illustrate 
a typical relationship between the sizes of super- 
faces and the faces in the original mesh. 

2. Borderstraightening. The borders of the superfaces 
are simplified by merging boundary edges. We call 
these merged edges superedges. 

3. Superface trianplation. Triangulation points for the 
superfaces are defined. In this phase, a single super- 
face can be decomposed into many superfaces, each 
with its own boundary and triangulation point. 

Phase I :  Superface creation 
Superface growing is based on a bottom-up, face- 

merging procedure It is a “greedy” method-that is, it 
does not backtrack or undo any merging once done. A 
major reason for the algorithm’s efficiency is that the 
face-merging runs in time linear in the number of faces. 

The creation of a superface begins with the selection 
of an initial “seed” face that grows through a process of 
accretion. Border faces (that is, faces on the current 
superface boundary) are merged into the evolving 
superface if they satisfy the required merging criteria. 
A superface eventually stops growing when there are no 
more faces on its boundary that can be merged. 

The “seed’ faces for growing the superfaces are select- 
ed randomly from the set of (unmerged) faces in the 



original mesh. The superface creation process ends 
when all the original faces have been merged. 

The approximating planes of a superface. 
Associated with each superface F is a set E of feasible 
approximating planes. Every plane p E E satisfies the 
bounded approximation constraint, which stipulates that 
all vertices subsumed byFlie within a bounded distance 
of p, together with some other constraints that we will 
discuss below. 

Also associated with each superface F is a “nominal” 
coordinate system N = [R, vel, where R is a rotation 
matrix and vo is the coordinate system origin in global 
coordinates. Nis somewhat arbitrary, but chosen so that 
the outward facing normal ofF is aligned approximate- 
lywithRz (the z-axis ofnr), and vo is located somewhere 
“Within”F. In the following discussion, we assume that 
all vertices and planar faces have been transformed into 
this coordinate system. 

Choosing N in this way is convenient, since if we con- 
sider the “direction form” of the equation of a plane, ax + 
by + z = d, then E corresponds to the set of all points in 
(a, b, d) space that obeya set of constraints C[(a, b, d) 5 0. 
In this discussion, we use linear constraints of the form 

so that E forms a polytope in (a, b, d)-space, 

E = {k = [a, b, dITI C . k 5 C) 

Asuperface is grown by the successive merging of indi- 
vidual faces. The addition of each individual facefb gen- 
erates additional constraints C, . k 2 c,, which are used to 
“lop off” pieces ofE. This greedymethod stops when the 
addition of a face would cause E to become empty. 

In general, the number of constraints will grow lin- 
early with the number of faces being subsumed into 
superface F, and the polytope itself can become rather 
unwieldy for computation. Therefore we approximate 
the set E with a conservative ellipsoidal approximation 

where Q is orthogonal and all the P1 are positive real 
numbers (see Figure 3) .  

The fundamental growing step. The basic 
growing step is the expansion of the superface bound- 
ary through the merging of all acceptable border faces. 
A border facefb is accepted if it satisfies a set of merging 
conditions (see below, “The merging rules”). Each con- 
dition is expressed in the form of a linearized constraint 
that defines a half-space in (a, b, d)-space: 

If E n His empty, thenfb does not satisfy the merging 
conditions and is rejected. Otherwise,fb is merged into 
the growing superface, and the ellipsoidal subset of fea- 
sible planes E is adjusted to satisfy Equation 1. This is 
shown schematically in Figure 4. 

\ I 

\ 

/ 

While the ellipsoidal approximation ofE can result in 
overly conservative solution sets,E can be adjusted in 
constant time. Therefore, the runtime face-merging pro- 
cedure is linear in the number of polyhedral faces being 
merged. 

Perimeter validity. To triangulate superfaces in 
phase 3 of the algorithm, we need to ensure that each 
superface is valid in the sense that projecting its perime- 
ter into the nominal approximating plane yields a sim- 
ple 2D polygon that does not self-intersect. 

Checking perimeter validity is expensive because it 
involves the pairwise testing of all perimeter edges for 
intersection. We therefore use the following strategy to 
keep down the number of perimeter checks: 

Grow the superface to completion, ignoring the valid- 
ity of the intermediate perimeters. 
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3 Apolytope 
and i t s  
approximating 
ellipsoid. 

4 Adjusting the 
set of feasible 
solutions. 
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If the final perimeter in not valid, “fix up” the super- 

- Regrow the superface, starting again from the 
original seed face. 
- Check perimeter validity after each iteration of 
perimeter expansion. 
- Stop growing as soon as an invalid perimeter is 
found. 

face by regrowing it as follows: 

This approach works well, since the merging rules inhib- 
it the creation of invalid superfaces. Consequently, most 
superfaces need just one perimeter check, and only a 
small fraction of them require regrowing (in our exper- 
iments, at most 3 percent of the total number of super- 
faces). 

The merging rules. The linear constraints that 
control superface growing are derived from a set of 
merging rules. In the current implementation of the 
Superfaces algorithm, we use three merging rules. 

Tneplanarity rule: All vertices on facefb must be with- 
in a distance of ~ / 2  from each approximating planep : 
ax + by + z = d .  

That is, for each v = (vx, v,, v,) E fb, 

This gives the pair of linear constraints on (a, b, d): 

- ~ / 2  - vz 2 av, + bv, - d 5 E/Z - v, 

This rule is used to ensure that each vertex in the 
original mesh is within E of the simplified mesh being 
created. 

The face-axis rule: The orientation of face fb must be 
similar to the orientation of each approximating plane 
p : ax + by + z = d .  This rule is expressed by 

where (n,, n,, n,) is the outward-facing unit normal of 
face fb; (a, b, 1) is the outward-facing normal of planep 
: ax + by + z = d; and e,, is the maximum allowable 
angle between these two normals. 

Since the choice of Omax is somewhat arbitrary, noth- 
ing is “lost” in approximating the above constraint by 
the linearization: 

a . n x +  b.ny2  (a2 + b2 + 1) cos(OmaX) -n, 
2  COS(^^^^) - n, 

The noyoldover rule: Face fb must not “fold over” or 
tuck under the superface. This condition is enforced by 
requiring that in the orthogonal projection into each 
approximating plane, the vertices of fb lie outside the 
projected superface perimeter. 

Let (vx, v,, v,) denote the 3D coordinates of a vertex 
v, and let v‘be its orthogonal projection into planep : ax 
+ by + z = d. If (u, w) is the edge offb lying on the super- 
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face perimeter, and ifvis any other vertex in fb, then we 
wish to ensure that d lies to the right of edge (u’, w’) ., 
That is, 

Le tpnom be the nominal approximating plane offb, and 
let 3 be the projection of vertexv intop,,,, along (a, b, 
1) (the outward-facing normal of plane p). Then $ = 
(vx - avz, v, - bvZ, 0). Since the angle between the out- 
ward-facing normals of p and pnom is less than 90 
degrees, v‘ lies to the right of edge (u’, w‘) if and only if 
$ lies to the right of edge ( 6, G).  Hence, we can lin- 
earize the no-foldover constraint by substituting 6, $, 
&for u’, v‘, w‘ in Equation 2 to give 

(uy - w,)vx + (wx - UXIV, + uxwy - wxuy 

I a [(wz - u,)v, + Cu, - wy)vz + w,u, - uyw,l 
- b [(wz - U z h x  + (ux - wxlvz + wxuz - uxw,l 

Gerrymandering check. An additional constraint 
on superface growth can be enforced by a heuristic “ger- 
rymandering “ or “irregularity” check that prevents 
superfaces from becoming too long, thin, or grossly 
irregular. A simple estimate of the irregularity of a super- 
face is the ratiop2/R, wherep is the length ofthe super- 
face perimeter, and Cl is the area of the surface patch 
spanned by the superface. The threshold of acceptable 
irregularityis estimated as [2(1 + h)I2/h, the ratio of 
perimeter squared to area of a 1 x h rectangle. 

We are especially interested in applying the Superfaces 
algorithm to simplify polyhedra that have been con- 
structed from 3D data using the Alligator algorithm3 or 
the Marching Cubes algorithm.12 In these polyhedra, all 
the faces are of similar size, and so too are the edges. So 
the superface perimeterp and area Cl can be approxi- 
mated by the number of perimeter edges and subsumed 
faces, respectively. Since both these values are calculat- 
ed during the regular course of superface growth, the 
estimated superface irregularity can be calculated with 
just three additional floating-point multiplications. 

Phase 2: Superface border straightening 
Suppose for the moment that we think of surface area 

as a measure of “face size” and scalar length as a mea- 
sure of “edge size.”Then the merging of faces into super- 
faces in phase 1 produces a change of scale in face she  
without a corresponding change of scale in edge size: 
The edges on each superface perimeter are simply edges 
of the original mesh, In this second phase of the 
Superface algorithm, we make an appropriate change 
of scale in edge size, creating superedges by straighten- 
ing the superface perimeters in two steps: maximal edge 
merging and edge spli(ting, as illustrated in Figure 5. 

Maximal edge merging. The perimeter between 
each pair of adjacent superfaces is merged into a single 
superedge. That is, if F is a superface with perimeter P = 
(VI, v2, . . . , vn), and Fl is a neighboring superface, then 
the segments, = ( ~ ~ 1 ,  VQ, . . . , vir) of maximal common 
boundary betweenF and4 is replaced by the superedge 
L] =v,,. 



Edge splitting. Maximal edge merging can produce 
an “oversimplified mesh that is not within the required 
E limit of all the vertices of the original mesh. To com- 
pensate for any possible oversimplification, the 
superedges are split. Typically, oversimplification occurs 
when a “tongue-like’’ region of one superface “shifts” to 
a neighboring superface. The result is that some of the 
vertices that shift from superface F1 to superface Fz are 
no longer within E of either superface. This is because 

in the orthogonal projection into every one of the F1 

approximating planes, the vertices lie outside the 
perimeter ofF1, and 
the vertices are either (a) not within E of any of the FZ 
approximating planes or (b) outside the perimeter of 
FZ in the orthogonal projection into every one of the 
FZ approximating planes. 

We use a standard polyline approximation method to 
split each superedge L J = G .  Let vJt be that vertex in the 
segments, = ( v ]~ ,  V,Z, . . . , vir) that is furthest froml,. If the 
distance fromv,, toL, is greater than some threshold d,,, 
we recursively split the lines L1 =v,,V,, and L~=v ,v f , .  

Asufficient condition for the bounded approximation 
criterion to hold after superedge splitting is that the 
splitting threshold d,,, satisfies 

I& 0 deg 5 e,,, <: 30 deg 

where e,,, is maximum allowable angle used by the 
face-axis rule (see above, “The merging rules”). 

Alternative border-straightening method. 
The two-step method described above is a very conser- 
vative way to straighten borders, since it requires every 
vertex to be within E of its subsuming superface, even 
though the bounded error condition is less restrictive 
and requires only that every vertex be within E of any 
superface. The advantage of this approach is its effi- 
ciency. We do not have to explicitly identify exposed ver- 
tices that lie too far from the simplified mesh. 

A more aggressive way to straighten borders is to split 
the initial superedge L between adjacent superfaces F1 

and F2 only if necessary. That is, we subdivide only if 
there is at least one vertex subsumed byF1 or FZ that is 
further than E from both these superfaces. This 
approach produces fewer superedges (and fewer trian- 
gles and therefore a better simplification) than the con- 
servative method described above, but it is 
computationally more expensive (for comparisons, see 
“Experimental results”). 

Phase 3: Computing triangulation points 
Recall that each superface is a polygon correspond- 

ing to the boundary of a surface patch in PO, the mesh 
being simplified. We want to approximate PO by approx- 
imating each surface patch by a triangulation of its sub- 

suming superface. In this phase of the algorithm, we cal- 
culate triangulation points for the superfaces. 

To find a suitable triangulation point for a nonplanar 
superface fb, we computefb, the projection of fb into its 
nominal approximating plane. We then search for astar 
point of planar polygonfb, that is, a point v insidefb that 
is visible from each of its vertices. 

This method of triangulation reduces the 3D problem 
to a 2D problem and guarantees a superface triangula- 
tion in which no two triangles intersect. If a star point v 
is found,fb is a starpolygon, and v (treated as a point in 
3D lying on the approximating plane) is used as the tri- 
angulation point for superface fb. If a star point is not 
found, thenfb is decomposed into a set of star polygons 
f bl,fbZ, . . .fbk, with a corresponding decomposition of 
fb into superfaces f b l ,  fb2, . . . , fbk. 
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5 Superface 
borders 
(a) before 
straightening, 
(b) after edge 
merging, (c) 
after edge 
splitting. 
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L, = R, 

Finding the star point of a polygon. Letfi be 
the projection of superface f b  into its approximating 
plane, and let (VI, VZ, . . . , vn) be a counterclockwise 
ordering of the vertices on the perimeter offb. 

A star point v = (x, y) o f f b  will lie to the left of each 
edge (v~, v,+I). So v will satisfy a set of constraints 
C,(v,, v,+1), linear in (x,y), ofthe form 

011+1 -yJx + (xi-xi+l)y~xS/i+l-xi+lyi 

The CI)s define a polytope KCfb), called the kernel of 
y b .  The Superfaces algorithm computes a set of feasible 
star pointsKc K, using the technique described earlier 
for approximating a polytope with a circumscribed ellip- 
soid (see “The approximating planes of a superface”). 

Since is a conservative approximation of the kernel, 
it can be empty when K is not. The method might then 
fail to find any feasible star points for a true star poly- 
gon. In this case, the algorithm will decompose a star 
polygon into multiple star polygons. 

The advantage of using this suboptimal approach for 
finding feasible star points is that it is both efficient, run- 
ning in linear time, and trivial to implement, employing 
the same polytope approximation technique used for 
finding feasible approximating planes. An alternative 
method for finding feasible star points is the algorithm 
of Lee and Preparata.” Their algorithm is optimal and 
linear, but much more complicated to implement than 
the method described above. 

Decomposing a polygon into star polygons. 
If a simple, planar r-sided polygon has no holes, it can be 
decomposed (partitioned) into at most Lr/3l star poly- 
gons in O(r log r) time,13 and it can be decomposed into 
a minimum number of star polygons in O(r5k2 log r) 
time13 (where k is the number of reflexvertices). 

However, neither of these methods can handle poly- 
gons with holes, and so neither is suitable for decom- 
posing 2D projections of superfaces. Since decomposing 
a polygon with holes into a minimum number of star 
polygons is not practical (it is NP-hard), we have devel- 
oped an O(?) algorithm that will decompose a polygon, 
possibly having holes, into a small (rather than mini- 
mum) number of star polygons. 

This algorithm does the decomposition in two phas- 
es, first decomposing the polygon into monotone poly- 
gons, then decomposing each monotone polygon into 
star polygons. 
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Frompolygorzs with holes to monotonepolygons. Let 
C = (v,l, v12, . . . , v,~) be a segment or chain of polygon 
P = (VI, v2, . . , v,). Cis said to be monotone with respect 
to a line L if the projections of v,~, v,~, . . . , v,, onto L have 
the same ordering as in the chain. In other words, any 
line orthogonal toL will intersect Cin at most one point. 
A polygon is monotone if it can be partitioned into two 
chains that are monotone with respect to the same line 
(see Figure 6). 

Apolygonvertexv, is reflex if its interior angle is larg- 
er than 180 degrees. A reflex vertex vi is called an inte- 
rior cusp if they-coordinates of its adjacent vertices, vL-l 
andv,+l, are either bothlarger or both smaller than the 
y-coordinate of v,. Garey et aI.l3 showed that a polygon 
with no interior cusps is monotone (with respect to the 
y-axis). 

Lee and Preparata developed an algorithm that 
decomposes a polygon without holes into monotone 
polygons by using a “plane sweep” technique to remove 
all interior cusps.13 We have extended this algorithm to 
handle polygons with holes and use it in the first step of 
our algorithm for decomposing polygons with holes into 
star polygons. 

From monotone polygons to starpolygons. After parti- 
tioning a polygon P (that may have holes) into monot- 
one polygons PI, Pa, . . . , P,, we decompose each P, into 
star polygons. (Note that in this step we don’t need to 
worry about holes, since a monotone polygon cannot 
have any.) The decomposition is done without intro- 
ducing new vertices (also called Steiner points). 

It is possible, of course, to adapt an algorithm for tri- 
angulating monotone polygons so that it produces a star 
decomposition by eliminating some of the internal diag- 
onals created for the triangulation. This is the approach 
of Avis and Toussaint.13 The difficulty for us with this 
strategyis that it does not necessarily lead to decompo- 
sitions with small numbers of star polygons. For exam- 
ple, a straightforward modification of the O(r log r )  
triangulation algorithm of Garey et a l l3  (and one that 
preserves the algorithm’s computational efficiency) 
does not allow much control over the number of star 
polygons that will be produced. 

Therefore we developed a new decomposition algo- 
rithm that specifically attempts to keep the number of 
star polygons small. To describe our star decomposition 
algorithm, suppose polygon P is a monotone with 
respect to the y-axis and has a left chain (L1, Lz, . . . , L,) 
and a right chain (R1, Rz, . . . , Rr) as shown in Figure 6. 
The algorithm visits the vertices of P in order of descend- 
ing height (that is, y-coordinate), creating all the star 
partitions in one top-to-bottom scan ofP. 

Starting at the top ofP, the algorithm searches for the 
first two reflex vertices. If P has no reflex vertices, it is 
convex and any vertex can be chosen as the star point. 
If P has exactly one reflex vertex, then this vertex is a 
star point. 

Otherwise, letA and B be the first and second reflex 
vertices found. The basic step in the algorithm is to cre- 
ate an internal diagonal fromvertexB to some vertex C 
that lies belowB and on the opposite chain. This diago- 
nal partitions P into 



a star polygonPstar = (C, . . . ,A, . . . , B )  with star point 

a truncated monotone polygon Ptrunc = (C, B, . . . , Ls) . 
A, and 

We repeat this process, lopping off a star polygon from 
the monotone polygon, until the bottommost vertex in 
Pis reached, at which stage we are done. 

For simplicity, we describe the process of finding the 
vertex C used to define the internal diagonal [B, C] for 
the case when vertexB is on the left chain. ForB on the 
right chain, the method is the same with the terms “left” 
and “right” interchanged. The method is described by 
the pseudocode shown in Figure 7, using the following 
notation: 

Li and Rj are the most recentlyvisited vertices on the 

(v, w) represents the directed line segment from ver- 
left and right chains, respectively. 

tex v to vertex w. 

To find C, we descend polygon P, maintaining two 
bounding line segments, (SI, Sz)  and (RJ-1, A). We stop 
at the first R,, the current vertex on the right chain, that 
does not lie between the bounding lines segments.R,-I 
becomes vertex C, and diagonal [B, C] is created (see 
Figure 8). The line segment (SI, SZ) ensures that no 
edges below B on the left chain will intersect diagonal 
[B, C], and the line segment (RJ-l,A) ensures that allver- 
tices on the right chain up to and including vertex Cwill 
be visible from A. 

If C is not visible fromB-that is, if C is not on the right 
of (B, A)-then [B, RJ-l] is not an internal diagonal (see 
Figure 9). This can occur only for termination on the con- 
dition that R, is not on the right of (SI, &). The method 
for handling this case is given in Figure 10 (next page). 

Computational complexity 
As noted earlier, the face-merging procedure in phase 

1 runs in O(n) time, where n is the number of faces in 
the original mesh. However, the complete algorithm 
does not necessarilyrun in O(n) time. All other steps in 
the algorithm (perimeter validity checking, border 
straightening, and superface triangulation) require 
more than linear running time in the size of the super- 
face perimeters. 

Nevertheless, from a practical standpoint, the number 
of original faces (n) is typically much greater than the 
sizes of the superface perimeters. Therefore, the crucial 
issue-and the reason the Superfaces algorithm is effi- 
cient-is that the initial, face-merging step is linear. 

Experimental results 
We now discuss some results of using the Superface 

algorithm, presenting tables of error measures as well as 
rendered images. 
As stated previously, one of our primary interests in 

simplifying polyhedral meshes is to obtain results that 
preserve geometric accuracy rather than results that 
simply look good. Bearing this in mind, together with 
the fact that there is no single “correct” way to shade 
surfaces, we have not used the same shading technique 
for all renderings (even though this approach might 

SE; 

ex in descending order of height; 
eft chain then 

= FALSE) do 

L , t  w, 
if L,lies to the right of (SI, S2) then (SI, S2) t (L,., B); 

else 
S t  W; 

if Rl is not on the left of (R,-i, A) then 
terminate t TRUE: 

else if R, is not on the right of (SI, SZ) then 
terminate t TRUE; 

f Rj\ 
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7 When [B, c] is 
an internal 
diagonal, 
(C, _ . _ , A ,  ... , B) 
is a star polygon 
with star point A. 

8 Creating star 
polygon (C, . . . , 
A, ... , B). 

9 Thecase 
where [B, c] is 
not an internal 
diagonal. 
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10 Creating 
star polygons 
when [B, c] is 
not an internal 
diagonal. 

12 Simplified 
skull (a) mesh 
and (b) coior- 
coded 
approximation 
errors in pixel 
units: E = 0.5 
(36.60 percent 
of original 
triangles). 

13 Simplified 
skull (a) mesh 
and (b) color- 
coded 
approximation 
errors in pixel 
units-with 
aggressive 
border 
straightening: E 

percent of 
original 
triangles). 

= 0.5 (15.58 

in (B, ... , f.,,,) visible from Ln ; 

.. , Lm , , ... , Ln) with star point Ln, 

C, ._. , A) with star point A; 

11 Original 
ikull model 
:349,792 
triangles). 
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make direct visual comparisons a bit easier). Rather, we 
applied Gouraud shading to those meshes that have 
been only slightly simplified, and we used flat shading 
for the others. For the flat shading, the normal used in 
rendering each triangle is a weighted sum of the trian- 
gle’s surface normal and the nominal normal of the 
superface to which the triangle belongs. 

Human skull 
We applied the Superfaces algorithm on a polyhedral 

mesh of the human skull that contains 349,792 triangu- 
lar faces and 174,834vertices. 

The mesh was constructed by the Alligator surface 
construction algorithm3 from a 170 x 170 x 173 3D vol- 
ume. This volume was produced by subsampling the 
slices from a CT scan of a life-size plastic replica of a 
human skull consisting of 173 slices of 512 x 512 pixels. 
The subsampling was done to handle current memory 
limitations associated with the implementation of the 
winged-edge polyhedral modeling system used in this 
work. Alternatively, we could have retained the original 
512 x 512 slices and constructed a partial skull from a 
subvolume (for example, quadrant or octant) of the CT 
scan. However, this would have led to polyhedral mesh- 
es with large artificial planar regions along the subvol- 
ume boundaries, which would skew the results of the 
simplification. The dimensions of the bounding box 
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(width x depth x height) of the orig- 
inal skull are 109 x 177 x 168 pixel3 
= 156.5 x 254.1 x 241.2mm3, and 
the unit of distance used for E is one 
pixel. 

Figure 11 shows the original skull 
mesh, and Figure 12 shows the sim- 
plified mesh that approximates the 
original with a maximum error 
bound of E = 0.5, using conservative 
border straightening. Figure 12a 
shows the simplified mesh itself, and 
Figure 12b shows a color-coded 
illustration of the corresponding 
approximation errors (in pixel 
units). Figure 13 shows the results 
for simplificationwiths = 0.5, using 
aggressive border straightening. 

Figures 14 and 15 show the sim- 
plified meshes that approximate the 
original with a maximum error 
bound of E = 4.0, with conservative 
and aggressive border straighten- 
ing. Here the simplifications are pro- 
duced using flat shading. 

Table 1 shows results for a range 
of values for the approximation 
bound E and a fixed 0,,, = 45 
degrees (see above, “The merging 
rules”). Each row in Table 1 shows 

E the mean approximation error, 
the maximum approximation 
error, 



the number of triangles in the 
simplified mesh, 
the percentage of triangles 
remaining after simplification, 
and 
simplification running time on an 
RS/6000 model 550 uniprocessor 
workstation. 

Note that for allvalues of& the aver- 
age approximation error is approxi- 
mately an order of magnitude below 
the maximum allowable error. 

Table 2 shows the improvements 
achievable using the more aggres- 
sive (and expensive) border 
straightening described in the dis- 
cussion of phase 2. Recall that this 
approach consists of (a) straighten- 
ing borders as much as possible by 
creating a single superedge L 
between each adjacent superface 
pair (F1, F2)-maximum border 
straightening-and then (b) subdi- 
viding eachL only if necessary. That 
is, we subdivide only if there is at 
least one vertex subsumed byF1 or 
FZ that lies beyond the E limit from 
the simplified mesh. 

Table 2 shows the results of the 
first stage of this approach-maxi- 
mum border straightening. Here, 
setting e,,,,, = 60 degrees produced 
the best results. The two additional 
columns in this table are 

the number of vertices in the orig- 
inal mesh that lie beyond e from 
the simplified mesh, and 
the number of superfaces that 
must have their borders adjusted 
over the total number of super- 
faces. 

These results are very encourag- 
ing and show two things: 

Aggressive border straightening 
improves simplification signifi- 
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14 Simplified 
skull (a) mesh 
and (b) color- 
coded 
approximation 
errors in pixel 
units: E = 4.0 
(6.91 percent of 
origin a I 
triangles). 

15 Simplified 
skull (a) mesh 
and (b) color- 
coded 
approximation 
errors in pixel 
units-with 
aggressive 
border 
straightening: 

percent of 
original 
triangles). 

E = 4.0 (2.55 

Table 1. Results of simplifying the skull mesh of 349,792 triangles. ~ - - ~ ~ ~  -- 
Error - Trianqles - Running 

Bound bproximation Error Percent of Time 
E Mean Max. Count Original (m:ss) 

0.5 0.0544 0.4723 128,040 36.60 9 5 2  
8:03 1 .o 0.1289 0.9231 78,002 22.30 
7:34 1.5 0.201 7 1.4387 50,442 14.42 

2.0 0.2559 1.8690 37,438 10.70 6:41 
3.0 0. 3088 2.61 19 28,388 8.1 2 6:26 
4.0 0. 3358 2.7684 24,170 6.91 6:OO 

__ 
-. 

Table 2. Results of simplifying the skull mesh of 349,792 triangles-with aggressive border straightening. 

Trianqles Running Vertices Superfaces Error ~ ._ 
Bound Approximation Error Percent of Time above to adjust/ 

1811 4,403 0.5 0.0947 1.4240 53,790 15.38 8:49 31 
1 .o 0.21 87 1.3973 23,704 6.78 7:12 36 91 5,626 
1.5 0.3402 2.371 3 15,470 4.42 6:28 56 71 3,606 
2.0 0.4523 5.81 17 11,994 3.43 6:20 184 51 2,738 
3.0 0.5984 3.3584 9,820 2.81 6:03 19 11 2,299 

_ _ W _ _ , - - p  ~ ~ - ~ ~ ~ - ~ ~ ~ - ~ ~  
E Mean Max. Count Original (m:ss) c limit total superfaces 

_ _  

- 4.0 0.671 4 3.6544 8,934 2.55 5:52 0 
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16 Original 
Femur model 
(179,916 
triangles). 

17 Simplified 
femur (a) mesh 
and (b) color- 
coded 
approximation 
errors in pixel 
units: E = 4.0 
(12.14 percent 
of original 
triangles). 

18 Simplified 
femur (a) mesh 
and (b) color- 
coded 
approximation 
errors in pixel 
units-with 
aggressive 
border 
straightening: 

percent of 
original 
triangles). 

E = 4.0 (4.41 
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cantly. For the skull we see improvements by factors 
between 2.38 to 3.29. While this improvement will 
drop somewhat after the necessary superface borders 
are subdivided, the results should not change appre- 
ciably because so few subdivisions are needed. 
Very few of the vertices lie beyond the E limit. In the 
worst case (E = 0.5), just 27 vertices out of 174,834 
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lie beyond the limit; and for E = 2.5 and 4.0, no ver- 
tices are out of range. Therefore, only a small fraction 
(in the worst case, less than a fifth of one percent) of 
the superfaces require border-adjustments to make 
the simplified mesh satisfy the &-tolerance criterion. 

These results show the significant improvements pos- 
sible from using the more aggressive border-straight- 
ening approach and suggest that most of the extra 
expense comes from detecting out-of-range vertices. 
Very little additional work (or possibly none) is required 
to correct the oversimplification of the mesh and to get 
the vertices back within range. 

Human femur 
Figure 16 shows a polyhedral model of a human 

femur consisting of 179,916 triangles obtained from a 
CT scan. The dimensions of its bounding box are 231 x 
197 x 585 pixels3 = 90.2 x 76.8 x 228.6 mm3, and as 
with the skull, E is given in pixel units. 

Figure 17 shows the simplified mesh and correspond- 
ingerrormap ObtainedbysimplifymgwithE = 4.0 using 
conservative boundary straightening. Figure 18 shows 
the results of simplifymg with E = 4.0 using aggressive 
boundary straightening at em, = 60 degrees. 

Tables 3 and 4 summarize the results of simplifying 
over a range of E, with emax = 45 degrees used for con- 
servative boundary straightening and e,,, = 60 
degrees for aggressive boundary straightening. 

Topographic map of the earth 
Figure 19 shows a map of topographic data of the sur- 

face of the earth exhibiting a range of heights from 
-6,819.7 meters below sea level to 5,487.4 meters above 
sea level. The mesh was produced by triangulation of a 
360 x 180 rectangular mesh. (Note that the vertical res- 
olution of the original data is at best 1 meter, and the 
horizontal resolution is at best 5 minutes of latitude and 
longitude, assuming that the earth is flat-a claim now 
disputed in some quarters. In reality, the resolution is 
much lower in some parts of the earth.) 

Figure 20 shows the result of applying the Superface 
algorithm with E = 32 meters. The approximation con- 
sists of 53.2 percent of the original 128,522 triangles, 
and it has mean and maximum errors of 1.27 and 26.83 
meters. Running time was 3 minutes, 56 seconds. 

With this data set, aggressive border straightening 
was not as useful as in the previous examples. With 
E = 32 meters, the aggressive straightening gives a mesh 
with 32.25 percent of the original triangles, and while 
the mean error of 4.63 meters is still quite reasonable, 
the maximum errorjumps to 387.79 meters. 

Comparing simplification algorithms 
Table 5 gives a general idea of the range of running 

times for different algorithms and, in particular, how 
these algorithms compare in simplifying meshes of sim- 
ilar sizes to the some of the meshes we have simplified 
with the Superfaces algorithm. 

The obvious caveat here is to avoid overinterpreting 
these results. Making meaningful comparisons is not a 
simple task, first because there is no consistency in the 



Table 3. Results of simplifying the femur mesh of 179,916 triangles. 

Error Triangles Running 
Bound Approximation Error Percent of Time 

E Mean Max. Count Original (m:ss) 

0.5 0.0378 0.4826 97,010 53.92 4 5 4  
1 .o 0.1 060 0.8821 66,318 36.86 3:31 
1.5 0.1 708 1.3265 46,748 25.98 3:lO 
2.0 0.2263 1.7860 36,018 20.02 2 5 4  
2.5 0.2745 2.2530 30,766 17.1 0 2:45 
3.0 0.31 96 2.7049 26,832 14.91 2:36 
4.0 0.3921 3.5481 21,840 12.14 2:28 

Table 4. Results of simplifying the femur mesh of' 179,916 triangles-with aggressive border straightening. 
~ - * I I ~ ~ ~ I I - I ~ ~ ~ ~ ~ - ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ - ~ , ~ " " ~ ~ - ~ ~ , , " ~ ~ ~ ~ ~ ~ , ~ "  * I Y ~ " ~ , , ~ ~ * I , ~ ~ Y I I I 1 * * ~ W I i l u i l (  u _ u v n u / _ ~ _ _ L I _ _ - ~ ~ ~ ~ ~ ~ ~ - ~ ~ ~  

Triangles Running Vertices Superfaces Error __ 
Bound Approximation Error Percent of Time above to adjust/ 

E Mean Max. Count Original (m:ss) F limit total superfaces - 
0.5 0.0733 0.9509 56,294 31.29 4:22 12 1 O/ 18,792 

1.5 0.2778 1.6823 1 9,348 10.75 2:46 2 2/ 4,908 
2.0 0.4000 2.3609 1 2,762 7.09 2:33 42 41 3,016 

21 2,152 
4.0 0.6797 4.1972 7,942 4.41 2:17 4 11 1,885 

1 .o 0.1 797 2.1814 28,216 15.68 3:07 17 81 7,599 

3.0 0.551 6 3.7760 9,046 5.03 2:21 59 . __ 

hardware or in the test data sets used in published exper- 
iments. Moreover, the algorithms do not all solve the 
same problem. For example, Table 5 shows the triangle 
decimation, mesh optimization, and multiresolution 
approximation algorithms all having faster running 
times than the Superface algorithm for an approxi- 
mately 300,000-triangle model, but the first two meth- 
ods do not guarantee an error bound and the third one 
does not preserve topology. 

Nevertheless, we have compiled these summary 
results to give a rough idea of the relative speed of dif- 
ferent algorithms. Efficiency was an important design 
factor in developing the Superfaces algorithm, and we 
believe we have succeeded in producing a fast algorithm. 

Mesh simplification and rapid prototyping 
Rapid prototyping systems are used to fabricate phys- 

ical 3D parts from computer-based geometric models. 
This "3D printing" process has many of the same prob- 
lems in handling large meshes as are encountered with 
standard graphics rendering and 2D printing: Large 
meshes take a long time to process, and verylarge mesh- 
es cannot be processed at all. 

The Rapid Prototyping System (WS) recently devel- 
oped at IBM Research can currently process models with 
up to about 50,000 faces. We have used the Superfaces 
algorithm to facilitate the fabrication of much larger 
models. Figure 21 shows a photograph of a part pro- 
duced by RPS from a simplified model of the skull 
described in our experimental results. 

Future work 
One limitation of the current version of the 

Superfaces algorithm (as well as of all the other simpli- 
fication methods discussed earlier) is that the resulting 
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Table 5. Running times of different iiiesh simplification 
ii I gorit hms. 

Algorithm Triangles Running 

Hardware Configuration Original Reduced Times 
Mesh Mesh (seconds) 

DLm~~yuI ‘ I I I ”  JU 3 1  we.-, I l l . . u , S W . “ I ~ * ~ ” ~ ~ D l S y  

~ 

Superhce, 30,876 2,038 27 
IBM RSi6000 (model 550) 1 79,9 16 2 1,840 148 

............ 349,792 24,170 360 
irianqlc decimation’-’ 38,394 17,799 8 

......... 

SGI Onyx Redlily Enqinci 186,630 71,485 33 
2-processor model 334,643 84,342 90 
-~ .... .1,049,476 29,507 _ _  322 
Cieonietric 31 5,812 295,636 96 
(hardware . . . . . . . . . .  not specified) ..... ... 1,019,373 642,204 ........... 538 
Mesh optimiiatiori.’ 3,832 432 600 

M tiltiresolu tion 

IBM RS/6000 (iiiodel 560) 

~ DCC Alpha .......... l8,272 ‘1,348 2,820 

approximiition‘ 349,792 N!A 8 0 

.... .. ...... 

21 3D hard 
copy of a 
simplified skull 
(9,820 
triangles). 
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simplified mesh can self-intersect when the original 
mesh does not-that is, two triangles from different 
superfaces might intersect. We still need to extend the 
algorithm to detect and avoid intersections. 

We are currently working on improving the “gerry- 
mandering” strategy to produce more regularly shaped 
superfaces and to eliminate “island” superfaces that are 
completely surrounded by a single neighboring 
superface. 

Our experimental results show that significant 
improvements are possible by using the more aggres- 
sive strategy for border straightening in phase 2. The 
extra expense of this approach comes from 
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identifymg those vertices in the original mesh that 
are not within &-tolerance of the simplified mesh, and 
splitting the edges of the superfaces that subsume 
these vertices. 

The experimental results indicate that very few vertices 
lie beyond the allowable limit and that very little edge 
splitting will be required. We plan to complete imple- 
mentation of the aggressive straightening method Soon. 

We also plan to extend the algorithm to other types of 
simplifications. For example, we can produce a simpli- 
fied mesh that always lies inside (or outside) the original 
model simply by eliminating one of the two planarity 
rule constraints. More generally, we can use the algo- 
rithm to approximate different kinds of geometric mod- 
els by changing the merging constraints. For example, 
models with curved surfaces can be simplified byreplac- 
ing the planarity rule with a rule that produces super- 
faces approximating higher order surface patches. 

Another possible extension applies the Superface algo- 
rithm to the problem of mesh smoothing. By using high- 
er order approximating surfaces, rather than 
approximating planes, we can produce a simplified mesh 
that is a curved approximation of the original mesh. The 
original mesh can then be smoothed, with &-tolerance, by 
projecting each of i t s  vertices onto the nominal approx- 
imating surface of its subsuming superface. 

Since the vertices of a simplified mesh are a subset of 
the vertices of the original one, we have a natural way 
of using the Superfaces algorithm to construct a mul- 
tiresolution representation of nested simplifications 
with graded degrees of detail at each level in the 
hierarchy. 
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Systems Software 
by Nayeem Islam 

Companies that build software are 
now focusing on building application-specific 
systems software. This is a difficult task that many 
researchers have been trying to cope with for a 
number of years. To help solve such problems, the 
author presents a new approach to designing 
customized system software that is application- 
specific and based on object-oriented frameworks. 
The technology presented has been influential in 
the design and implementation of several products 
at Microsoft, IBM and SUN Microsystems. 
275 pages. March 1996. Hardcover. ISBN 0-8186-71 93-9. 
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The Search for 
Simplicity 

Essays in Parallel 
Programming 
by Per Brinch Hansen 

is the first collection of clas- 
sic papers by renowned computer scientist and au- 
thor Per Brinch Hansen. These writings, written over 
a period of thirty years, demonstrate the author’s 
ability to recognize the essence of complex software 
problems and design simple working systems of 
nontrivial size. The essays describe a relentless search 
for simplicity demonstrated by the: 

RC4000 multiprogramming system 
Solo operating system 
Monitor notation for modular parallel programming 
Parallel programming languages Concurrent Pascal, 

Scientific programs for parallel architectures 
Edison, Joyce, and Superpascal 

844 pages. April 1996. Hardcover. ISBN 0-8186-7866-7. 
Catalog # BP07866 - $28.00 Members / $35.00 List II 
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