
MAPS: Multiresolution Adaptive Parameterization of Surfaces

Aaron W. F. Lee�

Princeton University
Wim Sweldens†

Bell Laboratories
Peter Schröder‡

Caltech
Lawrence Cowsar§

Bell Laboratories
David Dobkin¶

Princeton University

Figure 1: Overview of our algorithm. Top
left: a scanned input mesh (courtesy Cyber-
ware). Next the parameter or base domain,
obtained through mesh simplification. Top
right: regions of the original mesh colored
according to their assigned base domain tri-
angle. Bottom left: adaptive remeshingwith
subdivision connectivity (ε = 1%). Bottom
middle: multiresolution edit.

Abstract

We construct smooth parameterizations of irregular connectivity tri-
angulations of arbitrary genus 2-manifolds. Our algorithm uses hi-
erarchical simplification to efficiently induce a parameterization of
the original mesh over a base domain consisting of a small num-
ber of triangles. This initial parameterization is further improved
through a hierarchical smoothing procedure based on Loop sub-
division applied in the parameter domain. Our method supports
both fully automatic and user constrained operations. In the latter,
we accommodate point and edge constraints to force the alignment

�wailee@cs.princeton.edu
†wim@bell-labs.com
‡ps@cs.caltech.edu
§cowsar@bell-labs.com
¶dpd@cs.princeton.edu

of iso-parameter lines with desired features. We show how to use
the parameterization for fast, hierarchical subdivision connectivity
remeshing with guaranteed error bounds. The remeshing algorithm
constructs an adaptively subdivided mesh directly without first re-
sorting to uniform subdivision followed by subsequent sparsifica-
tion. It thus avoids the exponential cost of the latter. Our parame-
terizations are also useful for texture mapping and morphing appli-
cations, among others.

CR Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Picture/Image
Generation – Display Algorithms, Viewing Algorithms; I.3.5 [Computer Graphics]:
ComputationalGeometry and Object Modeling - Curve, Surface, Solid and Object Rep-
resentations, Hierarchy and Geometric Transformations, Object Hierarchies.

Additional Key Words and Phrases: Meshes, surface parameterization, mesh sim-

plification, remeshing, texture mapping, multiresolution, subdivision surfaces, Loop

scheme.

1 Introduction

Dense triangular meshes routinely result from a number of 3D ac-
quisition techniques, e.g., laser range scanning and MRI volumet-
ric imaging followed by iso-surface extraction (see Figure 1 top
left). The triangulations form a surface of arbitrary topology—
genus, boundaries, connectedcomponents—andhave irregular con-
nectivity. Because of their complex structure and tremendous size,
these meshes are awkward to handle in such common tasks as stor-
age, display, editing, and transmission.



Multiresolution representations are now established as a funda-
mental component in addressing these issues. Two schools exist.
One approach extends classical multiresolution analysis and subdi-
vision techniques to arbitrary topology surfaces [19, 20, 7, 3]. The
alternative is more general and is based on sequential mesh simpli-
fication, e.g., progressive meshes (PM) [12]; see [11] for a review.
In either case, the objective is to represent triangulated 2-manifolds
in an efficient and flexible way, and to use this description in fast al-
gorithms addressing the challenges mentioned above. Our approach
fits in the first group, but draws on ideas from the second group.

An important element in the design of algorithms which manip-
ulate mesh approximations of 2-manifolds is the construction of
“nice” parameterizations when none are given. Ideally, the mani-
fold is parameterized over a base domain consisting of a small num-
ber of triangles. Once a surface is understood as a function from the
base domain into R3 (or higher-D when surface attributes are con-
sidered), many tools from areas such as approximation theory, sig-
nal processing, and numerical analysis are at our disposal. In par-
ticular, classical multiresolution analysis can be used in the design
and analysis of algorithms. For example, error controlled, adaptive
remeshing can be performed easily and efficiently. Figure 1 shows
the outline of our procedure: beginning with an irregular input mesh
(top left), we find a base domain through mesh simplification (top
middle). Concurrent with simplification, a mapping is constructed
which assigns every vertex from the original mesh to a base triangle
(top right). Using this mapping an adaptive remesh with subdivision
connectivity can be built (bottom left) which is now suitable for such
applications as multiresolution editing (bottom middle). Addition-
ally, there are other practical payoffs to good parameterizations, for
example in texture mapping and morphing.

In this paper we present an algorithm for the fast computation
of smooth parameterizations of dense 2-manifold meshes with arbi-
trary topology. Specifically,we make the following contributions
� We describe an O(N logN) time and storage algorithm to con-

struct a logarithmic level hierarchy of arbitrary topology, irregu-
lar connectivity meshes based on the Dobkin-Kirkpatrick (DK)
algorithm. Our algorithm accommodatesgeometric criteria such
as area and curvature as well as vertex and edge constraints.

� We construct a smooth parameterization of the original mesh
over the base domain. This parameterization is derived through
repeated conformal remapping during graph simplification fol-
lowed by a parameter space smoothing procedure based on the
Loop scheme. The resulting parameterizations are of high visual
and numerical quality.

� Using the smooth parameterization, we describe an algorithm for
adaptive, hierarchical remeshing of arbitrary meshes into subdi-
vision connectivity meshes. The procedure is fully automatic,
but also allows for user intervention in the form of fixing point
or path features in the original mesh. The remeshed manifold
meets conservative approximation bounds.

Even though the ingredients of our construction are reminiscent
of mesh simplification algorithms, we emphasize that our goal is
not the construction of another mesh simplification procedure, but
rather the construction of smooth parameterizations. We are partic-
ularly interested in using these parameterizations for remeshing, al-
though they are useful for a variety of applications.

1.1 Related Work

A number of researchers have considered—either explicitly or
implicitly—the problem of building parameterizations for arbitrary
topology, triangulated surfaces. This work falls into two main cat-
egories: (1) algorithms which build a smoothly parameterized ap-
proximation of a set of samples (e.g. [14, 1, 17]), and (2) algorithms
which remesh an existing mesh with the goal of applying classical

multiresolution approaches [7, 8].
A related, though quite different problem, is the maintenance of

a given parameterization during mesh simplification [4]. We em-
phasize that our goal is the construction of mappings when none are
given.

In the following two sections, we discuss related work and con-
trast it to our approach.

1.1.1 Approximation of a Given Set of Samples

Hoppe and co-workers [14] describe a fully automatic algorithm
to approximate a given polyhedral mesh with Loop subdivision
patches [18] respecting features such as edges and corners. Their
algorithm uses a non-linear optimization procedure taking into ac-
count approximation error and the number of triangles of the base
domain. The result is a smooth parameterization of the original
polyhedral mesh over the base domain. Since the approach only
uses subdivision, small features in the original mesh can only be re-
solved accurately by increasing the number of triangles in the base
domain accordingly. A similar approach, albeit using A-patches,
was described by Bajaj and co-workers [1]. From the point of view
of constructing parameterizations, the main drawback of algorithms
in this class is that the number of triangles in the base domain de-
pends heavily on the geometric complexity of the goal surface.

This problem was addressed in work of Krishnamurthy and
Levoy [17]. They approximate densely sampled geometry with bi-
cubic spline patches and displacement maps. Arguing that a fully
automatic system cannot put iso-parameter lines where a skilled an-
imator would want them, they require the user to lay out the en-
tire network of top level spline patch boundaries. A coarse to fine
matching procedure with relaxation is used to arrive at a high quality
patch mesh whose base domain need not mimic small scale geomet-
ric features.

The principal drawback of their procedure is that the user is re-
quired to define the entire base domain rather then only selected fea-
tures. Additionally, given that the procedure works from coarse to
fine, it is possible for the procedure to “latch” onto the wrong sur-
face in regions of high curvature [17, Figure 7].

1.1.2 Remeshing

Lounsbery and co-workers [19, 20] were the first to propose al-
gorithms to extend classical multiresolution analysis to arbitrary
topology surfaces. Because of its connection to the mathematical
foundations of wavelets, this approach has proven very attractive
(e.g. [22, 7, 27, 8, 3, 28]). The central requirement of these methods
is that the input mesh have subdivision connectivity. This is gener-
ally not true for meshes derived from 3D scanning sources.

To overcome this problem, Eck and co-workers [7] developed
an algorithm to compute smooth parameterizations of high resolu-
tion polyhedral meshes over a low face count base domain. Using
such a mapping, the original surface can be remeshed using subdi-
vision connectivity. After this conversion step, adaptive simplifica-
tion, compression, progressive transmission, rendering, and editing
become simple and efficient operations [3, 8, 28].

Eck et al. arrive at the base domain through a Voronoi tiling of the
original mesh. Using a sequence of local harmonic maps, a param-
eterization which is smooth over each triangle in the base domain
and which meets with C0 continuity at base domain edges [7, Plate
1(f)] is constructed. Runtimes for the algorithm can be long be-
cause of the many harmonic map computations. This problem was
recently addressed by Duchamp and co-workers [6], who reduced
the harmonic map computations from their initial O(N2) complexity
to O(N logN) through hierarchical preconditioning. The hierarchy
construction they employed for use in a multigrid solver is related
to our hierarchy construction.



The initial Voronoi tile construction relies on a number of heuris-
tics which render the overall algorithm fragile (for an improved ver-
sion see [16]). Moreover, there is no explicit control over the num-
ber of triangles in the base domain or the placement of patch bound-
aries.

The algorithm generates only uniformly subdivided meshes
which later can be decimated through classical wavelet methods.
Many extra globally subdivided levels may be needed to resolve one
small local feature; moreover, each additional level quadruples the
amount of work and storage. This can lead to the intermediate con-
struction of many more triangles than were contained in the input
mesh.

1.2 Features of MAPS

Our algorithm was designed to overcome the drawbacks of previ-
ous work as well as to introduce new features. We use a fast coar-
sification strategy to define the base domain, avoiding the potential
difficulties of finding Voronoi tiles [7, 16]. Since our algorithm pro-
ceeds from fine to coarse, correspondenceproblems found in coarse
to fine strategies [17] are avoided, and all features are correctly re-
solved. We use conformal maps for continued remapping during
coarsification to immediately produce a global parameterization of
the original mesh. This map is further improved through the use of a
hierarchical Loop smoothing procedure obviating the need for iter-
ative numerical solvers [7]. Since the procedure is performed glob-
ally, derivative discontinuities at the edges of the base domain are
avoided [7]. In contrast to fully automatic methods [7], the algo-
rithm supports vertex and edge tags [14] to constrain the parameter-
ization to align with selected features; however, the user is not re-
quired to specify the entire patch network [17]. During remeshing
we take advantage of the original fine to coarse hierarchy to output
a sparse, adaptive, subdivision connectivity mesh directly without
resorting to a depth first oracle [22] or the need to produce a uni-
form subdivision connectivity mesh at exponential cost followed by
wavelet thresholding [3].

2 Hierarchical Surface Representation

In this section we describe the main components of our algorithm,
coarsification and map construction. We begin by fixing our nota-
tion.

2.1 Notation

When describing surfaces mathematically, it is useful to separate the
topological and geometric information. To this end we introduce
some notation adapted from [24]. We denote a triangular mesh as
a pair (P ;K ), where P is a set of N point positions pi = (xi;yi;zi)2
R3 with 1 � i � N, and K is an abstract simplicial complex which
contains all the topological, i.e., adjacency information. The com-
plex K is a set of subsets of f1; : : : ;Ng. These subsets are called
simplices and come in 3 types: vertices v = fig 2 K , edges e =
fi; jg 2K , and faces f = fi; j;kg 2K , so that any non-empty subset
of a simplex of K is again a simplex of K , e.g., if a face is present
so are its edges and vertices.

Let ei denote the standard i-th basis vector in RN . For each sim-
plex s, its topological realization jsj is the strictly convex hull of
fei j i 2 sg. Thus jfigj= ei, jfi; jgj is the open line segment between
ei and e j , and jfi; j;kgj is an open equilateral triangle. The topologi-
cal realization jK j is defined as [s2K jsj. The geometric realization
ϕ(jK j) relies on a linear map ϕ : RN ! R3 defined by ϕ(ei) = pi.
The resulting polyhedron consists of points, segments, and triangles
in R3.

Two vertices fig and f jg are neighbors if fi; jg 2 K . A set of
vertices is independent if no two vertices are neighbors. A set of
vertices is maximally independent if no larger independent set con-
tains it (see Figure 3, left side). The 1-ring neighborhood of a vertex
fig is the set

N (i) = f j j fi; jg 2K g:
The outdegree Ki of a vertex is its number of neighbors. The star of
a vertex fig is the set of simplices

star(i) =
[

i2s;s2K
s:

We say that jKj is a two dimensional manifold (or 2-manifold) with
boundaries if for each i, jstar(i)j is homeomorphic to a disk (interior
vertex) or half-disk (boundary vertex) in R2. An edge e = fi; jg is
called a boundary edge if there is only one face f with e � f .

We define a conservative curvature estimate, κ(i)= jκ1j+ jκ2j at
pi, using the principal curvatures κ1 and κ2. These are estimated by
the standard procedure of first establishing a tangent plane at pi and
then using a second degree polynomial to approximate ϕ(jstar(i)j).

2.2 Mesh Hierarchies

An important part of our algorithm is the construction of a mesh hi-
erarchy. The original mesh (P ;K ) = (P L;K L) is successively sim-
plified into a series of homeomorphic meshes (P l ;K l) with 0� l <
L, where (P 0;K 0) is the coarsest or base mesh (see Figure 4).

Several approaches for such mesh simplification have been pro-
posed, most notably progressive meshes (PM) [12]. In PM the ba-
sic operation is the “edge collapse.” A sequence of such atomic op-
erations is prioritized based on approximation error. The linear se-
quence of edge collapses can be partially ordered based on topolog-
ical dependence [25, 13], which defines levels in a hierarchy. The
depth of these hierarchies appears “reasonable” in practice, though
can vary considerably for the same dataset [13].

Our approach is similar in spirit, but inspired by the hierarchy
proposed by Dobkin and Kirkpatrick (DK) [5], which guarantees
that the number of levels L is O(logN). While the original DK hi-
erarchy is built for convex polyhedra, we show how the idea behind
DK can be used for general polyhedra. The DK atomic simplifi-
cation step is a vertex remove, followed by a retriangulation of the
hole.

The two basic operations “vertex remove” and “edge collapse”
are related since an edge collapse into one of its endpoints corre-
sponds to a vertex remove with a particular retriangulation of the
resulting hole (see Figure 2). The main reason we chose an algo-
rithm based on the ideas of the DK hierarchy is that it guarantees a
logarithmic bound on the number of levels. However, we empha-
size that the ideas behind our map constructions apply equally well
to PM type algorithms.

2.3 Vertex Removal

One DK simplification step K l ! K l�1 consists of removing a
maximally independent set of vertices with low outdegree (see Fig-
ure 3). To find such a set, the original DK algorithm used a greedy
approach based only on topological information. Instead, we use
a priority queue based on both geometric and topological informa-
tion.

At the start of each level of the original DK algorithm, none of the
vertices are marked and the set to be removed is empty. The algo-
rithm randomly selects a non-marked vertex of outdegree less than
12, removes it and its star from K l , marks its neighbors as unremov-
able and iterates this until no further vertices can be removed. In a
triangulated surface the average outdegree of a vertex is 6. Conse-
quently, no more than half of the vertices can be of outdegree 12 or



General Edge collapse operation

Half edge collapse as vertex removal with special retriangulation

Vertex removal followed by retriangulation

Figure 2: Examples of different atomic mesh simplification steps. At
the top vertex removal, in the middle half-edge collapse, and edge
collapse at the bottom.

more. Thus it is guaranteed that at least 1=24 of the vertices will be
removed at each level [5]. In practice, it turns out one can remove
roughly 1=4 of the vertices reflecting the fact that the graph is four-
colorable. Given that a constant fraction can be removed on each
level, the number of levels behaves as O(logN). The entire hierar-
chy can thus be constructed in linear time.

In our approach, we stay in the DK framework, but replace the
random selection of vertices by a priority queue based on geometric
information. Roughly speaking, vertices with small and flat 1-ring
neighborhoods will be chosen first. At level l, for a vertex pi 2 P l ,
we consider its 1-ring neighborhood ϕ(jstar(i)j) and compute its
area a(i) and estimate its curvature κ(i). These quantities are com-
puted relative to K l , the current level. We assign a priority to fig
inversely proportional to a convex combination of relative area and
curvature

w(λ; i) = λ
a(i)

maxpi2P l a(i)
+(1�λ)

κ(i)
maxpi2P l κ(i)

:

(We found λ = 1=2 to work well in our experiments.) Omitting all
vertices of outdegree greater than 12 from the queue, removal of a
constant fraction of vertices is still guaranteed. Because of the sort
implied by the priority queue, the complexity of building the entire
hierarchy grows to O(N logN).

Figure 4 shows three stages (original, intermediary, coarsest) of
the DK hierarchy. Given that the coarsest mesh is homeomorphic to
the original mesh, it can be usedas the domain of a parameterization.

2.4 Flattening and Retriangulation

To find K l�1, we need to retriangulate the holes left by removing
the independent set. One possibility is to find a plane into which

Mesh at level l Mesh at level l-1

Figure 3: On the left a mesh with a maximally independent set of
vertices marked by heavy dots. Each vertex in the independent set
has its respective star highlighted. Note that the star’s of the inde-
pendent set do not tile the mesh (two triangles are left white). The
right side gives the retriangulation after vertex removal.

to project the 1-ring neighborhood ϕ(jstar(i)j) of a removed vertex
ϕ(jij) without overlapping triangles and then retriangulate the hole
in that plane. However, finding such a plane, which may not even
exist, can be expensive and involves linear programming [4].

Instead, we use the conformal map za [6] which minimizes met-
ric distortion to map the neighborhood of a removed vertex into the
plane. Let fig be a vertex to be removed. Enumerate cyclically
the Ki vertices in the 1-ring N (i) = f jk j 1 � k � Kig such that
f jk�1; i; jkg 2K l with j0 = jKi . A piecewise linear approximation
of za, which we denote by µi, is defined by its values for the cen-
ter point and 1-ring neighbors; namely, µi(pi) = 0 and µi(p jk) =
ra

k exp(iθk a), where rk = kpi� p jkk,

θk =
k

∑
l=1

6 (p jl�1
; pi; p jl );

and a = 2π=θKi . The advantages of the conformal map are numer-
ous: it always exists, it is easy to compute, it minimizes metric dis-
tortion, and it is a bijection and thus never maps two triangles on
top of each other. Once the 1-ring is flattened, we can retriangulate
the hole using, for example, a constrained Delaunay triangulation
(CDT) (see Figure 5). This tells us how to build K l�1.

When the vertex to be removed is a boundary vertex, we map to
a half disk by setting a = π=θKi (assuming j1 and jKi are bound-
ary vertices and setting θ1 = 0). Retriangulation is again performed
with a CDT.

3 Initial Parameterization

To find a parameterization, we begin by constructing a bijection
Π from ϕ(jK Lj) to ϕ(jK 0j). The parameterization of the original
mesh over the base domain follows from Π�1(ϕ(jK 0j)). In other
words, the mapping of a point p 2 ϕ(jK Lj) through Π is a point
p0 = Π(v)2 ϕ(jK 0j), which can be written as

p0 = α pi+β p j + γ pk ;

where fi; j;kg 2K 0 is a face of the base domain and α, β and γ are
barycentric coordinates, i.e., α+β+ γ = 1.

The mapping can be computed concurrently with the hierarchy
construction. The basic idea is to successively compute piecewise



Intermediate mesh (level 6)

Coarsest mesh (level 0)

Original mesh (level 14)

Figure 4: Example of a modified DK mesh hierarchy. At the top
the finest (original) mesh ϕ(jK Lj) followed by an intermediate
mesh, and the coarsest (base) mesh ϕ(jK 0j) at the bottom (origi-
nal dataset courtesy University of Washington).

linear bijections Πl between ϕ(jK Lj) and ϕ(jK l j) starting with ΠL,
which is the identity, and ending with Π0 = Π.

Notice that we only need to compute the value of Πl at the ver-
tices of K L. At any other point it follows from piecewise linearity.1

Assume we are given Πl and want to compute Πl�1. Each vertex
fig 2K L falls into one of the following categories:

1. fig 2 K l�1: The vertex is not removed on level l and sur-
vives on level l � 1. In this case nothing needs to be done.
Πl�1(pi) = Πl(pi) = pi.

2. fig 2K l nK l�1: The vertex gets removed when going from
l to l�1. Consider the flattening of the 1-ring around pi (see
Figure 5). After retriangulation, the origin lies in a triangle
which corresponds to some face t = f j;k;mg 2K l�1 and has
barycentric coordinates (α;β;γ)with respect to the vertices of
that face, i.e., αµi(p j)+βµi(pk)+γµi(pm) (see Figure 6). In
that case, let Πl�1(pi) = α p j +β pk+ γ pm.

3. fig 2 K L nK l : The vertex was removed earlier, thus
Πl(pi) = α0 p j0 + β0 pk0 + γ0 pm0 for some triangle t0 =

1In the vicinity of vertices in K l a triangle fi; j;kg 2 K L can straddle
multiple triangles in K l . In this case the map dependson the flattening strat-
egy used (see Section 2.4).

3 space

retriangulation

Flattening into parameter plane

Figure 5: In order to remove a vertex pi, its star(i) is mapped from
3-space to a plane using the map za. In the plane the central vertex
is removed and the resulting hole retriangulated (bottom right).

k

m

jpoint in new triangle
coordinates to old
assign barycentric

Figure 6: After retriangulation of a hole in the plane (see Figure 5),
the just removed vertex gets assigned barycentric coordinates with
respect to the containing triangle on the coarser level. Similarly, all
the finest level vertices that were mapped to a triangle of the hole
now need to be reassigned to a triangle of the coarser level.

f j0;k0;m0g 2K l . If t0 2K l�1, nothing needs to be done; oth-
erwise, the independent set guarantees that exactly one ver-
tex of t0 is removed, say f j0g. Consider the conformal map
µ j0 (Figure 6). After retriangulation, the µ j0(pi) lies in a tri-
angle which corresponds to some face t = f j;k;mg 2 K l�1

with barycentric coordinates (α;β;γ) (black dots within high-
lighted face in Figure 6). In that case, let Πl�1(pi) = α p j +
β pk+γ pm (i.e., all vertices in Figure 6 are reparameterized in
this way).

Note that on every level, the algorithm requires a sweep through all
the vertices of the finest level resulting in an overall complexity of
O(N logN).

Figure 7 visualizes the mapping we just computed. For each
point pi from the original mesh, its mapping Π(pi) is shown with
a dot on the base domain.

Caution: Given that every association between a 1-ring and its
retriangulated hole is a bijection, so is the mapping Π. However,
Π does not necessarily map a finest level triangle to a triangular re-
gion in the base domain. Instead the image of a triangle may be
a non-convex region. In that case connecting the mapped vertices
with straight lines can cause flipping, i.e., triangles may end up on
top of each other (see Figure 8 for an example). Two methods ex-



Figure 7: Base domain ϕ(jK 0j). For each point pi from the original
mesh, its mapping Π(pi) is shown with a dot on the base domain.

ist for dealing with this problem. First one could further subdivide
the original mesh in the problem regions. Given that the underlying
continuous map is a bijection, this is guaranteed to fix the problem.
The alternative is to use some brute force triangle unflipping mecha-
nism. We have found the following scheme to work well: adjust the
parameter values of every vertex whose 2-neighborhood contains a
flipped triangle, by replacing them with the averaged parameter val-
ues of its 1-ring neighbors [7].

image of vertices

mapping onto base domain

image of triangle

original mesh

Figure 8: Although the mapping Π from the original mesh to a
base domain triangle is a bijection, triangles do not in general get
mapped to triangles. Threevertices of the original mesh get mapped
to a concave configuration on the base domain, causing the piece-
wise linear approximation of the map to flip the triangle.

3.1 Tagging and Feature Lines

In the algorithm described so far, there is no a priori control over
which vertices end up in the base domain or how they will be con-
nected. However, often there are features which one wants to pre-
serve in the base domain. These features can either be detected au-
tomatically or specified by the user.

We consider two types of features on the finest mesh: vertices
and paths of edges. Guaranteeing that a certain vertex of the original
mesh ends up in the base domain is straightforward. Simply mark
that vertex as unremovable throughout the DK hierarchy.

We now describe an algorithm to guarantee that a certain path of
edges on the finest mesh gets mapped to an edge of the base domain.
Letfvi j 1� i� Ig�K L be a set of vertices on the finest level which
form a path, i.e., fvi;vi+1g is an edge. Tag all the edges in the path
as feature edges. First tag v1 and vI, so called dart points [14], as un-
removable so they are guaranteed to end up in the base domain. Let
vi be the first vertex on the interior of the path which gets marked for
removal in the DK hierarchy, say, when going from level l to l�1.
Because of the independent set property, vi�1 and vi+1 cannot be
removed and therefore must belong to K l�1. When flattening the
hole around vi, tagged edges are treated like a boundary. We first
straighten out the edges fvi�1;vig and fvi;vi+1g along the x-axis,

retriangulation

Flattening into parameter plane

3 space

Figure 9: When a vertex with two incident feature edges is removed,
we want to ensure that the subsequent retriangulation adds a new
feature edge to replace the two old ones.

and use two boundary type conformal maps to the half disk above
and below (cf. the last paragraph of Section 2.4). When retriangu-
lating the hole around vi, we put the edge fvi�1;vi+1g in K l�1, tag it
as a feature edge, and compute a CDT on the upper and lower parts
(see Figure 9). If we apply similar procedures on coarser levels, we
ensure that v1 and vI remain connectedby a path (potentially a single
edge) on the base domain. This guarantees that Π maps the curved
feature path onto the coarsest level edge(s) between v1 and vI.

In general, there will be multiple feature paths which may be
closed or cross each other. As usual, a vertex with more than 2 inci-
dent feature edges is considered a corner, and marked as unremov-
able.

The feature vertices and paths can be provided by the user or de-
tected automatically. As an example of the latter case, we consider
every edge whose dihedral angle is below a certain threshold to be
a feature edge, and every vertex whose curvature is above a certain
threshold to be a feature vertex. An example of this strategy is illus-
trated in Figure 13.

3.2 A Quick Review

Before we consider the problem of remeshing, it may be helpful
to review what we have at this point. We have established an ini-
tial bijection Π of the original surface ϕ(jK Lj) onto a base domain
ϕ(jK 0j) consisting of a small number of triangles (e.g. Figure 7).
We use a simplification hierarchy (Figure 4) in which the holes af-
ter vertex removal are flattened and retriangulated (Figures 5 and 9).
Original mesh points get successively reparametrized over coarser
triangulations (Figure 6). The resulting mapping is always a bijec-
tion; triangle flipping (Figure 8) is possible but can be corrected.

4 Remeshing

In this section, we consider remeshing using subdivision connectiv-
ity triangulations since it is both a convenient way to illustrate the
properties of a parameterization and is an important subject in its
own right. In the process, we compute a smoothed version of our
initial parameterization. We also show how to efficiently construct
an adaptive remeshing with guaranteed error bounds.

4.1 Uniform Remeshing

Since Π is a bijection, we can use Π�1 to map the base domain
to the original mesh. We follow the strategy used in [7]: regu-



larly (1:4) subdivide the base domain and use the inverse map to
obtain a regular connectivity remeshing. This introduces a hierar-
chy of regular meshes (Q m;R m) (Q is the point set and R is the
complex) obtained from m-fold midpoint subdivision of the base
domain (P 0;K 0) = (Q 0;R 0). Midpoint subdivision implies that
all new domain points lie in the base domain, Q m � ϕ(jR 0j) and
jR mj = jR 0j. All vertices of R m nR 0 have outdegree 6. The
uniform remeshing of the original mesh on level m is given by
(Π�1(Q m);R m).

We thus need to compute Π�1(q) where q is a point in the base
domain with dyadic barycentric coordinates. In particular, we need
to compute which triangle of ϕ(jK Lj) contains Π�1(q), or, equiv-
alently, which triangle of Π(ϕ(jK Lj)) contains q. This is a stan-
dard point location problem in an irregular triangulation. We use
the point location algorithm of Brown and Faigle [2] which avoids
looping that can occur with non-Delaunay meshes [10, 9]. Once we
have found the triangle fi; j;kg which contains q, we can write q as

q = αΠ(pi)+βΠ(p j)+ γΠ(pk);

and thus
Π�1(q) = α pi+β p j + γ pk 2 ϕ(jK Lj):

Figure 10 shows the result of this procedure: a level 3 uniform
remeshing of a 3-holed torus using the Π�1 map.

A note on complexity: The point location algorithm is essen-
tially a walk on the finest level mesh with complexity O(

p
N). Hi-

erarchical point location algorithms, which have asymptotic com-
plexity O(logN), exist [15] but have a much larger constant. Given
that we schedule the queries in a systematic order, we almost always
have an excellent starting guess and observe a constant number of
steps. In practice, the finest level “walking” algorithm beats the hi-
erarchical point location algorithms for all meshes we encountered
(up to 100K faces).

Figure 10: Remeshing of 3 holed torus using midpoint subdivision.
The parameterization is smooth within each base domain triangle,
but clearly not across base domain triangles.

4.2 Smoothing the Parameterization

It is clear from Figure 10 that the mapping we used is not smooth
across global edges. One way to obtain global smoothness is to con-
sider a map that minimizes a global smoothness functional and goes
from ϕ(jK Lj) to jK 0j rather than to ϕ(jK 0j). This would require
an iterative PDE solver. We have found computation of mappings
to topological realizations that live in a high dimensional space to
be needlessly cumbersome.

Instead, we use a much simpler and cheaper smoothing technique
based on Loop subdivision. The main idea is to compute Π�1 at
a smoothed version of the dyadic points, rather then at the dyadic
points themselves (which can equivalently be viewed as changing

the parameterization). To that end, we define a map L from the base
domain to itself by the following modification of Loop:

� If all the points of the stencil needed for computing either a new
point or smoothing an old point are inside the same triangle of
the base domain, we can simply apply the Loop weights and the
new points will be in that same face.

� If the stencil stretches across two faces of the base domain, we
flatten them out using a “hinge” map at their common edge. We
then compute the point’s position in this flattened domain and ex-
tract the triangle in which the point lies together with its barycen-
tric coordinates.

� If the stencil stretches across multiple faces, we use the confor-
mal flattening strategy discussed earlier.

Note that the modifications to Loop force L to map the base domain
onto the base domain. We emphasize that we do not apply the classic
Loop scheme (which would produce a “blobby” version of the base
domain). Nor are the surface approximations that we later produce
Loop surfaces.

The composite map Π�1 �L is our smoothed parameterization
that maps the base domain onto the original surface. The m-th level
of uniform remeshing with the smoothed parameterization is (Π�1�
L(Qm);R m), where Qm, as before, are the dyadic points on the base
domain. Figure 11 shows the result of this procedure: a level 3 uni-
form remeshing of a 3-holed torus using the smoothed parameteri-
zation.

When the mesh is tagged, we cannot apply smoothing across the
tagged edges since this would break the alignment with the features.
Therefore, we use modified versions of Loop which can deal with
corners, dart points and feature edges [14, 23, 26] (see Figure 13).

Figure 11: The same remeshingof the 3-holed torus as in Figure 10,
but this time with respect to a Loop smoothed parameterization.
Note: Because the Loop scheme only enters in smoothing the pa-
rameterization the surface shown is still a sampling of the original
mesh, not a Loop surface approximation of the original.

4.3 Adaptive Remeshing

One of the advantages of meshes with subdivision connectivity is
that classical multiresolution and wavelet algorithms can be em-
ployed. The standard wavelet algorithms used, e.g., in image com-
pression, start from the finest level, compute the wavelet trans-
form, and then obtain an efficient representation by discarding small
wavelet coefficients. Eck et al. [7, 8] as well as Certain et al. [3] fol-
low a similar approach: remesh using a uniformly subdivided grid
followed by decimation through wavelet thresholding. This has the
drawback that in order to resolve a small local feature on the origi-
nal mesh, one may need to subdivide to a very fine level. Each extra
level quadruples the number of triangles, most of which will later
be decimated using the wavelet procedure. Imagine, e.g., a plane
which is coarsely triangulated except for a narrow spike. Making



the spike width sufficiently small, the number of levels needed to
resolve it can be made arbitrarily high.

In this section we present an algorithm which avoids first building
a full tree and later pruning it. Instead, we immediately build the
adaptive mesh with a guaranteed conservative error bound. This is
possible because the DK hierarchy contains the information on how
much subdivision is needed in any given area. Essentially, we let
the irregular DK hierarchy “drive” the adaptive construction of the
regular pyramid.

We first compute for each triangle t 2 K 0 the following error
quantity:

E(t) = max
pi2P Land Π(pi)2ϕ(jtj)

dist(pi;ϕ(jtj)):

This measures the distance between one triangle in the base domain
and the vertices of the finest level mapped to that triangle.

The adaptive algorithm is now straightforward. Set a certain rel-
ative error threshold ε. Compute E(t) for all triangles of the base
domain. If E(t)=B, where B is the largest side of the bounding box,
is larger than ε, subdivide the domain triangle using the Loop pro-
cedure above. Next, we need to reassign vertices to the triangles of
level m = 1. This is done as follows: For each point pi 2 P L con-
sider the triangle t of K 0 to which it it is currently assigned. Next
consider the 4 children of t on level 1, t j with j = 0;1;2;3 and com-
pute the distance between pi and each of the ϕ(jt jj). Assign pi to
the closest child. Once the finest level vertices have been reassigned
to level 1 triangles, the errors for those triangles can be computed.
Now iterate this procedure until all triangles have an error below the
threshold. Because all errors are computed from the finest level, we
are guaranteed to resolve all features within the error bound. Note
that we are not computing the true distance between the original ver-
tices and a given approximation, but rather an easy to compute upper
bound for it.

In order to be able to compute the Loop smoothing map L on an
adaptively subdivided grid, the grid needs to satisfy a vertex restric-
tion criterion, i.e., if a vertex has a triangle incident to it with depth
i, then it must have a complete 1-ring at level i� 1 [28]. This re-
striction may necessitate subdividing some triangles even if they are
below the error threshold. Examples of adaptive remeshing can be
seen in Figure 1 (lower left), Figure 12, and Figure 13.

Figure 12: Example remesh of a surface with boundaries.

5 Results

We have implemented MAPS as described above and applied it to
a number of well known example datasets, as well as some new
ones. The application was written in C++ using standard compu-
tational geometry data structures, see e.g. [21], and all timings re-

ported in this section were measured on a 200 MHz PentiumPro per-
sonal computer.

Figure 13: Left (top to bottom): three levels in the DK pyramid,
finest (L = 15) with 12946, intermediate (l = 8) with 1530, and
coarsest (l = 0) with 168 triangles. Feature edges, dart and corner
vertices surviveon the base domain. Right (bottom to top): adaptive
mesh with ε= 5% and 1120 triangles (bottom), ε= 1% and 3430 tri-
angles (middle), and uniform level 3 (top). (Original dataset cour-
tesy University of Washington.)

The first example used throughout the text is the 3-holed torus.
The original mesh contained 11776 faces. These were reduced in
the DK hierarchy to 120 faces over 14 levels implying an average
removal of 30% of the faces on a given level. The remesh of Fig-
ure 11 used 4 levels of uniform subdivision for a total of 30720 tri-
angles.

The original sampled geometry of the 3-holed torus is smooth and
did not involve any feature constraints. A more challenging case
is presented by the fandisk shown in Figure 13. The original mesh
(top left) contains 12946 triangles which were reduced to 168 faces
in the base domain over 15 levels (25% average face removal per
level). The initial mesh had all edges with dihedral angles below



Figure 14: Example of a constrained parameterization based on user input. Top: original input mesh (100000 triangles) with edge tags su-
perimposed in red, green lines show some smooth iso-parameter lines of our parameterization. The middle shows an adaptive subdivision
connectivity remesh. The bottom one patches corresponding to the eye regions (right eye was constrained, left eye was not) are highlighted to
indicate the resulting alignment of top level patches with the feature lines. (Dataset courtesy Cyberware.)

75o tagged (1487 edges), resulting in 141 tagged edges at the coars-
est level. Adaptive remeshing to within ε= 5% and ε= 1% (fraction
of longest bounding box side) error results in the meshes shown in
the right column. The top right image shows a uniform resampling
to level 3, in effect showing iso-parameter lines of the parameteriza-
tion used for remeshing. Note how the iso-parameter lines conform
perfectly to the initially tagged features.

This dataset demonstrates one of the advantages of our method—
inclusion of feature constraints—over the earlier work of Eck et
al. [7]. In the original PM paper [12, Figure 12], Hoppe shows the
simplification of the fandisk based on Eck’s algorithm which does
not use tagging. He points out that the multiresolution approxima-
tion is quite poor at low triangle counts and consequently requires
many triangles to achieve high accuracy. The comparison between
our Figure 13 and Figure 12 in [12] demonstrates that our multires-
olution algorithm which incorporates feature tagging solves these
problems.

Another example of constrained parameterization and subse-
quent adaptive remeshing is shown in Figure 14. The original
dataset (100000 triangles) is shown on the left. The red lines in-
dicate user supplied feature constraints which may facilitate sub-
sequent animation. The green lines show some representative iso-
parameter lines of our parameterization subject to the red fea-
ture constraints. Those can be used for computing texture coordi-
nates. The middle image shows an adaptive subdivision connectiv-
ity remesh with 74698 triangles (ε = 0:5%). On the right we have
highlighted a group of patches, 2 over the right (constrained) eye
and 1 over the left (unconstrained) eye. This indicates how user
supplied constraints force domain patches to align with desired fea-
tures. Other enforced patch boundaries are the eyebrows, center of
the nose, and middle of lips (see red lines in left image). This ex-
ample illustrates how one places constraints like Krishnamurthy and
Levoy [17]. We remove the need in their algorithms to specify the

entire base domain. A user may want to control patch outlines for
editing in one region (e.g., on the face), but may not care about what
happens in other regions (e.g., the back of the head).

We present a final example in Figure 1. The original mesh (96966
triangles) is shown on the top left, with the adaptive, subdivision
connectivity remesh on the bottom left. This remesh was subse-
quently edited in a interactive multiresolution editing system [28]
and the result is shown on the bottom middle.

6 Conclusions and Future Research

We have described an algorithm which establishes smooth parame-
terizations for irregular connectivity, 2-manifold triangular meshes
of arbitrary topology. Using a variant of the DK hierarchy construc-
tion, we simplify the original mesh and use piecewise linear approx-
imations of conformal mappings to incrementally build a parame-
terization of the original mesh over a low face count base domain.
This parameterization is further improved through a hierarchical
smoothing procedure which is based on Loop smoothing in param-
eter space. The resulting parameterizations are of high quality, and
we demonstrated their utility in an adaptive, subdivision connectiv-
ity remeshing algorithm that has guaranteed error bounds. The new
meshes satisfy the requirements of multiresolution representations
which generalize classical wavelet representations and are thus of
immediate use in applications such as multiresolution editing and
compression. Using edge and vertex constraints, the parameteriza-
tions can be forced to respect feature lines of interest without requir-
ing specification of the entire patch network.

In this paper we have chosen remeshing as the primary applica-
tion to demonstrate the usefulness of the parameterizations we pro-
duce. The resulting meshes may also find application in numeri-
cal analysis algorithms, such as fast multigrid solvers. Clearly there



Dataset Input size Hierarchy Levels P 0 size Remeshing Remesh Output size
(triangles) creation (triangles) tolerance creation (triangles)

3-hole 11776 18 (s) 14 120 (NA) 8 (s) 30720
fandisk 12946 23 (s) 15 168 1% 10 (s) 3430
fandisk 12946 23 (s) 15 168 5% 5 (s) 1130
head 100000 160 (s) 22 180 0:5% 440 (s) 74698
horse 96966 163 (s) 21 254 1% 60 (s) 15684
horse 96966 163 (s) 21 254 0:5% 314 (s) 63060

Table 1: Selected statistics for the examples discussed in the text. All times are in seconds on a 200 MHz PentiumPro.

are many other applications which benefit from smooth parameter-
izations, e.g., texture mapping and morphing, which would be in-
teresting to pursue in future work. Because of its independent set
selection the standard DK hierarchy creates topologically uniform
simplifications. We have begun to explore how the selection can
be controlled using geometric properties. Alternatively, one could
use a PM framework to control geometric criteria of simplification.
Perhaps the most interesting question for future research is how to
incorporate topology changes into the MAPS construction.

Acknowledgments

Aaron Lee and David Dobkin were partially supported by NSF Grant CCR-9643913

and the US Army Research Office Grant DAAH04-96-1-0181. Aaron Lee was also par-

tially supportedby a Wu Graduate Fellowship and a Summer Internshipat Bell Labora-

tories, Lucent Technologies. Peter Schröder was partially supported by grants from the

Intel Corporation, the Sloan Foundation, an NSF CAREER award (ASC-9624957), a

MURI (AFOSR F49620-96-1-0471),and Bell Laboratories, LucentTechnologies. Spe-

cial thanks to Timothy Baker, Ken Clarkson, TomDuchamp, Tom Funkhouser,Amanda

Galtman, and Ralph Howard for many interesting and stimulation discussions. Special

thanks also to Andrei Khodakovsky, Louis Thomas, and Gary Wu for invaluable help

in the productionof the paper. Our implementationuses the triangle facet data structure

and code of Ernst Mücke.

References
[1] BAJAJ, C. L., BERNADINI, F., CHEN, J., AND SCHIKORE, D. R. Automatic

Reconstruction of 3D CAD Models. Tech. Rep. 96-015, Purdue University,
February 1996.

[2] BROWN, P. J. C., AND FAIGLE, C. T. A Robust Efficient Algorithm for Point
Location in Triangulations. Tech. rep., Cambridge University, February 1997.

[3] CERTAIN, A., POPOVIĆ, J., DEROSE, T., DUCHAMP, T., SALESIN, D., AND

STUETZLE, W. Interactive Multiresolution Surface Viewing. In Computer
Graphics (SIGGRAPH 96 Proceedings), 91–98, 1996.

[4] COHEN, J., MANOCHA, D., AND OLANO, M. Simplifying Polygonal Models
Using Successive Mappings. In Proceedings IEEE Visualization 97, 395–402,
October 1997.

[5] DOBKIN, D., AND KIRKPATRICK, D. A Linear Algorithm for Determining the
Separation of Convex Polyhedra. Journal of Algorithms 6 (1985), 381–392.

[6] DUCHAMP, T., CERTAIN, A., DEROSE, T., AND STUETZLE, W. Hierarchical
Computationof PL harmonicEmbeddings. Tech. rep., University of Washington,
July 1997.

[7] ECK, M., DEROSE, T., DUCHAMP, T., HOPPE, H., LOUNSBERY, M., AND

STUETZLE, W. Multiresolution Analysis of Arbitrary Meshes. In Computer
Graphics (SIGGRAPH 95 Proceedings), 173–182, 1995.

[8] ECK, M., AND HOPPE, H. Automatic Reconstruction of B-Spline Surfaces of
Arbitrary Topological Type. In Computer Graphics (SIGGRAPH 96 Proceed-
ings), 325–334, 1996.

[9] GARLAND, M., AND HECKBERT, P. S. Fast Polygonal Approximation of Ter-
rains and Height Fields. Tech. Rep. CMU-CS-95-181,CS Dept., Carnegie Mellon
U., September 1995.

[10] GUIBAS, L., AND STOLFI, J. Primitives for the Manipulation of General Subdi-
visions and the Computationof Voronoi Diagrams. ACM Transactions on Graph-
ics 4, 2 (April 1985), 74–123.

[11] HECKBERT, P. S., AND GARLAND, M. Survey of Polygonal Surface Simplifi-
cation Algorithms. Tech. rep., Carnegie Mellon University, 1997.

[12] HOPPE, H. Progressive Meshes. In Computer Graphics (SIGGRAPH 96 Pro-
ceedings), 99–108, 1996.

[13] HOPPE, H. View-Dependent Refinement of Progressive Meshes. In Computer
Graphics (SIGGRAPH 97 Proceedings), 189–198, 1997.

[14] HOPPE, H., DEROSE, T., DUCHAMP, T., HALSTEAD, M., JIN, H., MCDON-
ALD, J., SCHWEITZER, J., AND STUETZLE, W. Piecewise Smooth Surface Re-
construction. In Computer Graphics (SIGGRAPH 94 Proceedings), 295–302,
1994.

[15] KIRKPATRICK, D. Optimal Search in Planar Subdivisions. SIAM J. Comput. 12
(1983), 28–35.

[16] KLEIN, A., CERTAIN, A., DEROSE, T., DUCHAMP, T., AND STUETZLE, W.
Vertex-based Delaunay Triangulation of Meshes of Arbitrary Topological Type.
Tech. rep., University of Washington, July 1997.

[17] KRISHNAMURTHY, V., AND LEVOY, M. Fitting Smooth Surfaces to Dense Poly-
gon Meshes. In Computer Graphics (SIGGRAPH 96 Proceedings), 313–324,
1996.

[18] LOOP, C. Smooth Subdivision Surfaces Based on Triangles. Master’s thesis,
University of Utah, Department of Mathematics, 1987.

[19] LOUNSBERY, M. Multiresolution Analysis for Surfaces of Arbitrary Topological
Type. PhD thesis, Department of Computer Science, University of Washington,
1994.

[20] LOUNSBERY, M., DEROSE, T., AND WARREN, J. Multiresolution Analysis for
Surfaces of Arbitrary TopologicalType. Transactions on Graphics 16, 1 (January
1997), 34–73.

[21] MÜCKE, E. P. Shapes and Implementations in Three-Dimensional Geome-
try. Technical Report UIUCDCS-R-93-1836, University of Illinois at Urbana-
Champaign, 1993.

[22] SCHRÖDER, P., AND SWELDENS, W. Spherical Wavelets: Efficiently Repre-
senting Functions on the Sphere. In Computer Graphics (SIGGRAPH 95 Pro-
ceedings), Annual Conference Series, 1995.

[23] SCHWEITZER, J. E. Analysis and Application of Subdivision Surfaces. PhD
thesis, University of Washington, 1996.

[24] SPANIER, E. H. Algebraic Topology. McGraw-Hill, New York, 1966.

[25] XIA, J. C., AND VARSHNEY, A. Dynamic View-Dependent Simplification for
Polygonal Models. In Proceedings Visualization 96, 327–334, October 1996.

[26] ZORIN, D. Subdivisionand MultiresolutionSurface Representations. PhD thesis,
California Institute of Technology, 1997.

[27] ZORIN, D., SCHRÖDER, P., AND SWELDENS, W. Interpolating Subdivision for
Meshes with Arbitrary Topology. In Computer Graphics (SIGGRAPH 96 Pro-
ceedings), 189–192, 1996.

[28] ZORIN, D., SCHRÖDER, P., AND SWELDENS, W. Interactive Multiresolution
Mesh Editing. In Computer Graphics (SIGGRAPH 97 Proceedings), 259–268,
1997.


