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Semi-Regular Representation and Progressive
Compression of 3-D Dynamic Mesh Sequences
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Abstract—We propose an algorithm that represents three-di-
mensional dynamic objects with a semi-regular mesh sequence
and compresses the sequence using the spatiotemporal wavelet
transform. Given an irregular mesh sequence, we construct a
semi-regular mesh structure for the first frame and then map
it to subsequent frames based on the hierarchical motion esti-
mation. The regular structure of the resulting mesh sequence
facilitates the application of advanced coding schemes and other
signal processing techniques. To encode the mesh sequence com-
pactly, we develop an embedded coding scheme, which supports
signal-to-noise ratio and temporal scalability modes. Simulation
results demonstrate that the proposed algorithm provides signifi-
cantly better compression performance than the static mesh coder,
which encodes each frame independently.

Index Terms—Progressive compression, semi-regular mesh se-
quence, three-dimensional (3-D) mesh compression, 3-D motion es-
timation.

1. INTRODUCTION

HREE-DIMENSIONAL (3-D) meshes are emerging mul-
Ttimedia contents to represent realistic visual data. They
consist of geometrical positions of sampled points (or vertices)
and connectivity relations among the vertices. The huge size of
a typical 3-D mesh has necessitated the development of mesh
compression technology. Many algorithms have been proposed
to compress 3-D static meshes, among which the semi-regular
mesh coding provides the state-of-the-art performance [1], [2].
The systematic structure of a semi-regular mesh enables the use
of the zero-tree coding and thus supports progressive compres-
sion and transmission.

Besides 3-D static meshes, 3-D mesh sequences can be cre-
ated with animation tools or obtained by capturing dynamic
3-D objects in successive time instances. For example, mul-
tiple camera systems can be used to capture real dynamic ob-
jects such as facial expressions [3], [4]. A dynamic mesh se-
quence requires an even larger storage space than a static mesh.
Since Lengyel first proposed a mesh sequence coder similar to
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two-dimensional (2-D) video coding techniques [5], several al-
gorithms have been developed for 3-D mesh sequence coding. In
[6]—[8], predictive coding schemes have been proposed, which
encode the position or the motion vector of each vertex com-
pactly by exploiting spatial and temporal correlations in mesh
sequences. In [9], mesh sequences are encoded based on the
principal component analysis (PCA). In [10], the principal com-
ponents are further analyzed by identifying spatial components
and temporal components, and a predictive coding scheme is
employed to encode PCA coefficients. In [11], mesh frames are
mapped onto 2-D square planes by mesh cutting and parame-
terization. Then, they are compressed with 2-D video coding
techniques. In [12], Gupta et al. proposed an algorithm, which
partitions each frame into segments, compensates the motion of
each segment with an affine mapping, and then encodes the pre-
diction residuals. In [13], Guskov and Khodakovsky proposed
a wavelet-based approach to encode mesh sequences progres-
sively.

There are some limitations in the existing algorithms. First,
most algorithms [5]-[11], [13] can encode only isomorphic
sequences, in which the number of vertices and the connec-
tivity information among vertices are invariant over all frames.
They also assume that motion trajectories are already known.
Gupta et al.’s algorithm [12] is more flexible and can be ap-
plied to non-isomorphic sequences. However, when the mesh
structure changes substantially between frames, their algorithm
spends many bits to encode the connectivity changes and yields
even worse performance than static mesh coders. Second, most
existing algorithms [5]-[12] do not support progressive coding.
In progressive coding, a coarse mesh is first transmitted and
rendered, and additional data are then transmitted to refine the
mesh successively. Therefore, progressive coding is desirable
for the transmission of complex mesh sequences over networks
with limited bandwidths. However, most existing algorithms
encode a mesh sequence at a single resolution.

In this paper, we propose a progressive coding algorithm for
3-D mesh sequences. Given an irregular sequence with a time-
varying structure, we construct a semi-regular mesh for the first
frame using remeshing techniques. Then, we map the semi-reg-
ular structure to subsequent frames based on the hierarchical
motion estimation. The semi-regular mesh sequence is then de-
composed into wavelet coefficients, which are compressed pro-
gressively by an embedded coding scheme.

The paper is organized as follows. Section II reviews the
related work. Section III introduces the semi-regular mesh
structure. Sections IV and V describe the motion estimation
schemes for base vertices and subdivision points, respectively.
Section VI proposes the progressive coder for semi-regular
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mesh sequences. Section VII presents simulation results. Fi-
nally, Section VIII concludes this paper.

II. RELATED WORK

The proposed algorithm is related to several research topics:
mesh-based 2-D motion estimation, remeshing, and wavelet
video coding. Let us review these related works subsequently.

A. Mesh-Based 2-D Motion Estimation

Although block-based motion models have been successfully
employed in video compression technology, they cannot rep-
resent complex motions effectively and may produce discon-
tinuous motion fields. This problem can be partly overcome
by mesh-based motion models [14]. To use a mesh model in
the motion-compensated prediction, an initial 2-D mesh is con-
structed on the first frame. Then, the motion vector of each node
point is estimated using the optical flow method or the block
matching algorithm. Pixels within each mesh element are then
motion-compensated by the affine or bilinear transformation.

Early works employed regular meshes, in which each node is
connected to the same number of neighboring nodes. For ex-
ample, in a regular triangle mesh, each node is connected to
six neighboring nodes. While regular meshes are easy to ini-
tialize and handle, they cannot adapt to scene contents effec-
tively. To overcome this problem, a mesh element can be divided
into smaller elements, if it contains multiple motions [15], [16].
However, the regular mesh model and its hierarchical variation
are not sufficient to represent the motions of arbitrary shaped
objects.

Content-based meshes have been proposed to track scene
features such as object boundaries. Wang and Lee [17] modeled
object motion as elastic deformation and tracked object fea-
tures by minimizing the energy function. The energy function
includes the feature term for tracking edges and the matching
term to minimize motion estimation errors. Altunbasak and
Tekalp [18] investigated the mesh adaptation to object occlu-
sion. Beek et al. [19] proposed a hierarchical content-based
mesh model. Their method constructs a hierarchical mesh
in a fine-to-coarse order, and then tracks object motions in a
coarse-to-fine order to obtain robust motion information. This
work was extended by Celasun and Tekalp in [20] so that the
hierarchical mesh fits object boundaries more precisely.

Similar to these methods, the proposed algorithm tracks the
motions of 3-D objects using the mesh structure. However, since
we deal with complex 3-D motions of real-world objects, the
correspondence matching between frames is a more challenging
problem. Moreover, in contrast to the 2-D mesh-based motion
models, it will be shown that the regular mesh structure is more
suitable for modeling of 3-D objects and their motions.

B. Remeshing

In a 3-D semi-regular triangle mesh, most vertices have de-
gree 6, i.e., most vertices are connected to six adjacent vertices.
Remeshing is a resampling process, which converts an irregular
mesh into a semi-regular one. In a semi-regular mesh, the whole
connectivity structure can be compactly represented, since it is
fully determined by the base mesh connectivity and the subdi-
vision level. Therefore, in the semi-regular mesh compression,
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more bits can be assigned to the geometry information. Since
the multiresolution analysis for arbitrary topology surfaces was
first introduced by Lounsbery [21], many remeshing algorithms
have been proposed, e.g., the algorithms in [22]-[24].

The remeshing process consists of simplification and refine-
ment. In the simplification step, the original irregular mesh is
decimated to the base mesh, and the points in the original mesh
are mapped onto the corresponding triangles in the base mesh.
Then, we can obtain a piecewise linear parameterization, which
is a mapping from the set of base triangles to the 3-D surface. In
[22], Eck et al. constructed the base triangles by partitioning
the original mesh using the Voronoi diagram, and computed
the parameterization based on the harmonic mapping. In [23],
Lee et al. proposed a faster parameterization algorithm, which
computes the conformal mapping during the simplification.

The base mesh is then refined to be a semi-regular mesh with
subdivision connectivity, which is achieved by iteratively subdi-
viding a triangle into four triangles. In the subdivision, the posi-
tion of each new vertex is determined from the parameterization
data. The position can also be predicted from the neighboring
vertices in the butterfly configuration [25]. The difference be-
tween the original and the predicted positions is called a wavelet
coefficient. Thus, the geometry of the semi-regular mesh can be
fully specified by that of the base mesh and the hierarchical set
of wavelet coefficients.

The normal mesh representation [24] is a special case of
the semi-regular mesh representation. In a semi-regular mesh,
wavelet coefficients are 3-D vectors in general. On the other
hand, in a normal mesh, most wavelet coefficients are repre-
sented by scalars. This is possible because each subdivision
point is constrained to lie on the normal line, which passes
through the butterfly prediction point. Thus, the direction of the
prediction error is implicit, and only the magnitude needs to be
specified. With this property, the normal mesh representation
provides a better coding gain than the general semi-regular
mesh representation [2].

In this work, we conduct the remeshing process to obtain the
semi-regular mesh sequences for 3-D dynamic objects. In addi-
tion to obtaining the semi-regular mesh frame at each time in-
stance, we achieve the vertex correspondences between frames
through the motion estimation. This requires us to solve accom-
panying problems, which will be discussed later.

C. Wavelet Video Coding

In wavelet video coding, video signals are treated as 3-D
data (two spatial dimensions + one temporal dimension). If the
temporal wavelet transform is applied without the alignment of
objects along motion trajectories, highpass subbands contain
significant energies and lowpass subbands exhibit undesirable
ghost artifacts. Therefore, attempts have been made to com-
pensate object motions prior to the wavelet transform. Early
work used the Haar transform with limited global or block
motion compensation [26], [27]. Recently, the lifting scheme
[28] has drawn a lot of attention as a new wavelet construction
method, and the motion-compensated lifting scheme has been
successfully employed for the wavelet video coding. In [29], the
biorthogonal 5/3 wavelet kernel was used with a mesh-based
motion model. In [30], the performances of the Haar and the
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biorthogonal 5/3 kernels for the motion-compensated lifted
wavelet were investigated experimentally and theoretically.

The temporal wavelet transform is followed by the spatial
wavelet transform. The wavelet coefficients are then com-
pressed by an entropy coder, which produces an embedded
bit-stream with various modes of scalability. Kim ez al.’s algo-
rithm [31] is based on the SPIHT algorithm and provides the
signal-to-noise ratio (SNR) scalability. Similar to JPEG2000
[32], the video coder in [29] supports all the SNR, spatial and
temporal scalability modes.

In this work, we also attempt to generate scalable bitstreams
for 3-D dynamic objects using the lifting based wavelet trans-
form and the embedded coding.

III. SEMI-REGULAR MESH SEQUENCE

A. Motivations

Consider a temporal sequence of irregular meshes, {Z,, : n =
0,1,2,...}, which can be synthesized by animation tools or ac-
quired from real 3-D objects with vision techniques. The nth
frame Z,, is represented by a set of vertex positions and the
connectivity relations between vertices. The mesh structure, in-
cluding the number of vertices and the connectivity relations, is
time-varying in general. Gupta ef al. [12] proposed a compres-
sion algorithm for mesh sequences with time-varying structures,
which encodes the changes in the connectivity relations as ad-
ditional information. However, their algorithm yields good per-
formances only when input mesh sequences experience minor
structural changes. For general mesh sequences, their algorithm
may consume too many bits for the structural changes. Fur-
thermore, the point correspondences between frames cannot be
easily extracted from mesh sequences with time-varying struc-
tures.

These observations motivate us to construct a connectivity
structure for the first frame and map the same connectivity
structure to the following frames using the motion estimation.
We adopt the semi-regular structure, which is employed in the
state-of-the-art static mesh compression [1], [2].

B. Construction of Initial Semi-Regular Mesh

To obtain a unified connectivity, we convert the first frame Z
into a semi-regular normal mesh Sy = (Py, 7). Py is the set
of resampled vertex positions, and 7 denotes the unified con-
nectivity for the whole sequence. As mentioned in Section II-B,
the remeshing begins with the mesh simplification. We employ
the Garland and Heckbert’s algorithm [33] to simplify Z to a
base mesh SJ). Concurrently, we map the vertices in Zo onto the
surface of S using the conformal mapping in [23].

Fig. 1 shows an example of the remeshing procedure. In the
simplification, the vertices within the white curve in Fig. 1(a) are
mapped to the dots on the triangle in Fig. 1(b). Then, the base
mesh is refined to S} by dividing each triangle into four triangles
as shown in Fig. 1(c). By iteratively applying the subdivisions,
we obtain the hierarchy

SScSc--csTt =S8 (1)
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Fig. 1. Example of remeshing procedure: (a) irregular mesh, (b) base mesh,
(c) first subdivision, (d) second subdivision, and (e) third subdivision.

Note that the connectivity 7 is perfectly determined by the con-
nectivity of the base mesh and the number of levels L.

The position of a subdivision point p' at level [ is computed
by the butterfly prediction and the normal piercing scheme, as
shown in Fig. 2. First, its prediction py is obtained from the but-
terfly neighbors pé_l (t=0,1,...,7)atlevel | — 1. Then, py is
translated along the normal direction to find the piercing point
pl on the original surface, which becomes the new subdivision
point. In rare cases, piercing points may not be valid and can
distort the shape of the original mesh. As in [24], we first per-
form the validity test. Then, if a piercing point is declared to
be invalid, we find an alternative remeshing point in the para-
metric domain without the constraint of the normal direction.
The wavelet coefficient 1y, for p' is then defined as

Yot =P — Po. 2)

Therefore, the geometry information of the hierarchy in (1) can
be represented by the base mesh points and the set of wavelet
coefficients.
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Fig. 3. Block diagram of the proposed algorithm.

C. Mapping of Semi-Regular Mesh Structure

The unified connectivity 7 is mapped to the following
frames, which is achieved by the hierarchical motion estima-
tion. Fig. 3 shows the overall block diagram of the proposed
algorithm. In the base motion estimation block, we track
the movements of vertices in the base mesh. Then, in the
finer-level motion-estimation block, we predict and refine the
motion vectors of subdivision points level by level. Finally,
the semi-regular mesh sequence is compactly encoded by the
coding block. Let us describe these operational blocks subse-
quently in the following sections.

IV. BASE MOTION ESTIMATION

Given the previous semi-regular mesh S,, 1, we construct the
base mesh SY of the current frame by estimating the motion
from SY_; to the surface of the input irregular mesh Z,,.

A. Joint Mesh Segmentation and Motion Estimation

In 2-D video coding, the region-based motion estimation was
introduced to describe dissimilar motions of multiple objects
more accurately [14]. The region segmentation and the motion
estimation are jointly performed so that the motion of each seg-
ment is represented accurately with a parametric model. The
joint optimization is often performed by applying the region seg-
mentation and the motion estimation alternately.

We extend this idea to perform the 3-D motion estimation. To
reduce computational complexity, Z,, is represented at multiple
levels of detail, given by

cTlc.--cIF'=1, 3)
where L’ is less than or equal to L in (1), and the number of
triangles in Z!, is about one fourth of that in Z,+1.

Beginning with the whole base mesh S°_; as an initial seg-
ment, we compute its motion parameters. The motion parame-
ters T of a segment are composed of the rotation matrix R and

Fig. 4. Joint mesh segmentation and motion estimation: (a) initial alignment,

(b) first iteration, (c) segmentation of S°_,, (d) motion search regions in Z°,

and (e) final iteration.

the translation vector t, which are computed by a modified ver-
sion of the ICP algorithm [34] as follows:

_ . _ 2
T = arg min Z wplla —T(p)|| )

peV

where T(p) = Rp + t and V is the set of vertex positions
in the segment. The point q is selected from Z? such that it is
closest to T'(p). The weight wp, denotes the reliability of p in
the computation of the motion parameter, which is computed
based on the similarity of the normals at 7'(p) and q.

Fig. 4 illustrates the procedure of the joint mesh segmen-
tation and motion estimation. Fig. 4(a) shows SY_; in dark
gray and Z? in light gray. After the motion estimation, they are
aligned as shown in Fig. 4(b). The object has dissimilar mo-
tions, which cannot be well described by a single rigid motion,
especially around the arms, legs and tail. These outliers are ex-
tracted based on the matching distances. When the distance be-
tween q and 7'(p) is larger than a threshold, the point g becomes
an outlier. The outlier points are processed by a merging-split-
ting-merging procedure to yield compactly connected segments.
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In the merging procedure, a segment with a small number of ver-
tices is merged with near segments. In the splitting procedure, if
a segment contains a vertex cut [35], whose removal disconnects
the segment, it is divided into two segments. The merging pro-
cedure is performed once more to yield final segments. Fig. 4(c)
shows new segments in different gray levels. After selecting a
segment with the maximum matching distance, we constrain its
search region in Z? for reliable motion estimation. When an ob-
ject moves non-rigidly, it is unreliable to find the motion in the
whole region of Z0. We first extend the boundary of the seg-
ment by one triangle strip. Then, the matching points of the ex-
tended boundary points confine the search region in Z, which
is shown in Fig. 4(d) for each segment. We alternate the segmen-
tation and the motion estimation of segments, until the decrease
in the overall matching distance becomes negligible. After the
final iteration, the estimated base mesh is well fitted to the cur-
rent geometry Ig, as shown in Fig. 4(e).

B. Vertex-Wise Motion Refinement

The joint mesh segmentation and motion estimation with
the ICP algorithm can deal with only piecewise rigid motions.
Therefore, the motion vector of each vertex in the base mesh
should be refined to express flexible motions. As mentioned
before, a point p in SY_; is moved to § = T'(p) in (4) and then
mapped to the closest point g on Z0. In this refinement step,
the position of q is refined to a position in Z!, then in Z2, and
so on. The final refined positions in I,?‘l form the base mesh
SO of the current frame.

Since the refinement in each level mesh Z! is done in the
same way, we describe the refinement of q without specifying
the level index [ for the simplicity of notations. Let q € S?
denote the matched point of p € SJ_; to the end of this section.
We refine the positions of the matched points to minimize the
energy function

E(Sp) =ws Bi(Sp) + Wi B () + waka(S,)

S {wEu(q) + win Em(q) + waEa(q)} (5)
q€eS?

where ws, w,,, and wy are weighting coefficients. The first term
E;(q) represents the temporal change in the spring energies of
the edges which are incident to q, given by

Bl@= Y srlla-rl-lp-r)

r€0(q) "

where O(q) is the 1-ring of q, i.e., the set of vertices adjacent to
q. N, is the size of O(q), and rs is the pointin SY_; that corre-
sponds to ry. The second term FE,,(q) is introduced to preserve
the surface shapes, defined as

En(@=(1-n-n)+(1—c-c)

where n and n are the normals of q and q, respectively. Simi-
larly, ¢ and c are the principal curvatures of q and q. The final
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Fig. 5. Motion interpolation.

term F4(q) is adopted to fit the base mesh to the current frame
with little distortion, given by

reo(a)
where s denotes the closet position on Z!, from the mid-point
(q +r)/2. The n-ring of q in 7}, is the set of candidate points
for the updated q, where the size n decreases as the iteration
goes on. The three energy terms are computed for each candi-
date point. Then, q is moved to the point that yields the max-
imum energy reduction, which guarantees that the energy func-
tion in (5) decreases monotonically.

To summarize, the base motion estimation is done first for
the whole base mesh, then at the segment level, and finally at
the vertex level. This enables us to obtain a robust and smooth
vertex-wise motion vector field.

V. FINER-LEVEL MOTION ESTIMATION

After the base motion estimation, we have the previous semi-
regular mesh S, and the current base mesh 82. In the finer-
level motion estimation, the position of each subdivision point
q'in 8! (1 < < L) is determined using the motion interpola-
tion and the parameterization.

A. Motion Interpolation

The position of q' can be predicted based on the motions of
lower level points in S5~1. Let ' denote the predicted position
of q'. Then, as illustrated in Fig. 5, §' is computed by

7 7
N SR (pl B wipzl)
=0 =0

=q,+C(p' — ps) (©6)

where q;, = Z::o wiqé_l and p, = ZZ:O w,;pé_l. Also,
w; is the ith butterfly filter coefficient, and p,~* € S'=% and
q/™! € S!1 are the ith butterfly points for p! and q', respec-
tively. C|(+) is the coordinate transform from the local coordinate
at p; to that at qp. The local coordinates are defined such that
z-axes are along the surface normal directions at p; and qy. The
tangential axes are determined also using the lower level infor-
mation. From (6), ¢' — q, = C(p! — ps). Therefore, q' and p!
are, respectively, located at the same position in the local coor-
dinates at q, and py. This means that ¢’ is equal to g/, provided
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that the object moves rigidly and the motion of the base mesh is
estimated accurately.

Notice that, in (2), the wavelet coefficient 1, for p' is defined
as the difference p' — py. Thus, (6) indicates that the position of
q' is predicted using the butterfly prediction q; and the wavelet
coefficient z/Jpz in the previous frame. In other words, both the
spatial and the temporal correlations are exploited to predict q'
in this work.

B. Parameterization

The motion-interpolated subdivision point q' in (6) is mapped
onto the surface of Z,, to complete the finer-level motion esti-
mation. However, we need the parameterization of Z,, for robust
motion estimation, since a naive mapping may yield severe ge-
ometrical distortions.

We construct a piecewise linear parameterization, which
maps a triangular patch in Z,, onto a base triangle in S°. The
parameterization for the first frame Z; is built during the mesh
simplification in the initial semi-regular mesh construction, as
shown in Fig. 1(a) and (b). In contrast, the parameterization for
T, (n > 0) is not available immediately after the base motion
estimation. Therefore, we should find the triangular patch in Z,,
that maps onto each base triangle in S°.

Base edges are mapped onto the surface of Z,, by a boundary
mapping scheme shown in Fig. 6. The base edge ab is mapped
to the boundary acdeb, which consists of intersecting line
segments between the original irregular mesh Z,, and the local
plane. Initially, the local plane includes the vertex a and is par-

allel with the normal vector at a and the directional vector ab.
The boundary point c is determined by finding the intersecting
point of the local plane. Then, the local plane is updated to be
parallel with the normal vector at ¢ and the directional vector

c_l;, and the boundary point d is found. Similarly, another
boundary point e is found. As shown in Fig. 6, the boundary
points introduce additional edges and triangles on the irregular
mesh.

Occasionally, the boundary mapping scheme produces inter-
secting boundaries. For example, in Fig. 7(b), black and white
boundaries intersect each other. In this case, their upper parts
are interchanged to yield the configuration in Fig. 7(c). Then,
we compute a harmonic mapping from the rectangular patch,
depicted by the black curve in Fig. 7(d), to the base mesh. Using
the mapping, the white boundary is recomputed more reliably.

After the boundary mapping, we compute the piecewise
linear parameterization, which maps the vertices in a triangular
patch onto the corresponding base triangle using a harmonic

mapping.
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Fig. 7. Exception handling in the boundary mapping: (a) base mesh, (b) in-
tersecting boundaries, (c) rearrangement of the boundaries, and (d) boundary
remapping.

C. Determination of Subdivision Points

As shown in Fig. 8(a), there are two candidates for the subdi-
vision point q'. One is q,, that is obtained by the normal piercing
from the predicted point ' in (6). The other is the parametric
center point q.. of the chord ab. As in [24], the normal piercing
should be validated in the parameter domain for robustness.
Fig. 8(b) is the 2-D parameter domain of two triangular patches
in Fig. 8(a). If q,, is within the circle of center q. and radius r,
the normal piercing is declared as valid and q,, is selected as the
final position of q'. Then, the parameter domain is adjusted by
setting the q,, as a new center point. If q,, is outside the circle,
the normal piercing point may cause undesirable artifacts such
as folding of mesh surfaces. Thus, in such case, q. is selected
as q'.

The position of q' can be compactly represented by sub-
tracting the predicted position §! in (6). From (2) and (6), the
residual vector q' — ' can be expressed as

ql - fll = 1/)ql - C(¢p’)

which is then encoded by the following coding scheme.

@)
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®)

Fig. 8. Selection of a subdivision point: (a) normal piercing and (b) validity
check.

VI. PROGRESSIVE CODING OF SEMI-REGULAR
MESH SEQUENCE

In this section, we discuss how to decompose a semi-regular
mesh sequence in the spatiotemporal domain and compress it
with a progressive coder.

A. Spatiotemporal Decomposition

Each frame in the semi-regular mesh sequence is decomposed
into base mesh points and wavelet coefficients for subdivision
points. Note that in (2), each subdivision point is predicted from
the butterfly prediction using lower level points to get a wavelet
coefficient. This decomposition can be seen as a lifting scheme
without updating [2], [28]. The wavelet coefficients are further
decomposed in the temporal domain along motion trajectories.

Suppose that a temporal sequence of wavelet coefficients
along a motion trajectory, {%p,, }, is divided into the even sub-
sequence {p,, } and the odd subsequence {%p,,,,}, where
n, 2k and 2k + 1 are time indices. Then, the temporal lifting
decomposition can be written as

hy =vp,,, — P({¥p,, 1)
Lk = p,, + U({hi}) ®)

where hj, and 1; are the high-pass and the low-pass terms, re-
spectively. P is the prediction function using the even subse-
quence. U is the updating function using the highpass terms. For
example, when P({#,,,, }) = ¥p,, and U({hy}) = 0.5hy, (8)
becomes the Haar decomposition. To exploit the temporal corre-
lation more effectively, we modify the prediction function based
on the motion-compensated lifting [29], so that

h, = wp2k+1 - CP2k7P2k+1 (wpzl\») 9
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Fig. 9. Example of temporal decomposition.

where C,, p.,,, denotes the coordinate transform from the
local coordinate at the butterfly prediction point of poj to that
of par41. In other words, the wavelet coefficient 1)p,, is mo-
tion-compensated and then subtracted from )y, , , to generate
the highpass term hy,. Note that (9) is essentially the same equa-
tion as (7) except for different notations. The updating function
can be similarly modified as U({hx}) = 0.5Cp,, , p.,. (hz).
However, we observed that the updating incurs visual artifacts
and large distortions. Thus, we do not employ the updating func-
tion and set U({hx}) = 0.

While the Haar-based decomposition uses the unidirectional
motion compensation, a bidirectional motion-compensation
scheme can be derived from the biorthogonal 5/3 filter [29],
given by

hk = ¢P2k+1 - 05 [szk sP2k+1 (wpzk ) + Cp2k+2 sP2k+1 (qppzktzl)o])
where 1y, ., is predicted from the average of the forwardly mo-
tion-compensated 1p,, and the backwardly motion-compen-
sated ¥p,, .-

The temporal filtering decomposes a semi-regular mesh
sequence into the low-pass subband and the high-pass subband.
This is repeatedly applied to low-pass subbands. For example,
in Fig. 9, eight consecutive mesh frames form a group of frames
(GOF). They are first decomposed into four low-pass frames
{L5,} and four high-pass frames {H,}. Then, the four
low-pass frames {L,} are further decomposed into {L; ,,}
and {H1,,,}. After one more decomposition, we can obtain the
lowest frequency frame Ly ¢ and a set of hierarchical high-pass
frames.

B. Progressive Coding

We propose a progressive coding algorithm that compresses
the base mesh sequence and the decomposed subbands. The pro-
posed algorithm supports both SNR and temporal scalability
modes.

The base mesh sequence is isomorphic. For its compression,
we adopt the isomorphic sequence coder in [7], which is based
on the vertex-wise motion vector prediction. In [7], each frame
is predicted from the previous frame. However, in this work,
the order of the motion predictions is modified to be compat-
ible with the temporal decomposition in the previous subsection.
Fig. 10 shows the order of the motion predictions, when a GOF,
consisting of eight frames, is decomposed into three levels of
temporal subbands as in Fig. 9. The solid and the dotted arrows
denote the forward and the backward predictions, respectively.
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Fig. 11. Parent-child relations among subdivision points in a unit tree.

The proposed algorithm encodes each temporal subband in-
dependently of the other subbands to support temporal scala-
bility. Thus, in the example of Fig. 9, the proposed algorithm
can provide three different frame rates. After receiving two sub-
bands Ly ¢ and Hy o, the decoder can reconstruct the sequence
at the lowest frame rate, as shown at the top row of Fig. 10.
The decoder can double the frame rate when it receives the sub-
bands H; o and Hy ;. Finally, after receiving all the remaining
subbands, it can reconstruct the sequence at the full frame rate.

Each subband is encoded by the SPIHT algorithm, which was
originally developed for 2-D image coding [36] and later ap-
plied to the subdivision geometry coding of static meshes [1],
[2]. It is a zero-tree coding scheme based on the hierarchical
parent-child relations among wavelet coefficients. Fig. 11 shows
the parent-child relations among the subdivision points (or cor-
responding wavelet coefficients) in a semi-regular mesh. The
first subdivision point, which corresponds to the midpoint on
a base edge, becomes the root node. It is depicted by a black
circle in Fig. 11. It has four children depicted by squares, each
of which has four children depicted by triangles. These subdi-
vision points constitute a unit tree. Thus, there are as many unit
trees as the number of edges in the base mesh. In the semi-reg-
ular mesh sequence, most wavelet coefficients have only one
component in the normal direction of the surface. However, a
few exceptional wavelet coefficients have non-zero tangential
components. Thus, we employ three SPIHT coders: one for the
normal component and two for the tangential components. The
bitstreams from these three coders are interweaved into a single
bitstream.

The bitstream for each subband is divided into packets to sup-
port SNR scalability as well. Specifically, the last bit for each
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Fig. 12. Organization of the compressed data. SH: sequence header. GH: GOF
header; BMC: data for base meshes; SYNC: synchronization code for a sub-
band; BH: subband header; PH: packet header; PACKET: packet data.

PACKET:

bit plane information from the SPIHT coder is defined as the
truncation point for a packet. Let R,, denote the cumulative
number of bits in the first n packets, and D,, denote the distor-
tion of the subband reconstructed using the first n packets. The
nth packet is then associated with the incremental rate AR,
(= R,, — R,,_1) and the decremental distortion AD,, (= D,, —
D,,_1). The ratio, —AD,,/AR,,, is referred to as the rate-dis-
tortion slope .S,,. A larger slope indicates that the corresponding
packet is more valuable in the rate-distortion sense. If S, is
larger than S,, 1, the nth packet is merged with the (n — 1)th
packet to guarantee the convex rate-distortion curve [37].

Fig. 12 shows the hierarchical organization of the com-
pressed data for a whole mesh sequence. A sequence consists
of GOFs, and each GOF is decomposed into subbands. Finally,
each subband is composed of several packets. Thus, a packet
is the smallest decoding unit and its header (PH) contains
the packet size, the rate-distortion slope, and the index of the
subband to which the packet belongs. Note that a subband can
be decoded independently of the other subbands. Therefore,
the transmission order of packets can be flexibly determined
according to the request from the receiver. For example, for
each subband, the encoder can select the number of packets to
be transmitted, achieving a coarse SNR scalability. It is worthy
to point out that a finer SNR scalability can be supported by
the independent coding of each unit tree [37] at the cost of
additional overhead bits.

In this work, the frame rate or temporal resolution is first de-
termined. This determines the temporal subbands to be trans-
mitted. Then, given the bit budget, the packets from those sub-
bands are transmitted in the decreasing order of their rate-distor-
tion slopes. This approach provides a good rate-distortion per-
formance.

C. Distortion Model

The quantization of wavelet coefficients produces the distor-
tion between the original geometry and the reconstructed one.
Since the spatiotemporal decomposition in Section VI-A is not
an orthogonal transform, the mean square error of the wavelet
coefficients is different from the geometry distortion (i.e., the
mean square error of reconstructed points). Thus, we assign
weights to the wavelet coefficient errors to approximate the
distortion of the reconstructed geometry. In [37], the weights
were computed by assuming the independence of neighboring
vertex errors. However, more accurate weights can be com-
puted from the impulse-response simulation [38], in which an
impulse is invoked at a remeshing point and its propagation to
finer remeshing levels is computed.

The synthesis in the spatial domain is performed with the
butterfly filter. Thus, even if only a single wavelet coefficient
has a nonzero distortion, the neighboring subdivision points
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TABLE 1
DATA STRUCTURES OF TEST SEQUENCES

Test sequence | Number of | Average number of | Average number of | Uncompressed file size
frames vertices in a frame | triangles in a frame (Kbytes/frame)
Dancer 8 43,025 86,044 1,549
Dolphin 16 48,266 96,528 1,738
Dinosaur 16 54,955 109,905 1,978

A

A

(@ ®)

Fig. 13. Error propagation in a semi-regular mesh: (a) an impulse at level 1 and
(b) its response at the finest level 4.

are reconstructed erroneously due to the recursive butterfly
filtering. For example, suppose that a semi-regular mesh has
four remeshing levels, and a point at level 1 is associated with
a unit error as illustrated in Fig. 13(a). Then, it propagates to
higher remeshing levels and its response at the finest level 4 is
shown in Fig. 13(b). Therefore, the distortion of each wavelet
coefficient at level 1 should be weighted by the squared sum
of the propagated errors in Fig. 13(b). The weights for the
other levels can be similarly computed by the impulse-response
simulation. When a semi-regular mesh has four remeshing
levels, the weights are given by

Wi = 160.62, Wy = 40.16, W3 = 10.08, and W, = 1

where W; denotes the weight for a wavelet coefficient at level 4.
In implementation, wavelet coefficients at level 7 are multiplied
by /W; before the bit-plane encoding, and divided by the same
factor v/W; at the decoder side.

VII. SIMULATION RESULTS

To obtain test sequences, we made clay models which have
bones and joints. We animated the models by hands, and
captured each frame with the Cyberware 3030MS scanner.
Three mesh sequences “dancer,” “dolphin,” and ‘“dinosaur”
were acquired and used to evaluate the proposed algorithm.
The acquired sequences are not isomorphic, thus each frame
has a different number of vertices and different connectivity
relations. Table I summarizes the data structure of the test
sequences. These sequences are converted into semi-regular
mesh sequences. The first frame of each sequence is simplified
to a base mesh consisting of 177 vertices and 350 triangles.
Then, the base mesh is recursively subdivided four times and
refined to a semi-regular normal mesh, which is composed
of 44802 vertices and 89 600 triangles. Then, the following
frames are converted into semi-regular normal meshes of the

T't

Fig. 14. “Dancer” sequence. From top to bottom, the first, fourth, and eighth
frames. From left to right, the original irregular meshes, the semi-regular
meshes, and the base meshes.

same connectivity based on the base motion estimation and the
finer motion estimation.

Figs. 14-16 compare the original irregular meshes and the
semi-regular meshes. The base meshes for the semi-regular
frames are also shown in the rightmost columns. We can see
that the irregular sequences are converted into the semi-regular
mesh sequences very faithfully. To evaluate the accuracy of the
mesh conversion objectively, we compute the remeshing error
of each frame mesh using the “Metro” tool in [39]. Let .4 and
B be two meshes. The directed distance from A to B, denoted
by h(A,B), is defined as the mean of squared distances from
sampled points on A to their closest points on B. Then, the
Metro algorithm defines the distance between .4 and B as

max{h(A, B),h(B,A)}
L

where L is the length of the bounding box diagonal. In this work,
for each sequence, L is fixed to the diagonal length of the first
frame. Fig. 17 shows the remeshing errors of the test sequences.
It is observed that the remeshing errors do not accumulate along
frames.

Figs. 18-20 show the compression performances on the three
test sequences. In this test, each GOF consists of eight frames
and is decomposed into three levels of subbands as shown in

H(A,B) =
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Fig. 15. “Dolphin” sequence. From top to bottom, the first, eighth and six-
teenth frames. From left to right, the original irregular meshes, the semi-regular
meshes, and the base meshes.

Fig. 16. “Dinosaur” sequence. From top to bottom, the the first, eighth and
sixteenth frames. From left to right, the original irregular meshes, the semi-
regular meshes, and the base meshes.

Fig. 9. The distortion of each reconstructed sequence is mea-
sured against the original irregular sequence by the Metro al-
gorithm. The remeshing error of the uncompressed semi-reg-
ular sequence is shown as a guideline. For comparison, the per-
formances of the static mesh coder, which remeshes and com-
presses each frame independently without motion compensa-
tion, are also shown in Figs. 18-20. We can see that, for all
three test sequences, the proposed algorithm outperforms the
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Fig. 18. Compression performances on the “Dancer” sequence. “Bi53” de-
notes that the biorthogonal 5/3 filter is used for the temporal decomposition,
and “Haar” denotes the Haar filter.
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Fig. 19. Compression performances on the “Dolphin” sequence.

static mesh coder significantly especially at low bit rates. For ex-
ample, to achieve an error 0.001 on the “Dancer” model, the pro-
posed algorithm needs about 1000 bytes/frame while the static
mesh coder requires about 1800 bytes/frame. Also, for the same
model, when the bit rate is 2000 bytes/frame, the proposed al-
gorithm yields an error 0.00055, while the static coding yields
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Fig. 20. Compression performances on the “Dinosaur” sequence.
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Fig. 21. Reconstructed “Dancer” first and eighth frames at different bit rates.

0.0008. The biorthogonal 5/3 filter yields slightly better com-
pression performance than the Haar filter. Note that we obtain
the semi-regular mesh sequences sequentially by minimizing
only the forward prediction errors in (4). Thus, in the biorthog-
onal filter in (10), the backward prediction term provides only
a marginal gain as compared with the forward prediction term.
Therefore, the performance differences between the Haar filter
and the biorthogonal filter are negligible. In the following tests,
we use the biorthogonal filter.

Fig. 21 shows the reconstructed frames of the “Dancer” se-
quence at different frame rates. At very low bit rate, the struc-
ture of the base mesh can be inferred from the smoothly recon-
structed image, since only a few wavelet coefficients are used
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Fig. 22. Effect of temporal frame rate on the overall performance.

and they contain mostly low frequency information. As more
bits are received, the decoder can use a larger number of wavelet
coefficients for the reconstruction. Also, the accuracy of each
coefficient is improved. Thus, the reconstructed image has a
higher quality, and detailed geometrical parts such as eye glasses
are more faithfully decoded.

Fig. 22 shows the effect of temporal frame rate on the overall
performance. The images at the left, middle and right columns
are reconstructed at the quarter, half, and full frame rates, re-
spectively. Each column is reconstructed using the same bit
budget (about 10500 bytes). Therefore, at a lower frame rate,
a frame is allocated a larger amount of bits and reconstructed
with a higher quality. The quality differences are noticeable at
feature points, such as eyes and a mouth. However, a lower tem-
poral frame rate can cause motion jerkiness. It is worthy to point
out that the sequence is compressed only once, but the required
information for a different frame rate sequence is extracted flex-
ibly from the same compressed bitstream.

Finally, Fig. 23 evaluates the performance of the proposed
algorithm on the “Jump” sequence in [13], which is a long
isomorphic sequence of a jumping human. For comparison,
Fig. 23 also shows the performances of two isomorphic se-
quence coders: Yang et al.’s algorithm in [7] is a single-rate
isomorphic coder, while Guskov and Khodakovsky’s algorithm



2542

12 T : r : : :
Proposed Algorithm ———
Single-Rate Isomorphic -
Progressive Isomorphic -
10 - Remeshing Error  + 1
. |
= i
>
5
£
o
N
-
]
Q
N
=
g
g
=
0 1 1 1 1 1 1
20 40 60 80 100 120
Frame number
(a)
9 T B8 T T = T T
Proposed Algorithm ——
g | Single-Rate Isomorphic -~ |
Progressive Isomorphic
; Remeshing Error +
<
z ‘?
> 6 r }} 4
T I
E 5t | :
o ‘H\
9 }
= 4t i |
3 WAy
= 1) £
g 31 } +*\ U } f
I T N
= 2 P Pl g Ak =10
1 i
0 1 1 1 1 1 1

20 40 60 80 100 120
Frame number

(b)

Fig. 23. Comparison of the compression performances of the proposed algo-
rithm, the single-rate isomorphic coder in [7] and the progressive isomorphic
coder in [13] on the “Jump” sequence at (a) 1 bpv and (b) 4 bpv.

[13] is a progressive isomorphic coder. The bit rate in bits
per vertex (bpv) is computed by dividing the whole file size
by the number of vertices in the isomorphic sequence. The
two isomorphic coders exploit the exact motion trajectories
in the sequence to achieve coding gain. On the contrary, the
proposed algorithm does not assume any a priori knowledge
on the sequence and remeshes it into a semi-regular sequence
based on the motion estimation. The remeshing errors are also
plotted in Fig. 23. At 1 bpv, in spite of the remeshing errors, the
proposed algorithm provides comparable performances with
the two isomorphic coders. However, at a high bit rate of 4
bpv, the coding errors become very small and the remeshing
errors are dominant. Therefore, the two isomorphic coders
provide better performances than the proposed algorithm. But,
the proposed algorithm can encode non-isomorphic sequences
as well as isomorphic sequences, whereas the conventional
algorithms can handle only isomorphic sequences. Table II
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TABLE II
AVERAGE DISTORTIONS OF THE PROPOSED ALGORITHM, THE SINGLE-RATE
ISOMORPHIC CODER IN [7] AND THE PROGRESSIVE ISOMORPHIC CODER IN [13]
ON THE “JUMP” SEQUENCE

1 bpv 2 bpv 4 bpv
Proposed algorithm 0.0005262 | 0.0002854 | 0.0002040
Single-rate isomorphic | 0.0006654 | 0.0001662 | 0.0000691
Progressive isomorphic | 0.0004528 | 0.0001944 | 0.0000796
[ Remeshing error | 0.0001681 |

summarizes the average distortion performances on the “Jump”
sequence at different bit rates.

VIII. CONCLUSION

In this work, we first proposed an algorithm to represent 3-D
dynamic objects with semi-regular mesh sequences. Given an
irregular mesh sequence, the proposed algorithm constructs a
semi-regular mesh structure for the first frame mesh, and then
maps it to the subsequent frames based on the hierarchical
motion estimation. The semi-regular mesh sequence has a
highly regular structure, which enables us to apply an effective
progressive coding scheme. Specifically, we developed an
embedded coding scheme based on the spatiotemporal decom-
position. Simulation results demonstrated that the proposed
coding algorithm outperforms the static mesh coding.

Future research will include the following issues to make our
work more complete.

* The current implementation of the proposed algorithm can

process only surfaces that are homeomorphic to a sphere.
We will extend the proposed algorithm to deal with general
surfaces, e.g., surfaces with holes and boundaries.

* After the remeshing, the proposed algorithm yields an iso-
morphic sequence. However, this can be a constraint, if
a dynamic object breaks into multiple parts or conversely
multiple parts merge into one object in a motion sequence.
The remeshing scheme will be generalized to remove this
constraint, but it should maintain the regularity of the se-
quence and the motion trajectory information as much as
possible.

* We used the butterfly subdivision for the wavelet transform
of mesh sequences because of its straightforward imple-
mentation. However, the other schemes such as the Loop
subdivision also can be used, although the forward-loop
transform requires the solution of a sparse linear system
[2]. We will incorporate different subdivision schemes into
our mesh sequence coder and investigate their effects on
the overall performance.

» The EBCOT algorithm was successfully adopted as the
embedded coder in the lifting-based wavelet video coder
[29], [32]. It was shown to be more efficient than the SPIHT
algorithm in supporting various modes of scalability. We
will apply the EBCOT scheme to the semi-regular mesh
sequence coding to support spatial scalability mode in ad-
dition to SNR and temporal modes.
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