
1

Kinematic animation of
articulated bodies

• Joints

• Kinematic graph

• Forward kinematics

• Inverse kinematics

Articulated bodies

• Articulated bodies are composed of solids
and joints

2

Joints

• Joints restrict the relative motion of solids

• Joints are used to create hierarchies of
solids

Degrees of freedom (DOF)

• The dofs define the independent relative
motions allowed

• Each joint can include a combination of:
– 3 translation dofs

– 3 rotation dofs

3

degrees of
freedom
(DOF)

Kinematic graph

• The kinematic graph defines the structure of
the articulated body

4

Data structures

• Kinematic graph:
– list of root joints (one/articulated body)

– nodes: joints and solids

• Solid:
– parent joint

– list of child joints

– transform wrt world coordinates

Data structures (continued)

• Joint:
– parent solid

– child solid

– transform wrt parent
We chose the joint frame to be the origin of the child

solid

– dofs (ex: translation i, rotation j,k)

– state variables (one/dof)

5

Recursive computations
• Solid transforms: trans(root)

– trans(solid S):

for all children joints j
trans(j)

– trans(joint J):

trans(child)

child(J)
parent(J)

parent(J)
0

child(J)
0

child(J)
parent(J))(

TTT

TT

=

= dof

State vector

• The state vector gathers the displacements
along all the dofs of the scene

• An animation is a path θ(t) in the state space

()T
321 ,, θθθ=

6

Forward kinematics

• Some artifacts of point animation are
removed

Forward kinematics (continued)

• However, forward kinematics has to be
applied carefully

7

Inverse kinematics
• Inverse kinematics allows us to apply

constraints

• Applications:
– interactive pose design

– applying goals

– maintaining geometric relations

Geometric equations

• Nonlinearity:
– various number of solutions

– difficult to solve

8

Linearized equations

• Newton´s method for nonlinear root finding:
while(error > precision)

approximate the function by its derivative

solve

Example

• Point-to-point constraint

• Solve

• Update

• Check state

1PP =

PP
d
dP

1 −=

+=

))((PP1 −

9

Constraints

• Constraints can be expressed as vectors

• Each entry (scalar constraint) is an
independent element of the consraint

• example: point-to-point






=




=

==−

0

0

3�M

3�L
g

03PP1

Jacobian

• The jacobian matrix J of a constraint relates
its value to the state variables

• Each row of J is the gradient of a scalar
constraint

d
dg

J =

















∂∂∂∂

∂∂∂∂
=

11

111

/.../

.........

/.../

θθ

θθ

mm

n

gg

gg

J

10

Jacobian

• J provides good approximations for small
displacements

• J is not necessarily square
– m scalar constraints

– n unknowns

-> J(m,n)

θJg(�g(+≈+)

Computation of the Jacobian matrix

• Consider each dof separately

)norm(dd
d
dP

axis
d
dP

ii=

=

i

i
i

x
x

)(

11

Relations in 3D

• Translation and rotation dofs

OPada
d
dP

a
d
dP

×=×=

=
x

Orientations

• Orientations depend only on rotations

[]























=

3

2

1

1

1

30 11100

θ
θ
θθ

d

d

d

dy

dx

d

12

Transforms in 3D

• Derivative of the transform matrix





















−
−

−

=

0

00

00

00

kji

ij

ik

jk

dxadxadxa

adad

adad

adad

d
θθ

θθ
θθ

T

Example 1

• point-to-point constraint









−
−

=
















∆
∆
∆



















∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

yy

xx

1

1

3

2

1

321

321

...

...

θ
θ
θ

θθθ

θθθ

j
P

j
P

j
P

i
P

i
P

i
P

13

Example 2

• 2-dof body

θ
θ

θ

∆
∂
∂+∆

∂
∂=

×=
∂
∂

=
∂
∂

PP
3

POk
P

i
P

1

x
x

x

Example 2 (continued)

• Point-point constraint:
– derive the equations









−
−

=







∆
∆









×
×









−
−

=







∆
∆

















∂
∂

∂
∂

∂
∂

∂
∂

−==∆
∂
∂+∆

∂
∂=

yy

xxx

PO

PO

x

x

x

x
x

1

1

1

1

)(0

)(1

)(

)(

θ

θ
θ

θ

θ
θ

.jk

.ik

.jPP

.iPP

.j
P

.j
P

.i
P

.i
P

PPg
PP

3

1

1

1

14

Example 2 (continued)

• Point-line constraint

[] d
x

PO

d
x

x

dx
x

−=







∆
∆

×

=







∆
∆







∂
∂

∂
∂

−=−=∆
∂
∂+∆

∂
∂=

θ

θθ

θ
θ

.nki.n

.n
P

.n
P

nPPn
PP

n3 1

)(

).().(.

1

Orientation constraints

• Orientation can be constrained by aligning
vectors

ABaAOaBOa
PQPQ

0aa
PQPQ

uvg

ii ×=×−×=
∂
∂−

∂
∂=

∂
∂

=−=
∂
∂−

∂
∂=

∂
∂

−=

θθθ

xxx

15

Multiple constraints

• We gather all the constraints in one
equation
















=∆

















3

2

1

3

2

1

g

g

g

J

J

J

Inversion of the Jacobian matrix

• If J(m,n) is not square, use the pseudoinverse
– full rank matrices:

– rank deficient matrices: use SVD or other
methods

1TT

T1T

)(JJJJ

JJ)(JJ
−+

−+

=<

=>

:

:

nm

nm

16

Solution of the equation system

• Compute the unknowns ∆θ (translations and
rotations) to meet the constraints ∆x

• Degenerate matrices require special care

[J

[J
+=

=

22)(min θλθ
θ

∆+∆−∆
∆

xJ

Global degrees of freedom

• if m<n, there remain some global degrees of
freedom

17

The null space

• The null space of J is the set of vectors wich
have no influence on the constraints

• The pseudoinverse provides an operator
which projects any vector to the null space
of J.

zJ)zJ(I[J

[J

∀−+=

=
++

0)(=⇔∈ θθ JJnullspace

Utility of the null space

• The null space can be used to reach
secondary goals

• Example: comfortable positions

)(min

J)J(IJ

z

zx

f

++ −+=

2))()(()(iif
i

comfort θθ −=∑

18

Application to pose optimization

• Avoid unrealistic poses

• Maintain the center of mass above the feet

∑=
i

iiGmG

Augmented body

• The “augmented body” (Boulic94)
corresponds to the mass moved by a given
joint.

i

i
n

i
i

i

i
ii

Ga
m

G

GmG

θθ ∂
∂=

∂
∂

=

∑

∑

)(

19

Optimization of the mass center

• The null space of the kinematic constraints
is used to optimize the position of the mass
center

• The derivative δG/δθ is used in the
minimization process

))((min

J)J(IJ

z

zx

Gf

++ −+=

Examples

20

Applications

• Single support

• Double support

Summary of inverse kinematics

– Inverse kinematics allows us to define goals

– The Jacobian matrix J relates the constrained
values to the control variables

– The pseudoinverse allows us to solve the
equation system

– The null space of J allows us to reach
secondary goals (but which ones?)

– Due to linearization or degeneracies, the
process may be instable and solved iteratively

21

References

• Press, Teukolski, Vetterling, Flannery, Numerical recipes
in C, Cambridge University press

• Zhao, Badler, Inverse kinematics positioning using
nonlinear programming for higly articulated figures, ACM
Transactions on Graphics, 13(4), 1994

• Boulic, R., Mas-Sanso, R., Thalmann, D., Complex
character positionning based on a compatible flow model
of multiple supports, IEEE Transactions on Visualization
and Computer Graphics, vol 3, no 3, July-September 1997

