Kinematic animation of
articulated bodies

Joints

Kinematic graph
Forward kinematics
Inverse kinematics

Articulated bodies

 Articulated bodies are composed of solids
and joints




Joints

Joints restrict the relative motion of solids

Joints are used to create hierarchies of
solids

Degrees of freedom (DOF)

» The dofs define the independent relative
motions allowed

« Each joint can include a combination of:
— 3 translation dofs
— 3 rotation dofs
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Zylinder auf Ebene Kugel auf Ebene Fliegendes Objekt

Kinematic graph

* The kinematic graph defines the structure of
the articulated body
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Data structures

» Kinematic graph:
— list of root joints (one/articulated body)
— nodes: joints and solids N

« Solid: -
— parent joint "
— list of child joints
— transform wrt world coordinates

Data structures (continued)

* Joint:
— parent solid
— child solid

— transform wrt parent

We chose the joint frame to be the origin of the child
solid

— dofs (ex: translation i, rotation j,k)
— state variables (one/dof)
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Recursive computations
» Solid transforms: trans( root )

— trans(solid S):

for all children joints j
trans())

— trans( joint J):

paren) T = T (dof )
OTchiId(J) :0Tparent(J) parent Tchild(J)
trans(child)

State vector

» The state vector gathers the displacements
along all the dofs of the scene

0= (91’92’93)T

« An animation is a paté(t) in the state space




Forward kinematics

» Some artifacts of point animation are
removed

Forward kinematics (continued)

 However, forward kinematics has to be
applied carefully




Inverse kinematics

 Inverse kinematics allows us to apply
constraints )
» Applications:

— interactive pose design

— applying goals
— maintaining geometric relations

Geometric equations

* Nonlinearity:
— various number of solutions
— difficult to solve
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Linearized equations

* Newton’s method for nonlinear root finding:
while( error > precision)
approximate the function by its derivative
solve

Example

Point-to-point constraint

S\
P=P, &

Solve 9P g - P -P
de

Update 0=0+A0

Check state (P, —P)(6)




Constraints

» Constraints can be expressed as vectors

» Each entry (scalar constraint) is an
independent element of the consraint

« example: point-to-point

P,-P=AP=0

o=Rr i iE

Jacobian

* The jacobian matrix J of a constraint relates
its value to the state variables dg
J=—

~do
« Each row of J is the gradient of a scalar

constraint [§g,/06, .. 0g,/08, 0]
=t 5
0o []

99,,/06, ... 39,/96F




Jacobian

 J provides good approximations for small
displacements
g(0 + AB) = g(0) + JA6

» Jis not necessarily square
— m scalar constraints
— n unknowns
-> J(m,n)

Computation of the Jacobian matrix
« Consider each dof separately
dP :
:a)(|i )
x X

o
j_; = [d,[norm(d))
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Relationsin 3D

e Translation and rotation dofs

dP
_:a
dx
dP

— =axd=axOP
do

Orientations

 Orientations depend only on rotations

s

dg, =0 0 1 1 1@E0
0, 0
H80
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Transformsin 3D

e Derivative of the transform matrix

00 d& -d& 00
dT = B— deg, O déa OB
) Udés, —déa 0O od

gdxa dxa  dxa, 05

Example 1
* point-to-point constraint
[OP ; oP . OP a0
D6 06, 06" ) ,0 KXO
P . 0P P [T 20 H -yH
J J 6,5 A~ Y[
@61 662 683 3
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Example 2
» 2-dof body

a—P:kxOlP
00

AP = a—F)Ax + a—PAH
0Xx 06

Example 2 (continued)

» Point-point constraint:
— derive the equations

AP :a—PAx+a—PAH:g:P1—P
ox 00

P . 0P .0

Oy " 9g " OXO_ [P, -P).iD
5, 0P Thol™Hip, - pf
X 06 'O

[ (kxOP).iAxO_ DX - xO
0 (kxoP)jHaeH Hi-vH
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Example 2 (continued)

¢ Point-line constraint

AP N = (a—PAx+a—PA0).n =-d=(P,—P)n
0x 06

OP oP [AxO_

%.n %n%GE_d

in (kx olP).n]SlsZE: ~d

Orientation constraints

« Orientation can be constrained by aligning
vectors

\ |

E\! g=v-u
aP_Q:a_Q—a_P:a—a:O

()4 ox O0X
=—-—=ax0O,B-ax0O,A =axAB
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Multiple constraints

» We gather all the constraints in one
equation

W 2.0 m.0
: 4040
- == ;5

4 o

Inversion of the Jacobian matrix

 If Jmn IS Not square, use the pseudoinverse
— full rank matrices:

m>n:J" =(J'J)"J"
m<n:J* =J'(3J)*

— rank deficient matrices: use SVD or other
methods
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Solution of the equation system

» Compute the unknowrs9 (translations and
rotations) to meet the constraidis

JAD = Ax
AO = J Ax

» Degenerate matrices require special care

L > ' —A\X)? +
s NG

Global degrees of freedom

* if m<n, there remain some global degrees of
freedom

N \\ //
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The null space

« The null space of J is the set of vectors wich
have no influence on the constraints

6 Onullspace(J) = J6 =0

* The pseudoinverse provides an operator
which projects any vector to the null space
of J.

JAD = Ax
AO=JAx+(1-JJz [z

Utility of the null space

« The null space can be used to reach
secondary goals

AO=JAx+(1-J"J)z
min f (0)

» Example: comfortable positions

£0) = Bhomordi) —0))°
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Application to pose optimization

» Avoid unrealistic poses - —

|
* Maintain the center of mass above the feet

G=>mG

Augmented body

* The “augmented body” (Boulic94)
corresponds to the mass moved by a given
joint.

G=qu

& . \Q‘ \ G _ & an
\ & ag (Z )
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Optimization of the mass center

* The null space of the kinematic constraints
IS used to optimize the position of the mass
center

AO =JAx+(1-J" )z
min f (G(6))

e The derivativedG/d0 is used in the
minimization process
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Applications

 Single support

* Double support

Summary of inverse kinematics

— Inverse kinematics allows us to define goals

— The Jacobian matrix J relates the constrained
values to the control variables

— The pseudoinverse allows us to solve the
equation system

— The null space of J allows us to reach
secondary goals (but which ones?)

— Due to linearization or degeneracies, the
process may be instable and solved iteratively
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