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Kinematic animation of
articulated bodies

• Joints

• Kinematic graph

• Forward kinematics

• Inverse kinematics

Articulated bodies

• Articulated bodies are composed of solids
and joints
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Joints

• Joints restrict the relative motion of solids

• Joints are used to create hierarchies of
solids

Degrees of freedom (DOF)

• The dofs define the independent relative
motions allowed

• Each joint can include a combination of:
– 3 translation dofs

– 3 rotation dofs
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degrees of
freedom
(DOF)

Kinematic graph

• The kinematic graph defines the structure of
the articulated body
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Data structures

• Kinematic graph:
– list of root joints (one/articulated body)

– nodes: joints and solids

• Solid:
– parent joint

– list of child joints

– transform wrt world coordinates

Data structures (continued)

• Joint:
– parent solid

– child solid

– transform wrt parent
We chose the joint frame to be the origin of the child

solid

– dofs (ex: translation i, rotation j,k)

– state variables (one/dof)
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Recursive computations
• Solid transforms: trans( root )

– trans( solid S ):

for all children joints j
trans(j)

– trans( joint J ):

trans(child)

child(J)
parent(J)

parent(J)
0

child(J)
0

child(J)
parent(J) )(

TTT

TT

=

= dof

State vector

• The state vector gathers the displacements
along all the dofs of the scene

• An animation is a path θ(t) in the state space
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Forward kinematics

• Some artifacts of point animation are
removed

Forward kinematics (continued)

• However, forward kinematics has to be
applied carefully
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Inverse kinematics
• Inverse kinematics allows us to apply

constraints

• Applications:
– interactive pose design

– applying goals

–  maintaining geometric relations

Geometric equations

• Nonlinearity:
– various number of solutions

– difficult to solve
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Linearized equations

• Newton´s method for nonlinear root finding:
while( error > precision )

approximate the function by its derivative

solve

Example

• Point-to-point constraint

• Solve

• Update

• Check state
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Constraints

• Constraints can be expressed as vectors

• Each entry (scalar constraint) is an
independent element of the consraint

• example: point-to-point
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Jacobian

• The jacobian matrix J of a constraint relates
its value to the state variables

• Each row of J is the gradient of a scalar
constraint
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Jacobian

• J provides good approximations for small
displacements

• J is not necessarily square
– m scalar constraints

– n unknowns

-> J(m,n)

θJg(�g( +≈+ )

Computation of the Jacobian matrix

• Consider each dof separately

)norm(dd
d
dP

axis
d
dP

ii=

=

i

i
i

x
x

)(



11

Relations in 3D

• Translation and rotation dofs
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Orientations

• Orientations depend only on rotations
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Transforms in 3D

• Derivative of the transform matrix
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Example 1

• point-to-point constraint
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Example 2

• 2-dof body
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Example 2 (continued)

• Point-point constraint:
– derive the equations
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Example 2 (continued)

• Point-line constraint
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Orientation constraints

• Orientation can be constrained by aligning
vectors
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Multiple constraints

• We gather all the constraints in one
equation
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Inversion of the Jacobian matrix

• If J(m,n) is not square, use the pseudoinverse
– full rank matrices:

– rank deficient matrices: use SVD or other
methods
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Solution of the equation system

• Compute the unknowns ∆θ (translations and
rotations) to meet the constraints ∆x

• Degenerate matrices require special care
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Global degrees of freedom

• if m<n, there remain some global degrees of
freedom
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The null space

• The null space of J is the set of vectors wich
have no influence on the constraints

• The pseudoinverse provides an operator
which projects any vector to the null space
of J.
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Utility of the null space

• The null space can be used to reach
secondary goals

• Example: comfortable positions
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Application to pose optimization

• Avoid unrealistic poses

• Maintain the center of mass above the feet
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Augmented body

• The “augmented body” (Boulic94)
corresponds to the mass moved by a given
joint.

i

i
n

i
i

i

i
ii

Ga
m

G

GmG

θθ ∂
∂=

∂
∂

=

∑

∑

)(



19

Optimization of the mass center

• The null space of the kinematic constraints
is used to optimize the position of the mass
center

• The derivative δG/δθ is used in the
minimization process
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Applications

• Single support

• Double support

Summary of inverse kinematics

– Inverse kinematics allows us to define goals

– The Jacobian matrix J relates the constrained
values to the control variables

– The pseudoinverse allows us to solve the
equation system

– The null space of J allows us to reach
secondary goals (but which ones?)

– Due to linearization or degeneracies, the
process may be instable and solved iteratively
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