Introduction to Physically Based Animation

Francois Faure

EVASION-LJK

Motivation

» Realistic motion

» Interaction

Laparoscopic Liver Resection

A physical particle

» Position x in m
» Velocity v = % =X in m/s

» Mass min kg

m

¢

Newton's first law

» An isolated system has a constant velocity

m

’ -

Newton's second law

i —dv _ d&’x _
> Acceleration a= G = 75 =X

» Force in kg.m/s?

» A force is “something” able to modify the trajectory or the
shape of an object

Newton's third law

fl—>2 - f‘2—>1

il 2

» The net force applied to an isolated system is null, even if
internal forces are applied

» Its center of mass has a linear trajectory

Generalization: Lagrangian dynamics

o(T-P o(T—-P .
%((aq)>_ (8q):Q(q7q7t)

°/1?

q denote the mechanically independent parameters (here o,
R, p, 6)

P is the potential energy

v

v

v

T is the kinetic energy

v

Q is the non-conservative forces

Example of Lagrangian dynamics

> q=(x,y,2)

» P = —mgq with gravity vector
d (0 oP __
at <5‘_q) + g — Q(qa qa) g

> T =Img?

» @ = viscous force —rvq

mq = mg — vq

Basic time integration

Explicit Euler integration over a time set dt:

» compute acceleration ¢
» update time, positions and velocities:

t += dt
q += qxdt
q += qxdt

» precision depends on dt because update follows the tangent

x(t)

theoretical
trajectory

|
| |
| |
| | time
t t

Structure of a physically based animation program

A classical structure:

> init
> display
> repeat:
> input (data, user action)
compute forces

>
» update state
> repeat:

> apply constraints

> display

There are many variants !

Mass-spring systems

» 1D, 2D or 3D mesh

— tension
~ bending

Continuous object Discrete model Particle neighborhood

» vertices = particles, edges = springs

» simple, but parameters are difficult to tune

The spring model

» Viscoelastic force
stiffness k , rest length lo

f1 N2 f2
damping v
» In one dimension: f; = k%ol_lo + (k% — x1)
» In 2D or 3D:
- — . .
h = <k‘q271H0 +v(g2 - ql)-n12> ni2
0
with njp = 2

HCI2 - ql”

Acceleration of mass-spring particles

for each particle i:
F; =fi(q;,q;,t) // unary forces
for each spring i,j:
F =fjj(q/,9i,q;,4q;,t) // interaction forces
F; +=F
Fi=F
for each particle i:
A; =F;/m; // accelerations
for each fixed particle i
A; =0 // fixed points do not accelerate

The problem of stiffness

For a given time step dt

» With low stiffness, smooth oscillations are obtained

» reducing the time step is more expensive

Higher-order explicit integration

Midpoint method (second-order Runge-Kutta)
» perform a fictitious dt/2 Euler step
» compute the derivative there
» use this derivative for a full Euler step

g X

|
! | theoretical
I | trajectory

|
|
l | » time
t t+dt/2 t+dt

> error is proportional to dt? instead of dt

» even more sophisticated methods exist

> better, but instability remains

Symplectic methods

Symplectic Euler:
» compute acceleration g

» Use updated velocity to update position

t += dt
q += qxdt
q += qxdt

» much better energy conservation
» but instability still occurs

» variants: leap-frog, Stoermer-Verlet

Implicit time integration

v

Use q(t+dt) to update velocity
Implicit Euler:

v

q += q(t+dt)=dt
q += qxdt

v

inconditionally stable

v

but an equation system must be solved

Linearized implicit Euler

» Solve

(M —Ddt — Kdt?) Aq = (f+Kqdt) dt

with M = diagonal mass matrix
f
K = — stiffness matrix
oq
D = a—q damping matrix
» then
qa +=Aq
q += q* dt

» popular assumption: Rayleigh damping D = aM + K

Implicit Euler in practice

» We have to solve a linear equation system Ax =b
» A is PSD, we use the conjugate gradient solution:
» only implement the product of A with a vector
> iterative solution
» To apply simple constraints:
» Solve CAx = Cb
» Cis a diagonal matrix with null diagonal values for constrained
directions (a trivial filter)

» Spring stiffness:

ofy
K = Koy = —
12 21 Bz
f f AT AT 2
= (k=7) [n12nz—2} +13 WA ——
Kii = K =-Kjp —

I3 being the 3 x 3 identity matrix,
f=|Ifil and / = [[a2 — au]

The Provot approach

» Apply simple time integration, then prevent springs to extend
or compress too much

» Algorithm:

apply symplectic Euler
repeat:
for each spring i, j:
if extension or compression > 10%
move the particles to 10% of extension or compression
until no spring is too much extended or compressed

Distance correction

Q desired distance Q

o
AqQ1 N AQ2

» compute desired relative displacement

Aq = Aqy,—Aq,

= —(desired length-current length)n;,

» move the particles without moving their mass center

mp
Ag, = ™2
% m1 + mp
my
Ag, = —— ™ A
a2 m + o q

» update the velocities

41 += Aqy/dt
G2 += Aqgy/dt

A more general formulation

desired distance
@ .
VR
Aqt N ®

» Fixed points are considered as points with infinite masses
» Use inverse mass w = 1/m
» w = 0 for a fixed point
» move the particles
Aq - M1
w1 + wa
Aq, = LAQ

w1 + wp

Generalization: position-based dynamics
etc.

» Solve:

Complex constraints: aligned points, are or volume conservation,
» model a constraint as a value to cancel ¢ = C(q,q)

Oc

Ag =
8qq

—c
without moving the mass center

Collision of a particle with a surface

» criterion: pgq.n <0
» backtrack to collision time t. /}
» compute velocity increment for h a
an inelastic collision 41 QV\
Aq = —(g.n)n :

- p \

» apply a bouncing coefficient e: q(ty/
q+=(1+¢Aq

» continue simulation q(te)

Aq

» problem: with several particles,
several backtracks and restarts q(t+dt

may be necessary

Synchronized collisions

Similar, but:
.. q(t+dt) corrected
» do not backtrack to collision

time Q
. . qa(t)
» compute position increment to n altre) corrected
project the particle to the
surface Aq = —(pg.n)n 2

» apply a bouncing to position

also:

q+=(1+¢)Aq q(t+dt
» advantage: all collisions are

handled at the same time G(t+dt)

Aq

A bad case

Rattling

Collision of two spheres

> criterion: [|[q1q2]| <+

» compute position increments for
an inelastic collision

Aq = (n+nr—|qiq2])ne A
» use the inverse masses to '

maintain the center of mass

w1
A = —A
q; Wi+ wo q
wo
A = ——
% w1 + wp

» apply a bouncing coefficient e:

a += (1+elAq
@ += (1+¢Aq

Collision of two spheres (continued)

» compute velocity increments for
an inelastic collision
Aq = ((42 — q1).n12)n12

> use the inverse masses to
maintain the center of mass

. wy
A = —
% wy + wp
. %) .
A = ———A
q2 Wi+ wo q

|
» apply a bouncing coefficient e: |

a += (1+e6Aa a
Q@ += (1+eAq

» or compute Agq; = Aq;/dt

Limitations of discrete-time collision detection

q(t+dt)

q(t)

» Thin objects can be traversed

» The history is sometimes
necessary

Continuous-time collision detection

» Search four coplanar point (solve cubic equation in time)
» Point-triangle intesection:
a(t)b(t) - (b(t)c(t) Ab(t)d(t)) =0

b(t)e(t) A b(t)d(t)

c(f)

» Then for the smallest 0 < t < dt compute point positions

Continuous-time collision detection

» Search four coplanar point (solve cubic equation in time)
» Edge-edge intesection:
a(t)c(t) - (a(t)b(t) Ac(t)d(t)) =0

a(t)b(t) A c(t)d(?)

» Then for the smallest 0 < t < dt compute point positions

Acceleration of collision detection using bounding volumes

» If the BVs don not intersect then the objects do not intersect

AABB sphere DOP OBB spherical shell

prism cylinder intersection
of other BVs

convex hull

Hierarchies of bounding volumes

» Accelerate even more
» Hierarchy update is expensive for deformable objects

Stochastic methods

» Pick sample pairs

» Refine where proximities are found

Distance fields

» function returning the closest surface point
» project particles to the surface

Distance fields (continued)

» Distance offsets are necessary to prevent edge collisions

An image-space technique

» Compute AABB intersection
» If intersection, compute Layerd Depth Images of both objects

» Test ecah vertex of one body agains the LDI of the other

Simplified geometries

» Embed a complex geometry in a coarser one
» Apply dynanmics and collisions to the coarse geometry
» render the fine geometry

Other topics

» rigid bodies
» fluids
» hair

> ...

	Basic laws
	Mass-spring systems

