Introduction to Physically Based Animation

François Faure

EVASION-LJK

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

Motivation

- \blacktriangleright Realistic motion
- \blacktriangleright Interaction

A physical particle

- \blacktriangleright Position x in m
- \blacktriangleright Velocity $v = \frac{dx}{dt} = \dot{x}$ in m/s
- \blacktriangleright Mass *m* in kg

K ロ X イロ X K ミ X K ミ X ミ → S V Q Q Q

Newton's first law

 \blacktriangleright An isolated system has a constant velocity

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 | X 9 Q @

Newton's second law

- Acceleration $a = \frac{dv}{dt} = \frac{d^2x}{dt^2} = \ddot{x}$
- Force in $kg.m/s^2$
- \triangleright A force is "something" able to modify the trajectory or the shape of an object

AD A REAKEN E VAN

Newton's third law

 \triangleright The net force applied to an isolated system is null, even if internal forces are applied

 \exists (\exists) (\exists) (\exists) (\exists)

 2990

 \blacktriangleright Its center of mass has a linear trajectory

Generalization: Lagrangian dynamics

$$
\left| \frac{d}{dt} \left(\frac{\partial (\mathcal{T} - P)}{\partial \dot{q}} \right) - \frac{\partial (\mathcal{T} - P)}{\partial q} \right| = Q(q, \dot{q}, t)
$$

 \blacktriangleright q denote the mechanically independent parameters (here o , R, p, θ

 4 ロ) 4 \overline{r}) 4 \overline{z}) 4 \overline{z})

 \Rightarrow

 QQ

- \blacktriangleright P is the potential energy
- \blacktriangleright T is the kinetic energy
- \triangleright Q is the non-conservative forces

Example of Lagrangian dynamics

$$
\boxed{\tfrac{d}{dt}\left(\tfrac{\partial \mathcal{T}}{\partial \dot{q}}\right) + \tfrac{\partial P}{\partial q} = Q(q, \dot{q}, t)}
$$

►
$$
q = (x, y, z)
$$

\n► $P = -mgq$ with gravity vector
\n g
\n► $T = \frac{1}{2}m\dot{q}^2$

イロメ イ部メ イ君メ イ君メ

 \equiv 990

$$
\blacktriangleright Q = \text{viscous force } -\nu \dot{\mathbf{q}}
$$

$$
m\ddot{q} = mg - \nu \dot{q}
$$

Basic time integration

Explicit Euler integration over a time set dt:

- \triangleright compute acceleration $\ddot{\mathbf{q}}$
- \blacktriangleright update time, positions and velocities:

$$
\begin{array}{rcl}\nt & +=& dt \\
q & +=& \dot{q} * dt \\
\dot{q} & +=& \ddot{q} * dt\n\end{array}
$$

recision depends on dt because update follows the tangent

 2990

Structure of a physically based animation program

KORK ERKER ER AGA

A classical structure:

There are many variants !

Mass-spring systems

 \blacktriangleright 1D, 2D or 3D mesh

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- \triangleright vertices = particles, edges = springs
- \triangleright simple, but parameters are difficult to tune

The spring model

 \blacktriangleright Viscoelastic force

In one dimension: $f_1 = k \frac{x_2 - x_1 - b_0}{b_0}$ $\frac{x_1 - t_0}{t_0} + \nu(\dot{x}_2 - \dot{x}_1)$ \blacktriangleright In 2D or 3D:

$$
f_1 = \left(k \frac{\|\mathbf{q}_2 - \mathbf{q}_1\| - I_0}{I_0} + \nu(\dot{\mathbf{q}}_2 - \dot{\mathbf{q}}_1).\mathbf{n}_{12}\right) \mathbf{n}_{12}
$$

with $\mathbf{n}_{12} = \frac{\mathbf{q}_2 - \mathbf{q}_1}{\|\mathbf{q}_2 - \mathbf{q}_1\|}$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 1000

Acceleration of mass-spring particles

for each particle i:

 ${\sf F}_i={\sf f}_i({\sf q}_i,\dot{{\sf q}}_i,t)\mathbin{/}/$ unary forces for each spring i,j: $\boldsymbol{\mathsf{F}}=\boldsymbol{\mathsf{f}}_{ij}(\mathbf{q}_i,\dot{\mathbf{q}}_i,\mathbf{q}_j,\dot{\mathbf{q}}_j,t)$ $\mathop{/}\!/$ interaction forces F_i += F F_i -= F

for each particle i:

 $A_i = F_i/m_i$ // accelerations for each fixed particle i:

 $A_i = 0$ // fixed points do not accelerate

AD A REAKEN E VAN

The problem of stiffness

For a given time step dt

 \triangleright With low stiffness, smooth oscillations are obtained

 \triangleright With high stiffness, instabilities make the simulation "explode"

一番

 2990

 \blacktriangleright \blacktriangleright \blacktriangleright reducing the time step is more expensive

Higher-order explicit integration

Midpoint method (second-order Runge-Kutta)

- riangleright perform a fictitious dt/2 Euler step
- \blacktriangleright compute the derivative there
- \triangleright use this derivative for a full Euler step

 \exists (\exists) (\exists) (\exists) (\exists)

 QQQ

- rerror is proportional to dt^2 instead of dt
- \triangleright even more sophisticated methods exist
- better, but instability remains

Symplectic methods

Symplectic Euler:

- \triangleright compute acceleration $\ddot{\mathbf{q}}$
- \triangleright Use updated velocity to update position:

KORK EX KEY KEY KORA

- \blacktriangleright much better energy conservation
- \blacktriangleright but instability still occurs
- ▶ variants: leap-frog, Stoermer-Verlet

Implicit time integration

- \triangleright Use $\ddot{\mathbf{q}}(t+dt)$ to update velocity
- \blacktriangleright Implicit Euler:

$$
\dot{\mathbf{q}} \quad += \quad \ddot{\mathbf{q}}(t+dt)*dt
$$
\n
$$
\mathbf{q} \quad += \quad \dot{\mathbf{q}}*dt
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- \blacktriangleright inconditionally stable
- \triangleright but an equation system must be solved

Linearized implicit Euler

 \blacktriangleright Solve

$$
(\mathbf{M} - \mathbf{D}dt - \mathbf{K}dt^2) \Delta \dot{\mathbf{q}} = (\mathbf{f} + \mathbf{K}\dot{\mathbf{q}}dt) dt
$$

with $\mathbf{M} =$ diagonal mass matrix

$$
\mathbf{K} = \frac{\partial \mathbf{f}}{\partial \mathbf{q}} \text{ stiffness matrix}
$$

$$
\mathbf{D} = \frac{\partial \mathbf{f}}{\partial \dot{\mathbf{q}}} \text{ damping matrix}
$$

 \blacktriangleright then

$$
\begin{array}{rcl}\n\dot{\mathbf{q}} & & + = \Delta \dot{\mathbf{q}} \\
\mathbf{q} & & + = & \dot{\mathbf{q}} \ast dt\n\end{array}
$$

K ロ X - K 제공 X 제공 X 제공 및 및 X - K 이익(N)

P popular assumption: Rayleigh damping $D = \alpha M + \beta K$

Implicit Euler in practice

- \triangleright We have to solve a linear equation system $Ax = b$
- \triangleright **A** is PSD, we use the conjugate gradient solution:
	- only implement the product of \bf{A} with a vector
	- \blacktriangleright iterative solution
- \blacktriangleright To apply simple constraints:
	- \blacktriangleright Solve $CAx = Cb$
	- \triangleright **C** is a diagonal matrix with null diagonal values for constrained directions (a trivial filter)

 \blacktriangleright Spring stiffness:

$$
\begin{array}{rcl}\n\mathbf{K}_{12} & = & \mathbf{K}_{21} = \frac{\partial \mathbf{f}_1}{\partial \mathbf{q}_2} \\
& = & (k - \frac{f}{l}) \left[\mathbf{n}_{12} \mathbf{n}_{12}^T \right] + \frac{f}{l} \mathbf{l}_3 \\
\mathbf{K}_{11} & = & \mathbf{K}_{22} = -\mathbf{K}_{12}\n\end{array}
$$

 I_3 being the 3 \times 3 identity matrix, $f = ||\mathbf{f}_1||$ and $l = ||\mathbf{q}_2 - \mathbf{q}_1||$

The Provot approach

- \triangleright Apply simple time integration, then prevent springs to extend or compress too much
- \blacktriangleright Algorithm:

```
apply symplectic Euler
repeat:
```

```
for each spring i, j:
```

```
if extension or compression >10\%
```
move the particles to 10% of extension or compression until no spring is too much extended or compressed

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Distance correction

 \triangleright compute desired relative displacement

$$
\begin{array}{rcl}\n\Delta \mathbf{q} & = & \Delta \mathbf{q}_2 - \Delta \mathbf{q}_1 \\
& = & -(\text{desired length-current length})\mathbf{n}_{12}\n\end{array}
$$

 \triangleright move the particles without moving their mass center

$$
\Delta \mathbf{q}_1 = \frac{m_2}{m_1 + m_2} \Delta \mathbf{q}
$$

$$
\Delta \mathbf{q}_2 = -\frac{m_1}{m_1 + m_2} \Delta \mathbf{q}
$$

 \blacktriangleright update the velocities

$$
\dot{\mathbf{q}}_1 \quad += \Delta \mathbf{q}_1/dt
$$
\n
$$
\dot{\mathbf{q}}_2 \quad += \Delta \mathbf{q}_2/dt
$$

A more general formulation

 \blacktriangleright Fixed points are considered as points with infinite masses

- \blacktriangleright Use inverse mass $w = 1/m$
- \blacktriangleright $w = 0$ for a fixed point
- \blacktriangleright move the particles

$$
\Delta \mathbf{q}_1 = \frac{w_1}{w_1 + w_2} \Delta \mathbf{q}
$$

$$
\Delta \mathbf{q}_2 = -\frac{w_2}{w_1 + w_2} \Delta \mathbf{q}
$$

KORK ERKER ER AGA

Generalization: position-based dynamics

Complex constraints: aligned points, are or volume conservation, etc.

- model a constraint as a value to cancel $c = C(\mathbf{q}, \dot{\mathbf{q}})$
- \blacktriangleright Solve:

$$
\frac{\partial c}{\partial \mathbf{q}} \Delta \mathbf{q} = -c
$$

without moving the mass center

 Ω

Collision of a particle with a surface

- riterion: $pq.n < 0$
- ightharpoonup backtrack to collision time t_c
- \triangleright compute velocity increment for an inelastic collision $\Delta \dot{\mathbf{q}} = -(\dot{\mathbf{q}}.\mathbf{n})\mathbf{n}$
- \blacktriangleright apply a bouncing coefficient ϵ : $\dot{\mathbf{q}}$ += $(1+\epsilon)\Delta\dot{\mathbf{q}}$
- \blacktriangleright continue simulation
- \triangleright problem: with several particles, several backtracks and restarts may be necessary

KOD KAR KED KED E YOUN

Synchronized collisions

Similar, but:

- \blacktriangleright do not backtrack to collision time
- \triangleright compute position increment to project the particle to the surface $\Delta q = -(pq.n)n$
- \blacktriangleright apply a bouncing to position also:

 q += $(1 + \epsilon)\Delta q$

 \blacktriangleright advantage: all collisions are handled at the same time

KORK ERKER ER AGA

A bad case

Rattling

K ロ X イロ X K ミ X K ミ X ミ → S V Q Q Q

Collision of two spheres

- riterion: $\|\mathbf{q}_1\mathbf{q}_2\| < r_1 + r_2$
- \triangleright compute position increments for an inelastic collision

$$
\Delta {\bm q} \ = \ (r_1 + r_2 - \|{\bm q}_1 {\bm q}_2\|) {\bm n}_{12}
$$

 \blacktriangleright use the inverse masses to maintain the center of mass

$$
\begin{array}{rcl}\n\Delta\mathbf{q}_1 &=& \frac{w_1}{w_1 + w_2} \Delta\mathbf{q} \\
\Delta\mathbf{q}_2 &=& -\frac{w_2}{w_1 + w_2} \Delta\mathbf{q}\n\end{array}
$$

 \blacktriangleright apply a bouncing coefficient ϵ :

$$
\begin{array}{ccc}\n\mathbf{q}_1 & + = & (1+\epsilon)\Delta\mathbf{q}_1 \\
\mathbf{q}_2 & + = & (1+\epsilon)\Delta\mathbf{q}_2\n\end{array}
$$

Collision of two spheres (continued)

- \triangleright compute velocity increments for an inelastic collision $\Delta \dot{\mathbf{q}} = ((\dot{\mathbf{q}}_2 - \dot{\mathbf{q}}_1).\mathbf{n}_{12})\mathbf{n}_{12}$
- \blacktriangleright use the inverse masses to maintain the center of mass

$$
\begin{array}{rcl} \Delta \dot{\mathbf{q}}_1 &=& \displaystyle \frac{w_1}{w_1+w_2} \Delta \dot{\mathbf{q}} \\[2mm] \Delta \dot{\mathbf{q}}_2 &=& -\frac{w_2}{w_1+w_2} \Delta \dot{\mathbf{q}} \end{array}
$$

 \blacktriangleright apply a bouncing coefficient ϵ :

$$
\begin{array}{ccc}\dot{\mathbf{q}}_1 & + = & (1+\epsilon)\Delta\dot{\mathbf{q}}_1\\ \dot{\mathbf{q}}_2 & + = & (1+\epsilon)\Delta\dot{\mathbf{q}}_2\end{array}
$$

 \triangleright or compute $\Delta \dot{\mathbf{q}}_i = \Delta \mathbf{q}_i/dt$

Limitations of discrete-time collision detection

- \blacktriangleright Thin objects can be traversed
- \blacktriangleright The history is sometimes necessary

Continuous-time collision detection

- \triangleright Search four coplanar point (solve cubic equation in time)
- \blacktriangleright Point-triangle intesection:

 $\mathbf{a}(t)\mathbf{b}(t)\cdot(\mathbf{b}(t)\mathbf{c}(t)\wedge\mathbf{b}(t)\mathbf{d}(t))=0$

AD A REAKEN E VAN

In Then for the smallest $0 < t < dt$ compute point positions

Continuous-time collision detection

- \triangleright Search four coplanar point (solve cubic equation in time)
- \blacktriangleright Edge-edge intesection:

 $\mathbf{a}(t)\mathbf{c}(t)\cdot(\mathbf{a}(t)\mathbf{b}(t)\wedge\mathbf{c}(t)\mathbf{d}(t))=0$

AD A REAKEN E VAN

In Then for the smallest $0 < t < dt$ compute point positions

Acceleration of collision detection using bounding volumes

 \blacktriangleright If the BVs don not intersect then the objects do not intersect

Hierarchies of bounding volumes

- \blacktriangleright Accelerate even more
- \blacktriangleright Hierarchy update is expensive for deformable objects

Stochastic methods

- \blacktriangleright Pick sample pairs
- \blacktriangleright Refine where proximities are found

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^

Distance fields

- \blacktriangleright function returning the closest surface point
- \blacktriangleright project particles to the surface

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

Distance fields (continued)

 \triangleright Distance offsets are necessary to prevent edge collisions

 \equiv 990

イロメ イ部メ イ君メ イ君メ

An image-space technique

- ▶ Compute AABB intersection
- \blacktriangleright If intersection, compute Layerd Depth Images of both objects
- \triangleright Test ecah vertex of one body agains the LDI of the other

KORK ERKER ER AGA

Simplified geometries

- \blacktriangleright Embed a complex geometry in a coarser one
- \blacktriangleright Apply dynanmics and collisions to the coarse geometry
- \blacktriangleright render the fine geometry

 Ω

Other topics

 \blacktriangleright rigid bodies

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

- \blacktriangleright fluids
- \blacktriangleright hair
- \blacktriangleright ...