
Introduction to Physically Based Animation

François Faure

EVASION-LJK



Motivation

I Realistic motion

I Interaction



A physical particle

I Position x in m

I Velocity v = dx
dt = ẋ in m/s

I Mass m in kg



Newton’s first law

I An isolated system has a constant velocity



Newton’s second law

f = ma

I Acceleration a = dv
dt = d2x

dt2 = ẍ

I Force in kg .m/s2

I A force is “something” able to modify the trajectory or the
shape of an object



Newton’s third law

f1→2 = −f2→1

I The net force applied to an isolated system is null, even if
internal forces are applied

I Its center of mass has a linear trajectory



Generalization: Lagrangian dynamics

d
dt

(
∂(T−P)

∂q̇

)
− ∂(T−P)

∂q = Q(q, q̇, t)

I q denote the mechanically independent parameters (here o,
R, p, θ)

I P is the potential energy

I T is the kinetic energy

I Q is the non-conservative forces



Example of Lagrangian dynamics

d
dt

(
∂T
∂q̇

)
+ ∂P

∂q = Q(q, q̇, t)

I q = (x , y , z)

I P = −mgq with gravity vector
g

I T = 1
2mq̇2

I Q = viscous force − νq̇

mq̈ = mg − νq̇



Basic time integration

Explicit Euler integration over a time set dt:

I compute acceleration q̈

I update time, positions and velocities:

t += dt

q += q̇ ∗ dt

q̇ += q̈ ∗ dt

I precision depends on dt because update follows the tangent



Structure of a physically based animation program

A classical structure:

I init

I display
I repeat:

I input (data, user action)
I compute forces
I update state
I repeat:

I apply constraints

I display

There are many variants !



Mass-spring systems

I 1D, 2D or 3D mesh

I vertices = particles, edges = springs

I simple, but parameters are difficult to tune



The spring model

I Viscoelastic force

I In one dimension: f1 = k x2−x1−l0
l0

+ ν(ẋ2 − ẋ1)

I In 2D or 3D:

f1 =

(
k
‖q2 − q1‖ − l0

l0
+ ν(q̇2 − q̇1).n12

)
n12

with n12 =
q2 − q1

‖q2 − q1‖



Acceleration of mass-spring particles

for each particle i:
Fi = fi (qi , q̇i , t) // unary forces

for each spring i,j:
F = fij(qi , q̇i ,qj , q̇j , t) // interaction forces
Fi += F
Fj -= F

for each particle i:
Ai = Fi/mi // accelerations

for each fixed particle i:
Ai = 0 // fixed points do not accelerate



The problem of stiffness

For a given time step dt

I With low stiffness, smooth oscillations are obtained

I With high stiffness, instabilities make the simulation “explode”

I reducing the time step is more expensive



Higher-order explicit integration

Midpoint method (second-order Runge-Kutta)

I perform a fictitious dt/2 Euler step

I compute the derivative there

I use this derivative for a full Euler step

I error is proportional to dt2 instead of dt

I even more sophisticated methods exist

I better, but instability remains



Symplectic methods

Symplectic Euler:

I compute acceleration q̈

I Use updated velocity to update position:

t += dt

q̇ += q̈ ∗ dt

q += q̇ ∗ dt

I much better energy conservation

I but instability still occurs

I variants: leap-frog, Stoermer-Verlet



Implicit time integration

I Use q̈(t+dt) to update velocity

I Implicit Euler:

q̇ += q̈(t + dt) ∗ dt

q += q̇ ∗ dt

I inconditionally stable

I but an equation system must be solved



Linearized implicit Euler

I Solve (
M−Ddt −Kdt2

)
∆q̇ = (f + Kq̇dt) dt

with M = diagonal mass matrix

K =
∂f

∂q
stiffness matrix

D =
∂f

∂q̇
damping matrix

I then

q̇ += ∆q̇

q += q̇ ∗ dt

I popular assumption: Rayleigh damping D = αM + βK



Implicit Euler in practice

I We have to solve a linear equation system Ax = b
I A is PSD, we use the conjugate gradient solution:

I only implement the product of A with a vector
I iterative solution

I To apply simple constraints:
I Solve CAx = Cb
I C is a diagonal matrix with null diagonal values for constrained

directions (a trivial filter)

I Spring stiffness:

K12 = K21 =
∂f1
∂q2

= (k − f

l
)
[
n12n

T
12

]
+

f

l
I3

K11 = K22 = −K12

I3 being the 3× 3 identity matrix,
f = ‖f1‖ and l = ‖q2 − q1‖



The Provot approach

I Apply simple time integration, then prevent springs to extend
or compress too much

I Algorithm:

apply symplectic Euler
repeat:

for each spring i , j :
if extension or compression > 10%

move the particles to 10% of extension or compression
until no spring is too much extended or compressed



Distance correction

I compute desired relative displacement

∆q = ∆q2 −∆q1

= −(desired length-current length)n12

I move the particles without moving their mass center

∆q1 =
m2

m1 + m2
∆q

∆q2 = − m1

m1 + m2
∆q

I update the velocities

q̇1 += ∆q1/dt

q̇2 += ∆q2/dt



A more general formulation

I Fixed points are considered as points with infinite masses

I Use inverse mass w = 1/m

I w = 0 for a fixed point

I move the particles

∆q1 =
w1

w1 + w2
∆q

∆q2 = − w2

w1 + w2
∆q



Generalization: position-based dynamics

Complex constraints: aligned points, are or volume conservation,
etc.

I model a constraint as a value to cancel c = C (q, q̇)
I Solve:

∂c

∂q
∆q = −c

without moving the mass center



Collision of a particle with a surface

I criterion: pq.n < 0

I backtrack to collision time tc
I compute velocity increment for

an inelastic collision
∆q̇ = −(q̇.n)n

I apply a bouncing coefficient ε:
q̇ += (1 + ε)∆q̇

I continue simulation

I problem: with several particles,
several backtracks and restarts
may be necessary



Synchronized collisions

Similar, but:

I do not backtrack to collision
time

I compute position increment to
project the particle to the
surface ∆q = −(pq.n)n

I apply a bouncing to position
also:
q += (1 + ε)∆q

I advantage: all collisions are
handled at the same time



A bad case

Rattling



Collision of two spheres

I criterion: ‖q1q2‖ < r1 + r2
I compute position increments for

an inelastic collision

∆q = (r1 + r2 − ‖q1q2‖)n12

I use the inverse masses to
maintain the center of mass

∆q1 =
w1

w1 + w2
∆q

∆q2 = − w2

w1 + w2
∆q

I apply a bouncing coefficient ε:

q1 += (1 + ε)∆q1

q2 += (1 + ε)∆q2



Collision of two spheres (continued)

I compute velocity increments for
an inelastic collision
∆q̇ = ((q̇2 − q̇1).n12)n12

I use the inverse masses to
maintain the center of mass

∆q̇1 =
w1

w1 + w2
∆q̇

∆q̇2 = − w2

w1 + w2
∆q̇

I apply a bouncing coefficient ε:

q̇1 += (1 + ε)∆q̇1

q̇2 += (1 + ε)∆q̇2

I or compute ∆q̇i = ∆qi/dt



Limitations of discrete-time collision detection

I Thin objects can be traversed

I The history is sometimes
necessary



Continuous-time collision detection

I Search four coplanar point (solve cubic equation in time)

I Point-triangle intesection:

I Then for the smallest 0 < t < dt compute point positions



Continuous-time collision detection

I Search four coplanar point (solve cubic equation in time)

I Edge-edge intesection:

I Then for the smallest 0 < t < dt compute point positions



Acceleration of collision detection using bounding volumes

I If the BVs don not intersect then the objects do not intersect



Hierarchies of bounding volumes

I Accelerate even more
I Hierarchy update is expensive for deformable objects



Stochastic methods

I Pick sample pairs

I Refine where proximities are found



Distance fields

I function returning the closest surface point

I project particles to the surface



Distance fields (continued)

I Distance offsets are necessary to prevent edge collisions



An image-space technique

I Compute AABB intersection

I If intersection, compute Layerd Depth Images of both objects

I Test ecah vertex of one body agains the LDI of the other



Simplified geometries

I Embed a complex geometry in a coarser one
I Apply dynanmics and collisions to the coarse geometry
I render the fine geometry



Other topics

I rigid bodies

I fluids

I hair

I ...


	Basic laws
	Mass-spring systems

