Introduction to Physically Based Animation

François Faure

EVASION-LJK

Motivation

- ► Realistic motion
- ▶ Interaction

A physical particle

- ▶ Position *x* in *m*
- ▶ Velocity $v = \frac{dx}{dt} = \dot{x}$ in m/s
- ► Mass *m* in *kg*

Newton's first law

▶ An isolated system has a constant velocity

Newton's second law

$$f = ma$$

- ► Acceleration $a = \frac{dv}{dt} = \frac{d^2x}{dt^2} = \ddot{x}$
- ▶ Force in kg.m/s²
- ► A force is "something" able to modify the trajectory or the shape of an object

Newton's third law

$$\boxed{f_{1\rightarrow2} = -f_{2\rightarrow1}}$$

- ► The net force applied to an isolated system is null, even if internal forces are applied
- Its center of mass has a linear trajectory

Generalization: Lagrangian dynamics

$$\frac{d}{dt}\left(\frac{\partial(T-P)}{\partial \dot{q}}\right) - \frac{\partial(T-P)}{\partial q} = Q(q,\dot{q},t)$$

- q denote the mechanically independent parameters (here o, R, p, θ)
- P is the potential energy
- ► *T* is the kinetic energy
- Q is the non-conservative forces

Example of Lagrangian dynamics

$$rac{d}{dt}\left(rac{\partial T}{\partial \dot{q}}
ight)+rac{\partial P}{\partial q}=Q(q,\dot{q},t)$$

$$q = (x, y, z)$$

▶ P = -mgq with gravity vector g

$$T = \frac{1}{2}m\dot{q}^2$$

$$ightharpoonup Q = \text{viscous force } -\nu\dot{\mathbf{q}}$$

$$m\ddot{q} = mg - \nu \dot{\mathbf{q}}$$

Basic time integration

Explicit Euler integration over a time set dt:

- ▶ compute acceleration q
- update time, positions and velocities:

$$\begin{array}{cccc}
t & += & dt \\
\mathbf{q} & += & \dot{\mathbf{q}} * dt \\
\dot{\mathbf{q}} & += & \ddot{\mathbf{q}} * dt
\end{array}$$

precision depends on dt because update follows the tangent

Structure of a physically based animation program

A classical structure:

- ▶ init
- display
- repeat:
 - input (data, user action)
 - compute forces
 - update state
 - repeat:
 - apply constraints
 - display

There are many variants!

Mass-spring systems

▶ 1D, 2D or 3D mesh

- vertices = particles, edges = springs
- ▶ simple, but parameters are difficult to tune

The spring model

Viscoelastic force

- ▶ In one dimension: $f_1 = k \frac{x_2 x_1 l_0}{l_0} + \nu (\dot{x}_2 \dot{x}_1)$
- ▶ In 2D or 3D:

$$\begin{array}{rcl} \textit{f}_1 & = & \left(k\frac{\|\mathbf{q}_2-\mathbf{q}_1\|-\textit{l}_0}{\textit{l}_0}+\nu(\dot{\mathbf{q}}_2-\dot{\mathbf{q}}_1).\mathbf{n}_{12}\right)\mathbf{n}_{12} \\ \\ \text{with } \mathbf{n}_{12} & = & \frac{\mathbf{q}_2-\mathbf{q}_1}{\|\mathbf{q}_2-\mathbf{q}_1\|} \end{array}$$

Acceleration of mass-spring particles

```
for each particle i:
     \mathbf{F}_i = \mathbf{f}_i(\mathbf{q}_i, \dot{\mathbf{q}}_i, t) // unary forces
for each spring i, j:
     \mathbf{F} = \mathbf{f}_{ii}(\mathbf{q}_i, \dot{\mathbf{q}}_i, \mathbf{q}_i, \dot{\mathbf{q}}_i, t) // interaction forces
     F_i += F
     F_i -= F
for each particle i:
     \mathbf{A}_i = \mathbf{F}_i/m_i // accelerations
for each fixed particle i:
     \mathbf{A}_i = \mathbf{0} // fixed points do not accelerate
```

The problem of stiffness

For a given time step dt

With low stiffness, smooth oscillations are obtained

▶ With high stiffness, instabilities make the simulation "explode"

reducing the time step is more expensive

Higher-order explicit integration

Midpoint method (second-order Runge-Kutta)

- perform a fictitious dt/2 Euler step
- compute the derivative there
- use this derivative for a full Euler step

- ightharpoonup error is proportional to dt^2 instead of dt
- even more sophisticated methods exist
- better, but instability remains

Symplectic methods

Symplectic Euler:

- ► compute acceleration **q**
- Use updated velocity to update position:

$$\begin{array}{cccc} t & += & dt \\ \dot{\mathbf{q}} & += & \ddot{\mathbf{q}} * dt \\ \mathbf{q} & += & \dot{\mathbf{q}} * dt \end{array}$$

- much better energy conservation
- but instability still occurs
- variants: leap-frog, Stoermer-Verlet

Implicit time integration

- ▶ Use q(t+dt) to update velocity
- Implicit Euler:

$$\dot{\mathbf{q}}$$
 += $\ddot{\mathbf{q}}(t+dt)*dt$
 \mathbf{q} += $\dot{\mathbf{q}}*dt$

- inconditionally stable
- but an equation system must be solved

Linearized implicit Euler

Solve

then

$$\dot{\mathbf{q}}$$
 += $\Delta \dot{\mathbf{q}}$
 \mathbf{q} += $\dot{\mathbf{q}} * dt$

popular assumption: Rayleigh damping $\mathbf{D} = \alpha \mathbf{M} + \beta \mathbf{K}$

Implicit Euler in practice

- ightharpoonup We have to solve a linear equation system $\mathbf{A}\mathbf{x} = \mathbf{b}$
- ▶ **A** is PSD, we use the conjugate gradient solution:
 - only implement the product of A with a vector
 - iterative solution
- ► To apply simple constraints:
 - ► Solve CAx = Cb
 - ► C is a diagonal matrix with null diagonal values for constrained directions (a trivial filter)
- Spring stiffness:

$$\mathbf{K}_{12} = \mathbf{K}_{21} = \frac{\partial \mathbf{f}_1}{\partial \mathbf{q}_2}$$

$$= (k - \frac{f}{l}) \left[\mathbf{n}_{12} \mathbf{n}_{12}^T \right] + \frac{f}{l} \mathbf{I}_3$$

$$\mathbf{K}_{11} = \mathbf{K}_{22} = -\mathbf{K}_{12}$$

 $\mathbf{I_3}$ being the 3 × 3 identity matrix, $f = \|\mathbf{f_1}\|$ and $I = \|\mathbf{q_2} - \mathbf{q_1}\|$

The Provot approach

- Apply simple time integration, then prevent springs to extend or compress too much
- ► Algorithm:

```
apply symplectic Euler repeat:
```

```
for each spring i, j:
```

if extension or compression > 10%

move the particles to 10% of extension or compression until no spring is too much extended or compressed

Distance correction

compute desired relative displacement

$$\Delta q = \Delta q_2 - \Delta q_1$$

= -(desired length-current length) n_{12}

move the particles without moving their mass center

$$\Delta \mathbf{q}_1 = \frac{m_2}{m_1 + m_2} \Delta \mathbf{q}$$

$$\Delta \mathbf{q}_2 = -\frac{m_1}{m_1 + m_2} \Delta \mathbf{q}$$

update the velocities

$$\dot{\mathbf{q}}_1$$
 $+=$ $\Delta \mathbf{q}_1/dt$ $\dot{\mathbf{q}}_2$ $+=$ $\Delta \mathbf{q}_2/dt$

A more general formulation

- Fixed points are considered as points with infinite masses
- ▶ Use inverse mass w = 1/m
- \triangleright w = 0 for a fixed point
- move the particles

$$oldsymbol{\Delta} \mathbf{q}_1 = rac{w_1}{w_1 + w_2} oldsymbol{\Delta} \mathbf{q} \ oldsymbol{\Delta} \mathbf{q}_2 = -rac{w_2}{w_1 + w_2} oldsymbol{\Delta} \mathbf{c}$$

Generalization: position-based dynamics

Complex constraints: aligned points, are or volume conservation, etc.

- model a constraint as a value to cancel $c = C(\mathbf{q}, \dot{\mathbf{q}})$
- Solve:

$$\frac{\partial c}{\partial \mathbf{q}} \Delta \mathbf{q} = -c$$

without moving the mass center

Collision of a particle with a surface

- ▶ criterion: pq.n < 0</p>
- backtrack to collision time t_c
- compute velocity increment for an inelastic collision
 Δq = -(q.n)n
- ▶ apply a bouncing coefficient ϵ: $\dot{\mathbf{q}} += (1 + ϵ)Δ\dot{\mathbf{q}}$
- continue simulation
- problem: with several particles, several backtracks and restarts may be necessary

Synchronized collisions

Similar, but:

- do not backtrack to collision time
- compute position increment to project the particle to the surface Δq = -(pq.n)n
- apply a bouncing to position also:

$$\mathbf{q} += (1+\epsilon)\Delta \mathbf{q}$$

advantage: all collisions are handled at the same time

A bad case

Rattling

Collision of two spheres

- criterion: $\|\mathbf{q_1q_2}\| < r_1 + r_2$
- compute position increments for an inelastic collision

$$\Delta \mathbf{q} = (r_1 + r_2 - \|\mathbf{q_1}\mathbf{q_2}\|)\mathbf{n}_{12}$$

use the inverse masses to maintain the center of mass

$$\Delta \mathbf{q}_1 = \frac{w_1}{w_1 + w_2} \Delta \mathbf{q}$$

$$\Delta \mathbf{q}_2 = -\frac{w_2}{w_1 + w_2} \Delta \mathbf{q}$$

▶ apply a bouncing coefficient ϵ :

$$\mathbf{q}_1 \quad += \quad (1+\epsilon)\Delta \mathbf{q}_1$$
 $\mathbf{q}_2 \quad += \quad (1+\epsilon)\Delta \mathbf{q}_2$

Collision of two spheres (continued)

compute velocity increments for an inelastic collision

$$\Delta \dot{\mathbf{q}} = ((\dot{\mathbf{q}}_2 - \dot{\mathbf{q}}_1).\mathbf{n}_{12})\mathbf{n}_{12}$$

use the inverse masses to maintain the center of mass

$$\mathbf{\Delta}\dot{\mathbf{q}}_1 = \frac{w_1}{w_1 + w_2}\mathbf{\Delta}\dot{\mathbf{q}}$$

$$\mathbf{\Delta}\dot{\mathbf{q}}_2 = -\frac{w_2}{w_1 + w_2}\mathbf{\Delta}\dot{\mathbf{q}}$$

▶ apply a bouncing coefficient ϵ :

$$\dot{\mathbf{q}}_1 += (1+\epsilon)\Delta\dot{\mathbf{q}}_1$$

 $\dot{\mathbf{q}}_2 += (1+\epsilon)\Delta\dot{\mathbf{q}}_2$

ightharpoonup or compute $\Delta \dot{\mathbf{q}}_i = \Delta \mathbf{q}_i/dt$

Limitations of discrete-time collision detection

- ▶ Thin objects can be traversed
- ► The history is sometimes necessary

Continuous-time collision detection

- Search four coplanar point (solve cubic equation in time)
- Point-triangle intesection:

$$\mathbf{a}(t)\mathbf{b}(t) \cdot (\mathbf{b}(t)\mathbf{c}(t) \wedge \mathbf{b}(t)\mathbf{d}(t)) = 0$$

▶ Then for the smallest 0 < t < dt compute point positions

Continuous-time collision detection

- ► Search four coplanar point (solve cubic equation in time)
- Edge-edge intesection:

$$\mathbf{a}(t)\mathbf{c}(t) \cdot (\mathbf{a}(t)\mathbf{b}(t) \wedge \mathbf{c}(t)\mathbf{d}(t)) = 0$$

▶ Then for the smallest 0 < t < dt compute point positions

Acceleration of collision detection using bounding volumes

▶ If the BVs don not intersect then the objects do not intersect

Hierarchies of bounding volumes

- Accelerate even more
- ▶ Hierarchy update is expensive for deformable objects

Stochastic methods

- ▶ Pick sample pairs
- ▶ Refine where proximities are found

Distance fields

- ▶ function returning the closest surface point
- project particles to the surface

Distance fields (continued)

▶ Distance offsets are necessary to prevent edge collisions

An image-space technique

- Compute AABB intersection
- ▶ If intersection, compute Layerd Depth Images of both objects
- ▶ Test ecah vertex of one body agains the LDI of the other

Simplified geometries

- ▶ Embed a complex geometry in a coarser one
- ▶ Apply dynanmics and collisions to the coarse geometry
- render the fine geometry

Other topics

- ▶ rigid bodies
- ► fluids
- ► hair
- **.**...