Polyhedral Modeling

G.P. Bonneau, S. Hahmann

CNRS, LMC-IMAG Grenoble, France

Modeling smooth polyhedra

Polyhedral mesh

- triangular faces
- arbitrary topology (2d manifold)

Smooth surface

- mesh interpolation
- parametric, polynomial
- local support

Parametric surfaces of arbitrary topology

the 4-split method – basic idea

G1 continuity

Related works

the algorithm

step I. boundary curve network

step II. cross boundary tangents

step III. fill-in patches

Results

Future work

domain 4-split

- 4 triangular Bezier patches per *macro-patch* Sⁱ
- piecewise boundary curves
- piecewise cross-boundary tangents

- 4-split method basic idea
- G1 continuity
- Related works
- the algorithm
- step I. boundary curve network
- step II. cross boundary tangents
- step III. fill-in patches
- Results
- Future work

Parametrization

Tangent plane continuity

between adjacent patches :

- \succ common boundary of S^{i-1} and S^{i}
- > existence of 3 scalar functions : Φ, μ, ν

$$\Phi S_{u_i}^i = \mu S_{u_{i-1}}^{i-1} + \nu S_{u_{i+1}}^i$$

we choose :
$$\mu \equiv \frac{1}{2}, \nu \equiv \frac{1}{2}$$

continuity constraint

Tangent plane continuity

Vertex of n patches:

at a common vertex **p**, the existence of a well defined tangent plane is not sufficient.

Polynomial patches need to be twist compatible:

$$S_{u_{i}u_{i+1}}^{i}(0,0) = S_{u_{i+1}u_{i}}^{i}(0,0)$$

twist constraint

$$\frac{1}{2} S_{u_{i}u_{i-1}}^{i-1}(0,0) + \frac{1}{2} S_{u_{i}u_{i+1}}^{i}(0,0) = \Phi^{1} S_{u_{i}}^{i}(0,0) + \Phi^{0} S_{u_{i}u_{i}}^{i}(0,0)$$

$$t_{i} \qquad t_{i+1} \qquad r_{i}^{1} \qquad r_{i}^{2} \qquad i=0,...,n$$

G.-P. Bonneau / S.Hahmann

- 4-split method basic idea
- G1 continuity

Related works

the algorithm

step I. boundary curve network

step II. cross boundary tangents

step III. fill-in patches

Results

Future work

Related works

- Clough-Tocher domain splitting methods (Farin'82, Piper'87, Shirman/Sequin'87)
- Convex combination schemes (Gregory'86, Hagen'86, Nielson'87)
- Boundary curve schemes (Peters'91, Loop'94)
- Algebraic methods (Bajaj'92)
- 4-split method (HB'00)

4-split method – basic idea

G1 continuity

Related works

the algorithm

step I. boundary curve network

step II. cross boundary tangents

step III. fill-in patches

Results

Future work

3 steps:

- I. boundary curve network
- **II.** cross boundary tangents

III. fill-in patches

4-split method – basic idea G1 continuity **Related works** the algorithm step I. boundary curve network step II. cross boundary tangents step III. fill-in patches Results

Future work

I. boundary curves

Local curve network construction :

- ${\boldsymbol{\cdot}}$ local first and second derivatives at ${\boldsymbol{p}}$
- interpolation of mesh vertex:
 x_i(0) = p
- according to continutiy and twist constraints
 - $r^{1} = [x'_{1}(0), ..., x'_{n}(0)]$ lies in ker (P) and Im (T)
 - $r^{2} = [x''_{1}(0), ..., x''_{n}(0)]$ lies in Im (T)
- C1-join of both curve pieces along edge

=> Piecewise cubic curves

boundary curves (cont.)

• null space of P
Ker (P) = span{k₁, k₂}
$$k_1 = \begin{bmatrix} 1 \\ \vdots \\ \cos(\frac{2i\pi}{n}) \\ \vdots \\ \cos(\frac{2(n-1)\pi}{n}) \end{bmatrix}, k_2 = \begin{bmatrix} 0 \\ \vdots \\ \sin(\frac{2i\pi}{n}) \\ \vdots \\ \sin(\frac{2(n-1)\pi}{n}) \end{bmatrix}$$

image space of T

Rank (T) =
$$\begin{cases} n & \text{if } n \text{ is odd} \\ n-1 & \text{if } n \text{ is even} \end{cases}$$

Im (T) = $\{I_1, \dots, I_{n \text{ or } n-1}\}$

boundary curves (cont.) **Bézier control points:** $b_0 = p$ $b_{1} = \begin{bmatrix} k_{1} \\ k_{1} \end{bmatrix}_{x 3} + \begin{bmatrix} k_{2} \\ k_{2} \end{bmatrix}_{x 3} \begin{bmatrix} u_{2} \\ u_{2} \end{bmatrix}_{x 3}$ $= l_i v_i$ $= \frac{1}{2} \left(b_2^L + b_2^R \right)$ b₀ⁱ=p tangent plane

many degrees of freedom: 2 ve

2 vectors for the *n* first derivativesn or n-1 vectors for the *n* second derivatives

- 4-split method basic idea
- G1 continuity
- Related works
- the algorithm
- step I. boundary curve network
- step II. cross boundary tangents
- step III. fill-in patches
- Results
- Future work

II. cross boundary tangents

conditions on W_i :

cross boundary tangents (cont.)

boundary control points:

degree elevation: $d^0 3 \rightarrow d^0 5$

first row of control points :

degree elevation: $d^0 3 \rightarrow d^0 4$

- 4-split method basic idea
- G1 continuity
- Related works
- the algorithm
- step I. boundary curve network
- step II. cross boundary tangents
- step III. fill-in patches
- Results
- Future work

III. fill-in patches

- edge mid-points are C1-continuous
- two triang. surfaces are C1 at common boundary the three rows of cp form parallelograms

Make inner edges C1 continuous:

• 6 degrees of freedom

- 4-split method basic idea
- G1 continuity
- Related works
- the algorithm
- step I. boundary curve network
- step II. cross boundary tangents
- step III. fill-in patches
- Results
- Future work

G.-P. Bonneau / S.Hahmann

Vis'00, Salt-Lake City

- 4-split method basic idea
- G1 continuity
- Related works
- the algorithm
- step I. boundary curve network
- step II. cross boundary tangents
- step III. fill-in patches
- Results
- Future work

Conclusion and future work

conclusion :

- > arbitrary topology (2d manifold)
- ➤ 4-split of domain triangle
- \succ local scheme
- ➤ closed form, explicit representation
- > 4 quintic patches per mesh face.

future work :

- > approximate iso-surfaces
- ➤ optimal choice of free parameters
- ➤ arbitrary choice of first derivatives
- > multiresolution : the interpolant is refinable