
Polyhedral modeling

Georges-Pierre Bonneau � Stefanie Hahmann

Laboratoire LMC - CNRS
University of Grenoble, France

Abstract

Polyhedral meshes are used for visualization, computer graphics
or geometric modeling purposes and result from many applications
like iso-surface extraction, surface reconstruction or CAD/CAM.
The present paper introduces a method for constructing smooth sur-
faces from a triangulated polyhedral mesh of arbitrary topology.
It presents a new algorithm which generalizes and improves the
triangle 4-split method [7] in the crucial point of boundary curve
network construction. This network is then filled-in by a visual
smooth surface from which an explicit closed form parametrization
is given. Furthermore, the method becomes now completely local
and can interpolate normal vector input at the mesh vertices.

Keywords and phrases: triangular meshes, visual continuity,
arbitrary topology, visualization.

1 INTRODUCTION

Polyhedral meshes consisting of a collection of vertices, edges and
triangular faces which describe an oriented 2-manifold in IR3 are
dealt with in many applications. They result f.ex. from iso-surface
extraction algorithms like marching cubes. Surface reconstruction
methods used for virtual reality purposes of CAD/CAM applica-
tions produce a fine triangulated polyhedral mesh approximating
an object from which a 3D scanner has sampled millions of unor-
ganized data points. In medical imaging where CT or MRI scanner
produce a set of slices with a grid of gray level values a 3D volume
is reconstructed. But contour line approximation on each slide fol-
lowed by contour reconstruction also produces a polyhedral mesh.
They also occur in CAD/CAM applications where the classical ten-
sor product surface models fail. Topological complex situations like
inner corner blends need an extraneous treatment. Surfaces defined
on polyhedral meshes can however represent surfaces of arbitrary
topological type.

In particular in CAD/CAM applications or surface reconstruction
but also for computer graphics or visualization purposes, it is often
desired to get a visual smooth representation of the object which is

�Laboratoire LMC-IMAG, BP.53, F-38041 Grenoble Cedex 9, France.
E-mail: [bonneaujhahmann]@imag.fr
URL: http://www-lmc.imag.fr/lmc-mga/Georges-Pierre.Bonneau
URL: http://www-lmc.imag.fr/lmc-mga/Stefanie.Hahmann

roughly approximated by a polyhedral mesh. On one hand surface
subdivision algorithms converge to a smooth surface starting from a
polyhedral mesh, but they generally don’t provide an explicit closed
form expression of the resulting surface. Therefore, computations
on such surfaces like intersections or evaluations of intrinsic quan-
tities like curvature can become tricky. On the other hand, and this
is the subject the present paper deals with, parametric polynomial
surfaces fulfill all these requirements. The polyhedral mesh serves
as a control mesh. Recall that, since every polyhedra can be tri-
angulated, it is sufficient to consider as input a triangular mesh.
Triangular surface patches which join with geometric continuity in
order to produce an overall smooth surface while interpolating the
mesh vertices can then be computed.

The main difficulty in developing a triangular interpolation scheme
for polyhedral meshes of arbitrary topological type consists of en-
suring the G1 continuity (visual smoothness, tangent plane continu-
ity). Three kinds of schemes exist for polynomial representations:
the Clough-Tocher-like domain splitting methods [3], [12] the G2

continuous constructions [11]; or the twist compatible boundary
curve schemes [8], [7]. Further non-polynomial methods also exist
[5], [6], [10], [1]. In addition to an explicit closed form parametriza-
tion, the scheme should be local. This means that a local modifi-
cation of the polyhedral control mesh should only locally affect the
surface. This allows an interactive modeling of smooth surfaces by
interactive modeling of polyhedral meshes.

The present paper deals with such a polyhedral modeling method. It
is based on a recently developed method [7], called 4-split method
(chapter 2), and presents a new algorithm (chapter 3) which gen-
eralizes and improves the 4-split scheme in such a way that the
number of degrees of freedom for the construction of the boundary
curves can significantly be increased. A more flexible and more in-
tuitive control of the surface shape is now possible. Further features
of the scheme are localness and normal vector interpolation at the
mesh vertices.

2 THE 4-SPLIT METHOD

The triangular 4-split method interpolates a polyhedral mesh of
arbitrary topology by a visual smooth (G1 continuous) piecewise
quintic Bézier surface. It is local, affine invariant and provides an
explicit closed form parametrization. Several degrees of freedom
are available for shape control.

The following subsections briefly present first the method’s basic
idea and why this is benefit in comparism to other existing schemes.
Then the algorithm itself is outlined without going into too much
detail, but enough for reproducing this method.

Let the polyhedral control mesh M be a set of vertices, edges
and triangular faces that describe an oriented 2-manifold in IR3 .
The surface S which interpolates the vertices of M is composed
of triangular surfaces M i which are in one-to-one correspondence
to the mesh facets and which meet with tangent plane (G1) conti-
nuity along the common boundary curves. The M i’s are piecewise



polynomial images of the unit domain triangle, we call them macro-
patches.

2.1 Four split of the mesh triangles.

The basic idea of the present method is to subdivide each domain
triangle into four subtriangles by joining together the edge mid-
points. Each macro-patch therefore consists of four Bézier patches.
A convenient parametrization of the macro-patches concentrates on
the mesh vertices, see fig. 1.

u i−1

M
i

.
u i+1

ui

Mi

M
i−1

p
0

1/2

1

Figure 1: Parameterization of n patches around a common vertex.

This triangle 4-split has several advantages:

- it allows to introduce more degrees of freedom for each
macro-patch,

- the boundary curves and cross-boundary tangents are piece-
wise polynomial functions (2 pieces),

- the surface scheme is local.

It will be seen later that the requirements on the boundary curves
concern their first and second derivatives at the endpoints. In order
to keep the surface scheme local the derivatives should be indepen-
dent from one vertex to another. Instead of degree 5 curves, piece-
wise curves need only to be of degree 3. Similar considerations
hold for the cross-boundary tangents and finally the macro-patches
are composed of four quintic Bézier triangles, which is the lowest
possible degree for this kind of methods.

The polyhedral 4-split mesh interpolation method consists of three
main steps:

- generating first and second derivative informations at the
mesh vertices,

- computing first order cross derivatives along the curves,

- computing inner Bézier points for each macro-patch.

2.2 Generating first and second derivative infor-
mations at the mesh vertices.

The first step of the algorithm consists of constructing a network
of piecewise cubic C1 boundary curves of the macro-patches inter-
polating the mesh vertices. It turns out that the G1 conditions for
joining a network of patches together imposes quite restrictive con-
ditions on the set of boundary curves incident to a common mesh
vertex.

Let p be a mesh vertex of order n, i.e. p is common to n mesh
facets (or edges) and therefore has n neighbour points p i . The
n first and second derivatives of the n boundary curves in p are
not free. The boundary curve network is constructed from these
derivative informations by computing for each vertex the curve

pieces incident to that vertex. Since each piece of curve is a
cubic Bézier parameterized over [0; 1

2
], this means that the con-

trol points b0 , b1, b2 must be computed. They are directly re-
lated to the first and second derivatives at the curve’s endpoints by
x(0) = b0 x

0(0) = 6(b1� b0) x
00(0) = 24(b2� 2b1 +b0):

The complementary curve pieces are computed when the neighbour
mesh vertices are treated. Finally, the curve network is closed by
computing for each boundary curve the middle control point b3
which is common to both curve pieces and which should be calcu-
lated such that the two pieces join with C1 continuity.

Let us consider a mesh vertex p and its n curve pieces as illus-
trated in fig. 2.

+++++++
+++++++
+++++++
+++++++
+++++++
+++++++
+++++++
+++++++

b  =p0
i

b1
i

b i

b3
i

p

pi−1

pi+1

i

2

tangent plane

Figure 2: Boundary curves incident to a mesh vertex.

The control points bi0 are fixed by the interpolation condition.
Then the first and second derivative informations of the n bound-
ary curves have to be calculated in order to determine b i1 and bi2 .
These derivatives have to satisfy a set of equations (see (4) and (7)
of chapter 3) and are therefore not free. The following solution has
been found [7], which consists of

b
i
0 = p

b
i
1 = b

i
0 +

�

n

Pn

j=1
cos
�
2�(j�i)

n

�
pj

b
i
2 = [1� 2

3
2]b

i
0 +

1�

n

Pn

j=1
cos
�
2�(j�i)

n

�
pj

+2
Pn

j=1
pj

(
1=6 if j = i� 1; i+ 1
1=3 if j = i
0 otherwise

;

(1)

where i = 1; : : : ; n is taken modulo n. A few degrees of freedom
f�; 1; 2g are nevertheless available for each vertex. The control
points bi1 form an affine transformation of a regular n-gon. They all
lie in the same plane, which is the tangent plane at p. � controls
the magnitude of the first derivatives. The second derivative control
points bi2 lie in a plane containing the 3 points bi0, bi1 and di =
2
6
(2p+ pi�1 + 2pi + pi+1). More details can be found in [7].

2.3 Computing first order cross derivatives along
the edges.

The second step of the algorithm is also related to the G1 conti-
nuity conditions. It consists of computing the network of tangent
planes along the boundary curves. The boundary curves determine
already the tangent planes of the macro-patches at the mesh ver-
tices. At each curve point ui 2 [0; 1] the tangent plane is spanned

by the curve derivative @Mi

@ui
(ui; 0) and one of the cross-boundary

derivatives @Mi

@ui+1
(ui; 0).



pi−1

pi+1

p
i

p

M
i(u ,0)

ui

M
i(u ,0)

ui+1 i
i

Figure 3: Cross-boundary tangents.

The cross-boundary derivatives are defined as

@Mi

@ui+1
(ui; 0) = �i(ui)

@Mi

@ui
(ui; 0) +	i(ui)Vi(ui); (2)

where �i and 	i are scalar functions and Vi is a vector valued
function. These functions should

- be of minimal degree, and

- interpolate the first and second derivatives at the curve end-
points.

It turns out that Vi is a piecewise continuous degree two polyno-
mial, which can be written in Bézier form. As in the case of the
boundary curves, only the pieces incident to the mesh vertex p are
computed:

Vi(ui) =
P2

j=0
v
i
jB

2
j (ui); ui 2 [0; 1

2
] with

v
i
0 = 6�

n

Pn

j=1
sin 2�(j�i)

n
pj

v
i
1 = 6�

n

Pn

j=1

1

 0
i

�
(�1 � 8�0 + 4�0) tan(�

n
)�  1

i

�
� sin

�
2�(j�i)

n

�
+ 4

 0
i

2�
0

n
1 if j = i+ 1
�1 if j = i� 1

;

v
i
2 is free subject to Vi( 12

+
) = Vi(

1
2

�

)
(3)

where �0 = cos 2�
n

, �1 = 1 + 2 sin 2�
n

, 	0 = sin 2�
n

, 	1
i =

sin 2�
ni
� sin 2�

n
, and ni is the order of pi 	i is a linear function,

therefore the cross-boundary tangents are therefore piecewise cu-
bic. However, the surface must be of degree 5 in order to ensure
C1 continuity between the 4 inner Bézier patches. The ribbons of
cross-boundary tangents are now determined, and the first inner row
of control points of the macro-patches can be computed from (1)
and (3).

2.4 Computing inner Bézier points.

Each macro-patch is composed of four quintic triangular Bézier
patches. The boundary curves of the macro-patch are the twice
degree elevated curves of section 2.2. The cross-boundary tangents
of sect. 2.3 determine the first inner row of control points after one
degree elevation. The remaining 15 inner control points, which are
highlighted in fig. 4-left, are now computed by joining the four in-
ner patches with C1 continuity. The necessary and sufficient C1-
continuity conditions between two internal Bézier patches inside
one macro-patch are shown in fig. 4-right: all pairs of adjacent tri-
angles must form a parallelogram, otherwise C1 continuity would
not be possible. In [7] it was shown, that the first and last pairs of
adjacent triangles in fig. 4-right already form parallelograms (gray
shaded).
The 15 control points are therefore subject to 9 linear parallelogram
equations ensuring C1 joints of the 4 patches. 6 control points are

88888888
88888888
88888888
88888888

88888888
88888888
88888888
88888888

!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!==

==

==
==

==
==

==
==a b

c d

a−b−c+d=0

Figure 4: C1-conditions between two adjacent quintic Bézier
patches.

thus free for shape control of the macro-patch. Minimization of an
energy functional produces a well shaped smooth surface.

3 GENERATING DERIVATIVE INFORMA-
TION AT THE MESH VERTICES

The polyhedral mesh interpolation method which we now want
to describe in detail has the same skeleton as the 4-split method
sketched out in chapter 2. It preserves all the attractive features but
generalizes the method in an important point, that is the construc-
tion of the boundary curve network. A more flexible approach will
be presented offering more degrees of freedom which are necessary
in order to obtain a well shaped curve network. It is well known
that visual smoothness, which stands for G1 continuity, generally
doesn’t always guarantee a “nice shape” [9]. “Bad” shape features,
like wiggles, bumps or self-intersections, should be avoided and
the shape inherent to the polyhedral input mesh should be repro-
duced smoothly. It is therefore obvious that the construction of the
boundary curve network is the crucial point of such an interpolation
method; it is predominant for the final result.

The generalized method we propose for the construction of a
G1 compatible curve network interpolating a polyhedral mesh is
due to a detailed study of the G1 and the twist conditions which
are imposed at the mesh vertices. This leads to a new and quite
different approach as what has been done until now in related works
[7], [8]. The benefit is threefold: more freedom and intuitive control
for the boundary curve network is available; one gets a more local
interpolant; normal vector interpolation becomes possible.

3.1 G1 Continuity.

Let us start by remembering that two patches X and Y sharing a
common boundary curve meet with first order geometric continu-
ity, denoted G1 , if they share a common tangent plane at all points
of their common boundary, i.e. if there exist three scalar functions
�; �; � such that

�(s)Ys(s; 0) = �(s)Xr(0; s) + �(s)Yt(s; 0) :

Y (s,0)
t

X (0,s)
r

Y (s,0)s

X

Y

r

s

t

Figure 5: G1 continuity between two adjacent patches.

When joining polynomial patches together to a network of patches
with G1 continuity special attention has to be paid to the patch cor-
ners. The idea is to construct the triangular surface patches in one-
to-one correspondence to the polyhedral mesh faces. Let us con-
sider the n patches parameterized as in fig. 1, each triangular patch



M i =M i(ui; ui+1) is the piecewise polynomial image of the unit
triangle. i = 1; : : : ; n is taken modulo n.

In order to obtain at the end an explicit expression for each patch
some simplifying and symmetric assumptions on the G1 conditions
have to be made as follows:

�i(0) = �i�1(0) =: �0
; �0

i(0) = �0

i�1(0) =: �1
;

�i(ui) � �i(ui) �
1

2
i = 1; : : : ; n:

The G1 condition between a pair of surface patchesM i and M i�1

now looks as follows:

�i(ui)
@M i

@ui
(ui; 0) =

1

2

@M i�1

@ui�1

(0; ui) +
1

2

@M i

@ui+1
(ui; 0): (4)

At the patch corner p, i.e. for ui = 0, the condition (4) can be
written in matrix form as follows:

Pr
1 = 0; (5)

where

P =

2
66666664

�0 � 1
2

0 : : : 0 � 1
2

� 1
2

�0 � 1
2

0

0
. . .

. . .
. . .

...
... 0
0 � 1

2

� 1
2

� 1
2

�0

3
77777775
; r1 =

2
666664

@M1

@u1
(0; 0)

...

@Mn

@un
(0; 0)

3
777775 :

Note, that r1 is a (n� 3) vector containing the first partial deriva-
tives of the patch boundary curves at the vertex u i = 0.
The function �i can be determined from the fact that detP = 0
should be satisfied and that the derivative of �i at ui = 0 should
not depend on the value �(1). �i should also be of lowest possible
degree which leads to the following choice:

�i(ui) =

(
cos 2�

n
(1� 2ui) + ui for ui 2 [0; 1

2
]

(1� ui) + (1� cos 2�
ni
)(2ui � 1) for ui 2 [ 1

2
; 1]

(6)

3.2 Twist Compatibility.

When joining n polynomial patches around a common vertex with
G1 continuity an additional condition has to be satisfied at the com-
mon vertex. It is called twist compatibility condition and given by

Tt = �1
r
1 +�0

r
2
; (7)

where

T =

2
66664

1
2

0 � � � 0 1
2

1
2

1
2

� � � 0

. . .
0 � � � 1

2
1
2

0

0 � � � 0 1
2

1
2

3
77775 ;

t =

2
66664

t1

...

tn

3
77775 =

2
666664

@2M1

@u1@u2
(0; 0)

...

@2Mn

@un@u1
(0; 0)

3
777775 ; r

2 =

2
666664

@2M1

@u2
1

(0; 0)

...

@2Mn

@u2n
(0; 0)

3
777775 :

It is obtained by differentiating (C) with respect to ui and evalua-
tion at ui = 0. The condition (7) must hold because polynomial
patches lie in the continuity classC 2 , implying that the twist terms
(mixed partial derivatives) are identical.
Different approaches exist in order to solve the twist compatibility
problem [12], [10], [11], [8], [7]. We solve the system (7) which
is singular if n is even, by constructing a twist compatible bound-
ary curve network i.e. boundary curves are determined such that
the vectors r1 and r

2 lie in the image space of T . It will turn
out in the following subsections that the kernel of P and the image
space of T is explicitly known [2]. This will enable us to charac-
terize the vectors r1 and r2 with a maximum number of degrees
of freedom while simultaneously satisfying equations (4), (5), (7).
Once the first and second order derivatives of the boundary curves
at the vertices, r1, r2, are known, the whole curve network is also
known. The construction of the cross-boundary tangents and the
inner patches can then be continued as in the 4-split method, see
chapter 2 in order to obtain a smooth polyhedral mesh modeling
method.

3.3 First order derivatives.

Let us now explain how the boundary curves can be determined.
They will consist of piecewise (two pieces) cubic curves in order
to keep the scheme local by separating first and second derivatives
from one vertex to its neighbouring vertices. The final triangular
patches will be given explicitly in Bézier form, let us therefore use
the Bernstein-Bézier notations [4] for the boundary curves as well.

Let x(t) =
P3

i=0
biB

3
i (t), t 2 [a; b] be a cu-

bic Bézier curve. Its derivatives are given by x
r(t) =

n!
r!

1
(b�a)r

Pn�r

i=0
�r

biB
n�r
i (t). At the end point t = a one ob-

tains for the first and second derivatives

x
0(a) = 3

b�a
(b1 � b0);

x
00(a) = 6

(b�a)2
(b2 � 2b1 + b0):

For the boundary curve pieces incident to the vertex p = b
i
0 we

adopt the notations as illustrated in fig. 2. The joining curve pieces
are determined from the neighbouring vertices pi (locality of the
scheme). bi0 = p is already known (interpolation of the mesh ver-
tices), the vector r1 is therefore determined by the control points bi1
and r2 is determined by the control points bi2 , i = 1; : : : ; n. From
(5) and (7) follows that the vector r1 should lie in the kernel of P
and in the image space of T . P and T are cyclic matrices [DAV79].
The kernel of P is spanned by two vectors

k
a =

2
666664

1
...

cos
�
2i�
n

�
...

cos
�
2(n�1)�

n

�

3
777775 ; k

b =

2
666664

0
...

sin
�
2i�
n

�
...

sin
�
2(n�1)�

n

�

3
777775 : (8)

k
a and kb lie also in the image space of T , because two vectors �k

a

and �k
b

exist such that

T �k
a
= k

a and T �k
b
= k

b
;

where

�k
a
=

2
664

...
cos
�
2i�
n

�
� tan

�
�
n

�
sin
�
2i�
n

�
...

3
775 ;



and

�k
b
=

2
664

...
tan

�
�
n

�
cos
�
2i�
n

�
+ sin

�
2i�
n

�
...

3
775 :

The vector r1 can therefore be written as a linear combination of
k
a and kb"

r
1

#
n�3

=

"
k
a

#
n�1

( a )1�3 +

"
k
b

#
n�1

( b )1�3 (9)

where the vectors a and b are the degrees of freedom and can be
chosen arbitrarily.

Geometrical interpretation:

Equations (8) and (9) can be interpretated geometrically in order to
indicate the correct way for choosinga and b.

p b

a

r

r

r1

1

1

i

i−1

i+1

Tp

Figure 6: Geometrical interpretation of the vectors a and b.

The components r1i are the tangents of the boundary curves at the
common vertex pwhich are all lying in the same plane, which is the
tangent plane Tp at p (see G1-condition (4)). fa;bg is the basis

of the tangent plane and kai ;k
b
i are the coordinates of r1i in this

basis, see fig. 6. These coordinates, kai = cos 2�i
n

, kbi = sin 2�i
n

imply that the first derivative control points bi1 = b
i
0 +

1
6
r
1
i of the

boundary curves form an affine transformation of a plane regular
n-gon. This affine transformation is explicitly given by the choice
of the tangent plane basis a and b.

For practical use of these theoretical considerations it is now im-
portant to choosea and b such that the n tangents of the boundary
curves in p fit the best. For this purpose we first determine “op-
timal tangents”, denoted r1opt, by a simple heuristic rule and then
approach them in a least squares sense. The heuristic rule [12] con-
sists of choosing the optimal tangent vectors r1iopt as lying in the
plane spanned by the edge �ppi and a mean normal vector of the
mesh facets at p, see fig. 7.

These are the tangents which we want to reach by using a linear
least squares approximation

kr1(a;b)� r
1
optk

2 ! min
a;b

in order to determine a and b.

n

p

p
i

ri opt
1

Figure 7: “Optimal” first derivatives.

3.4 Second order derivatives.

A further requirement on the boundary curves is to have second
order derivatives at the end points lying in the image space of the
matrix T . We can therefore choose any vector r2, such that

r
2 = T �r2; (10)

where �r2 is an arbitrary (n � 3) vector. T is a (n � n) cyclic
matrix. If n (order of the vertex p) is odd, then T is invertible,
and thus n second derivatives for the n boundary curves r 2 can be
chosen arbitrarily. And if n is even, T has only rank n � 1, there-
fore some chosen n second derivatives, denoted r 2

opt can only be
approximated, for example through a linear least squares approxi-
mation

kr2 � r
2
optk

2 ! min :

Since the matrix T has nearly full rank, this least squares minimiza-
tion approaches quite good the desired second derivatives. As an
example, see fig. 12, where the input mesh consists only of vertices
of even order.

Note, that the total amount of n resp. n � 1 vector valued de-
grees of freedom are available at each vertex. Once these second
order derivatives are fixed, i.e. the control points bi2 are fixed, the
whole boundary curve network is entirely fixed. Remember, that
each boundary curve is a piecewise cubic curve, which is required
to be C1 continuous, therefore the control points bi3 and bk3 of a
boundary curve between the vertex p and its neighbour vertex p i
have to be identical and bi3 = b

k
3 = 1

2
(bi2 + b

k
2).

3.5 Target middle points & target derivatives.

It’s not quite evident how to choose the “optimal” second order
derivatives at a vertex p for the boundary curves. On one hand, the
scheme should keep a local one, i.e. both curve pieces of a bound-
ary curve have to be constructed independent from each other. On
the other hand, fixing bi2 and bk2 (k is the index of p in the neigh-
bourhood of pi) determines finally the shape of the boundary curve
between p and pi.

In order to cope with both problems we propose the following so-
lution. For each boundary curve we choose a middle control point,
called target point and a derivative at that point, see fig. 8, which
we want to approach or interpolate by the curve. This is equivalent
to choosing bi2 and bk2 . It keeps the scheme local, but allows at the
same time a control of the whole curve.
Furthermore, these control handles offer an intuitive way for con-
trolling the curve network. Optimal values can be found either by
using a heuristic rule, or by minimizing some energy norm.

Note, that for odd order vertices, these optimal target handles can
be interpolated exactly, while otherwise they have to approximated
in a least squares sense.



p = b
p = b

i

i
k
0

0

Figure 8: Target point and target vector.

Figure 9: Torus mesh, left with bad target points, right with correct
target points.

Figure 9 illustrates how important it is to have a maximum num-
ber of degrees of freedom for the second order derivatives. On
the right some optimal target points and target derivatives have
been approached. They are shown in red with respect to a cubic
parametrization. The smooth surface is also shown together with
the control polygon of the boundary curves (blue). They are shown
as degree 5 curves (two times degree elevated). The sensitivity of
the interpolation scheme is shown on the left figures, where some
“bad” target points and tangent have been chosen.

3.6 Twist information.

Once the vectors r1 and r2 are determined the system (T ) can be
solved for the twist vectors t. An explicit expression can be given
as follows

t = �1(�k
a
a + �k

b
b) + �0�r2: (11)

This expression is used in the next step of the algorithm, which is
the construction of the cross-boundary tangent ribbons along the
boundary curve network. Here it is important to know the twists
explicitly, because otherwise it would not be possible to provide an
explicit expression of the final surface. For this purpose and the last
setp of filling-in the macro-patches C1-continuously one proceeds
analogously to the 4-split method, see sections 2.3 and 2.4.

Remark 1: normal interpolation Since we are able to exactly
choose the tangent plane basis vectors, all one has to do in order

Figure 10: Polyhedral mesh – smooth surface with boundary curve
network.

Figure 11: control polygon – smooth surface with boundary curves.

to interpolate a given normal vector at the vertex is to choose these
two tangent plane vectors orthogonal to that given normal.

Remark 2: Locality of the scheme The scheme is local in the
sense that moving one vertex will only affect the macro-patches
around that vertex, and more over will leave the tangent ribbons of
the opposite edges to that vertex unchanged.

4 RESULTS

The first example stresses the ability to interpolate meshes with
arbitrary topology. The input mesh is available at ftp://
ftp.cs.washington.edu/pub/graphics/meshes. Fig.
10-left shows the input mesh. Fig. 10-right shows the resulting G1

surface together with the boundary curves. The order of the vertices
ranges from 4 to 8 in this example. Fig. 11-left shows the control
polygons of each of the triangular Bézier patches. Different col-
ors have been used in order to distinguish the four Bézier patches
per macro-patch. The curve control polygons are also highlighted,
while the interpolated points are shown in red. Fig. 11-right shows
the surface together with the boundary curve control polygons. It
should be pointed out that we used a very crude treatment for the
surface border and some additional work should be done on how
to handle open meshes. Fig. 12, 13 show at the top an input mesh,
in the middle the resulting surface together with the interpolated
points in red, and the bottom the control polygons. For the torus in-
put mesh in Fig. 14 a heuristic rule in order to find optimal second
derivatives r2opt (see sect. 3.4) has been used. Even though all ver-
tices have an even order, which means less degrees of freedom in
the choice of the second derivatives, the torus is nearly reproduced.



Figure 12: Figure 13:
Top to bottom: polyhedral mesh, smooth surface, control polygon.

Figure 14: Polyhedral mesh – smooth surface – smooth surface with
boundary curves.

References

[1] C. Bajaj. Smoothing polyhedra using implicit algebraic
splines. Computer Graphics, 26(2):79–88, 1992.

[2] P. Davis. Circulant Matrices. Wiley, 1979.

[3] G. Farin. A construction for visual C1 continuity of polyno-
mial surface patches. Computer Graphics and Image Process-
ing, 20:272–282, 1982.

[4] G. Farin. Curves and Surfaces for Computer Aided Geometric
Design. Academic Press, New York, 1997.

[5] J. A. Gregory. N-sided surface patches, pages 217–232.
Clarendon Press, Oxford, 1986.

[6] H. Hagen. Geometric surface patches without twist con-
straints. Computer Aided Geometric Design, 3:179–184,
1986.

[7] S. Hahmann and G-P. Bonneau. Triangular G1 interpolation
by 4-splitting domain triangles. Computer Aided Geometric
Design, to appear.

[8] C. Loop. A G1 triangular spline surface of arbitrary topolog-
ical type. Computer Aided Geometric Design, 11:303–330,
1994.

[9] S. Mann, C. Loop, M. Lounsbery, D. Meyers, T. DeRose
J. Painter and, and K. Sloan. A survey of parametric scat-
tered data fitting using triangular interpolants, pages 145–
172. SIAM, 1992.

[10] G. Nielson. A transfinite, visually continuous, triangular in-
terpolant, pages 235–246. SIAM, 1987.

[11] J. Peters. Smooth interpolation of a mesh of curves. Con-
structive Approximation, 7:221–246, 1991.

[12] B. Piper. Visually smooth interpolation with triangular Bézier
patches, pages 221–233. SIAM, 1987.


