Optimal Triangular Haar Bases for Spherical Data

- Triangular Haar basis
- Orthogonality properties
- Previous bases
- New families of nearly-orthogonal bases
- Optimal basis
- Results

Level 2

Level 3

Triangular Haar Basis: Data type

Piecewise constant data: one value per face

•Enough for large & complex (non-regular) data sets

•Comparison of Haar and more smoother bases in Schroeder/Sweldens SIGGRAPH'94

=> Smoother bases are not better for non-regular data sets

 $x_0^{k+1}\Phi_0^{k+1}+x_1^{k+1}\Phi_1^{k+1}+x_2^{k+1}\Phi_2^{k+1}+x_3^{k+1}\Phi_3^{k+1}$

 $x^{k}\Phi^{k}+y_{1}^{k}\Psi_{1}^{k}+y_{2}^{k}\Psi_{2}^{k}+y_{3}^{k}\Psi_{3}^{k}$

Analysis & Synthesis: global scheme

```
Global decomposition (analysis)
```

```
for k=K-1 to 0
for all triangles Tk at level k
    perform local decomposition in Tk // previous slide
    (xk,y1k,y2k,y3k,y4k) -> (x0k+1,x1k+1,x2k+1,x3k+1)
```

Global reconstruction (synthesis)

```
for k=0 to K-1
for all triangles Tk at level k
    perform local reconstruction in Tk // previous slide
    (x0k+1,x1k+1,x2k+1,x3k+1) -> (xk,y1k,y2k,y3k,y4k)
```

Analysis & Synthesis: Complexity

- Hierarchy initialization:
 - Linear time required
 - Linear space required
- Both global decomposition and reconstruction:
 - Linear time required
 - Linear space required
- Sort wavelet coefficients: N log N

Transmit & insert wavelet coefficients by decreasing order of magnitude

1000 wav. Coeff.

Rel. L2 error = 0.199

G.P. Bonneau

Transmit & insert wavelet coefficients by decreasing order of magnitude

5000 wav. Coeff.

Rel. L2 error = 0.191

G.P. Bonneau

Transmit & insert wavelet coefficients by decreasing order of magnitude

25000 wav. Coeff.

G.P. Bonneau

Transmit & insert wavelet coefficients by decreasing order of magnitude

50000 wav. Coeff.

G.P. Bonneau

Transmit & insert wavelet coefficients by decreasing order of magnitude

100000 wav. Coeff.

Rel. L2 error = 0.002

G.P. Bonneau

Transmit & insert wavelet coefficients by decreasing order of magnitude

All wav. Coeff.

Application: view-dependent reconstruction

Selection of all wav. coeff. inside a region

Selection of biggest wav. coeff. inside a region

G.P. Bonneau

Orthogonality properties $x^k \Phi^k + y_1^k \Psi_1^k + y_2^k \Psi_2^k + y_3^k \Psi_3^k$

- Semi-orthogonal:
 - required: $\Phi^k \Psi_1^k = \Phi^k \Psi_2^k = \Phi^k \Psi_3^k = 0$
 - prop:
 - discarding all three wavelet coefficients leads to best L2 approx.
- Orthogonal:
 - required: $\Psi_1^k \Psi_2^k = \Psi_1^k \Psi_3^k = \Psi_2^k \Psi_3^k = 0$ + semi-orthogonality
 - prop:
 - discarding the any wavelet coefficients leads to best L2 approx.
 - exact L2 error using wavelet coefficients (squared rooted sum)
 - no matrix inversion needed

Nearly orthogonality

- Nielson, Vis'97
- specific to spherical wavelets:
 - no uniform triangulation of the sphere
 no orthogonal triangular spherical wavelets
- subd. depth increase => local uniform planar triang.
- Nearly orthogonality:
 - required: orthogonal in the limit case of uniform areas

Orthogonal reconstruction matrices

Columns of 4x4 reconstruction matrix R = value of functions $\Phi^k, \Psi_1^k, \Psi_2^k, \Psi_3^k$ on the 4 sub-triangles

Previous spherical triangular Haar bases

Bio-Haar [Sch/Sw94]

$$\begin{pmatrix} 1 & -\alpha_1 & -\alpha_2 & -\alpha_3 \\ 1 & \alpha_0 + \alpha_2 + \alpha_3 & -\alpha_2 & -\alpha_3 \\ 1 & -\alpha_1 & \alpha_0 + \alpha_1 + \alpha_3 & -\alpha_3 \\ 1 & -\alpha_1 & -\alpha_2 & \alpha_0 + \alpha_1 + \alpha_2 \end{pmatrix} \alpha_0, \alpha_1, \alpha_2, \alpha_3 : \text{ triangle areas}$$

• Semi-orthogonal: Yes

$$C1xC2 = \alpha_0 \mathbb{I} \times (-\alpha_1) + \alpha_1 \mathbb{I} \times (\alpha_0 + \alpha_2 + \alpha_3) + \alpha_2 \mathbb{I} \times (-\alpha_1) + \alpha_3 \mathbb{I} \times (-\alpha_1) = 0$$

$$C1xC3 = 0$$

$$C1xC4 = 0$$

• Nearly-orthogonal: No

$$\alpha_0 = \alpha_1 = \alpha_2 = \alpha_3 = \alpha$$

$$C2xC3 = C2xC4 = C3xC4 = -4\alpha_3 \neq 0$$

Previous spherical triangular Haar basis

Nielson Vis'97

$ \begin{pmatrix} 1 & \Delta - \alpha_0^2 - \alpha_0 \alpha_1 & \Delta - \alpha_0^2 - \alpha_0 \alpha_2 & \Delta - \alpha_0^2 - \alpha_0 \alpha_3 \\ 1 & \Delta - \alpha_1^2 - \alpha_0 \alpha_1 & - \alpha_0 \alpha_1 - \alpha_1 \alpha_2 & - \alpha_0 \alpha_1 - \alpha_1 \alpha_2 \end{pmatrix} $	
$\begin{bmatrix} 1 & -\alpha_0 \alpha_2 - \alpha_1 \alpha_2 & \Delta - \alpha_2 - \alpha_0 \alpha_2 & -\alpha_0 \alpha_2 - \alpha_0 \alpha_2 \\ -\alpha_0 \alpha_2 - \alpha_1 \alpha_2 & \Delta - \alpha_2 - \alpha_0 \alpha_2 & -\alpha_0 \alpha_2 - \alpha_2 \alpha_3 \end{bmatrix}$	Matrices are both
$\left(1 -\alpha_{0}\alpha_{3} -\alpha_{1}\alpha_{3} -\alpha_{0}\alpha_{3} -\alpha_{2}\alpha_{3} \Delta -\alpha_{3}^{2} -\alpha_{0}\alpha_{3}\right)$	semi- and nearly-orthogonal
where $\Delta = \alpha_0^2 + \alpha_1^2 + \alpha_2^2 + \alpha_3^2$	
$ \begin{pmatrix} 1 & \Delta - \alpha_0^2 + 3\alpha_0 \alpha_1 & \Delta - \alpha_0^2 + 3\alpha_0 \alpha_2 & \Delta - \alpha_0^2 + 3\alpha_0 \alpha_2 \\ 1 & -3(\Delta - \alpha_1) - \alpha_0 \alpha_1 & -\alpha_0 \alpha_1 + 3\alpha_1 \alpha_2 & -\alpha_0 \alpha_1 + 3\alpha_0 \alpha_2 \end{pmatrix} $	$\left(\begin{array}{c} \alpha \\ \alpha \\ \alpha \end{array} \right)$
$\begin{bmatrix} 1 & -\alpha_{0}\alpha_{2} + 3\alpha_{1}\alpha_{2} & -3(\Delta - \alpha_{2}) - \alpha_{0}\alpha_{2} & -\alpha_{0}\alpha_{2} + 3\alpha_{2}\alpha_{3} \\ 1 & -\alpha_{0}\alpha_{3} + 3\alpha_{1}\alpha_{3} & -\alpha_{0}\alpha_{3} + 3\alpha_{2}\alpha_{3} & -3(\Delta - \alpha_{3}) - \alpha_{0}\alpha_{3} + 3\alpha_{2}\alpha_{3} \end{bmatrix}$	$\alpha_{0}^{2}\alpha_{3}^{2}$

G.P. Bonneau

New families of triangular Haar bases

- Previous reconstruction matrices:
 - degree 1 (Sch/Sw94) and 2 (Nielson97) in the triangle areas
- Systematic investigation of possible bases
 Use any polynomial function of the areas in the reconstruction matrix
- Low degree \longrightarrow look for degree 1 polynomial functions in $\alpha_0, \alpha_1, \alpha_2, \alpha_3$ $\begin{bmatrix} 1 & & \\ 1 & c & 3 & l \\ 1 & r + r & r & \alpha \\ 1 & & ij & l = 0 & ij & l \end{bmatrix}$ 4x3x5=60 free parameters

Required condition: Symmetry

Symmetry ←→ affine invariance invariance when permuting the indices (1,2,3)

• free parameters: $a_{0-3}, b_{0-3}, c_{0-4}$

G.P. Bonneau

Required condition: semi-orthogonality

C1xC2=C1xC 3=C1xC4=0

 $\begin{pmatrix} 1 & a\alpha_{1} + b\alpha_{2} + b\alpha_{3} & b\alpha_{1} + a\alpha_{2} + b\alpha_{3} & b\alpha_{1} + b\alpha_{2} + a\alpha_{3} \\ 1 & -a\alpha_{0} + c\alpha_{2} + c\alpha_{3} & -b\alpha_{0} - c\alpha_{2} & -b\alpha_{0} - c\alpha_{3} \\ 1 & -b\alpha_{0} - c\alpha_{1} & -a\alpha_{0} + c\alpha_{1} + c\alpha_{3} & -b\alpha_{0} - c\alpha_{3} \\ 1 & -b\alpha_{0} - c\alpha_{1} & -b\alpha_{0} - c\alpha_{2} & -a\alpha_{0} + c\alpha_{1} + c\alpha_{2} \end{pmatrix}$

• free parameters: *a,b,c*

G.P. Bonneau

Required condition: nearly-orthogonality

- C2xC3=C2xC 4=C3xC4=0 if all triangle areas are equal
- Same matrix as in previous slide, with

$$\begin{cases} c = a + b \\ or \\ c = -\left(\frac{a + 5b}{3}\right) \end{cases} \leftarrow \qquad Basis family (I) \\ Basis family (II) \end{cases}$$

- free parameters: *a*,*b*
- normalization => free parameter b, (a=1)

G.P. Bonneau

Orthogonality measure

$$M(K) = \frac{1}{n} \sum_{k=1}^{K} \sum_{T^{k}} \left| \Psi_{1}^{k} \Psi_{2}^{k} \right| + \left| \Psi_{1}^{k} \Psi_{3}^{k} \right| + \left| \Psi_{2}^{k} \Psi_{3}^{k} \right|$$

•Need to choose among all possible nearly orthogonal bases => optimize a measure

G.P. Bonneau

Basis optimization

Orthogonality measure at depth 3, for different parameter values, Basis (I)

G.P. Bonneau

Basis optimization

G.P. Bonneau

Basis optimization

_	Basis (I)		Basis (II)	
Base mesh	optimal parameter values	optimal orthogonality measure	optimal parameter values	optimal orthogonality measure
tetrahedron	a=1 b=-1.707	2.28 10-2	a=1 b=-0.051	2.72 10-3
octahedron	a=1 b=-1.592	6.44 10-3	a=1 b=-0.061	8.99 10-5
icosahedron	a=1 b=-1.535	1.14 10-3	a=1 b=-0.067	1.62 10-5

- Orthogonal basis => L2 error = squared rooted sum of squared discarded wavelet coefficients
- Measure relative difference between squared rooted sum of squared discarded wavelet coefficients and L2 error

Should be as minimal as possible (vanishes exactly for orthogonal bases)

 Test data set: global topography (NOAA), mapped on a depth 7 subdivided spherical tetrahedron, octahedron & icosahedron

G.P. Bonneau

Base mesh: spherical tetrahedron

#wav.	comp.	Bio-Haar	Basis	Basis
coeff.	gain	Sch/Sw94	(I)	(II)
500	99.2%	1.11%	0.32%	0.036%
2000	96.9%	1.76%	0.30%	0.034%
6000	90.8%	1.47%	0.30%	0.033%
10000	84.7%	1.04%	0.30%	0.033%

Base mesh: spherical octahedron

#wav.	comp.	Bio-Haar	Basis	Basis
coeff.	gain	Sch/Sw94	(I)	(II)
1000	99.2%	1.27%	0.05%	0.0056%
5000	96.2%	1.36%	0.05%	0.0052%
10000	92.4%	0.78%	0.05%	0.0052%
20000	84.7%	0.58%	0.05%	0.0051%

Base mesh: spherical icosahedron

#wav.	comp.	Bio-Haar	Basis	Basis
coeff.	gain	Sch/Sw94	(I)	(II)
5000	98.5%	2.44%	0.0039%	0.00058%
10000	96.9%	2.30%	0.0040%	0.00054%
20000	94.0%	1.90%	0.0040%	0.00052%
40000	87.8%	1.59%	0.0040%	0.00051%

G.P. Bonneau