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Abstract— A dynamic simulator using constraint-based
method is proposed. It is the extension of the formalism
previously introduced by Ruspini and Khatib by including static
and dynamic friction without friction cone discretization. The
main contribution of the paper is in efficiently combining the
operational space formulation of the multi-body dynamics in the
contact space and solving for contact forces, including friction,
using an iterative Gauss-Seidel approach. Comparing to existing
work in this domain, we illustrate our method with scenarios
involving humanoid in manipulation tasks while contacting with
the environment; an experiment validates our results. Technical
details that allow an efficient implementation and problems with
future orientation to improve the simulator are also discussed.
This work is aiming to be a potential module of the next
OpenHRP simulator generation.

I. INTRODUCTION

Many humanoid robots that we can see nowadays like
Toyota’s one and Honda’s robot Asimo have been presented
mainly for entertainment. However, the main aim of a hu-
manoid is to work and provide services in all kind of envi-
ronments. People may request inevitably robots to perform
some manipulating tasks, some of which can be hazardous
for humans. Robots could thus be very helpful (Fig. 1).

Fig. 1. A collaborative task involving manipulation of various objects by
humanoids.

But robots can not perform such tasks if they do not
acquire some knowledge on the environment. Haptics is one
of the modality which is important to perform physical tasks,
which induces physical interaction with the environments
and objects, hence involving to treat contacts. These kind of
capabilities will be more and more developed in the next
few years as new theories and models will be presented.
Nevertheless, before testing on real platforms, simulation is
needed to validate such models.

In particular, simulating the dynamics of a complex system
such as humanoid robots is not simple as many unknown pa-
rameters intervene in the computation such as external forces
and accelerations. Without any contact forces, accelerations
can be computed quite easily if we consider as known some
external parameters like torques, that can be measurable. If
we include contacts, the computation of dynamics becomes
more complicated as we do not know a priori reaction forces
at contact points, which results in a non-linear form between
contact forces and accelerations. This issue can be resolved
by using a penalty method, which is widely used in actual
simulators like OpenHRP1 and many others. Although simple
and fast, the penalty parameters of the method are difficult
to tune which compromises robustness and even stability of
the simulation and generally the way to determine them is
not explicitly mentioned; static friction is also difficult to
implement properly. Recently, Yamane and Nakamura [1]
proposed to compute dynamic friction by weighting it, which
allows to solve discrete-time integration.

Recently, other methods have been proposed, among them
constraint-based methods, in which non-penetration con-
straints are explicitly integrated to the dynamic equation
and hence accuracy highly increases. They become more
and more used in simulators, even in video games [2].
Baraff [3] introduced constraint-based methods for contact
force computation in rigid bodies simulation by formulating
the problem as an LCP (Linear Complementarity Problem).
As dynamics give accelerations, he expressed the problem
in terms of acceleration, but there might be cases with no
solution for friction forces. He applied impulse forces to allow
discontinuity of velocities. Formulation of the dynamics as
an LCP appears to be elegant for solving contact problems
since a solution is guaranteed using pivoting methods like
Lemke’s algorithm. This formulation is kept even if friction is
introduced, provided that friction cones need to be discretized
into facets inducing additional constraints for each cone’s
facet. The price to pay for this benefit is the necessity of
discretizing into many facets for each friction cone to obtain
a decent accuracy. This arouses robustness and computation
time matters, especially in matrices’ computation as the size
of the matrices relies on the desired accuracy.

Anitescu [4] and Stewart [5] proposed a method for solving
friction using an LCP formulation. Both presented an implicit

1http://www.is.aist.go.jp/humanoid/openhrp/



method for solving contact forces with friction, through the
computation of estimated joint positions, which allows no
to find explicitly the times of impact. However, this benefit
reaches rapidly its limit as it requires small time steps to
solve the problem in an acceptable way. Implementing these
proposed algorithms in our context is not trivial. Robustness
of the proposed approaches in face of high number of contacts
and bilateral constraints can not be proved and the given
examples are always simple case studies. Miller and Chris-
tensen [6] devised a grasping simulator based on Anitescu’s
approach. They integrated additional constraints for joint
limits and joints’ constraints reinforcement. The examples
show grasped objects with different grippers without arm
motion, the complexity of the algorithm is not given in terms
of dof and the number of contacts.

Ruspini and Khatib [7] introduced a formalism for solving
contact and impact using LCP implemented as an impressive
simulator. The only missing feature is that they did not
include friction. However, the main difference vis-a-vis other
methods is that they use the operational space formulation
of multi-body dynamics in the contact space, which allows a
more efficient dynamics computation. We are using a similar
approach as the basis of the simulator we propose.

Recently, an iterative Gauss-Seidel approach has been
applied by Liu and Wang [8] to robotics. The interesting
point with this method is that it allows to keep exact friction
cones with a guaranteed convergence and a size of the system
equal to the number of contacts thus reducing considerably
computation time. Liu and Wang modeled surfaces as explicit
equations so that the gradient is computed. Again, the illustra-
tive examples do not demonstrate how the method performs
in complex scenarios. In the other hand, Duriez et al. [9] also
used an iterative Gauss-Seidel method to compute real-time
force feedback in deformable objects. They showed that: the
iterative Gauss-Seidel approach becomes much more faster
than an LCP formulation for more than 10 contact points, and
it is more precise since a minimum of 8 facets are required
to have 10% accuracy when compared with an LCP.

Many other works dealing with contact problems illustrate
examples with very simple scenarios and furthermore do
not prove their validity by experiments. We think that such
implementations hide actual problems of robustness, com-
plexity, and stability that may recall into question hypotheses
and proposed algorithms. In the ideal case, actual purpose
implementations may require to consider additional aspects
of the problem. We aim at realizing an interactive simulator
for complex systems like humanoid which computes in a re-
alistic manner, contact forces with friction while handling all
related aspects of collision detection, numerical integration,
etc. Our work is based on [7] because of its simplicity. The
central contribution of this paper is in efficiently combining
operational space formulation of dynamics, extending the
model of contact to friction and solving it using a Gauss-
Seidel approach, as in [9], illustrating complex scenarios with
contact configurations using a 30-dof humanoid, and showing
the effectiveness of our proposed simulator by experiments.

In this work, we do not take into account joint friction.

II. MAIN ALGORITHM

A. Dynamic model without contact

When torques are applied to a robot’s joints, it moves
according to the following differential equation:

q̈ = A−1(q) [Γ− b (q, q̇)− g(q)] (1)

where A is the inertia matrix of whole robot, Γ is the vector
of joint torques, b is the centrifugal and Coriolis effects and
g the gravity. There are several formulations for dynamics
such as Newton-Euler, Lagrange, etc. Here we have chosen
Newton-Euler formulation as it is more suited for programing.
Many algorithms have been proposed, among them the Feath-
erstone’s algorithm [10], [11] which proposes to compute the
forward dynamics model within three recursions:

• computation of the geometric and kinematic parameters,
• computation of the inertias in the base frame and external

forces (articulated-body inertias and bias forces which
are the forces that give a null acceleration),

• computation of the joint accelerations.

B. Equations for solving impact forces

Impact forces are solved in terms of velocities as the impact
model assumes that velocity of collision points just after col-
lision time should be zero to avoid penetration. Considering
two bodies colliding in m points with corresponding relative
velocities, Ruspini and Khatib showed that the impact force
to be applied must satisfy the following equation:

0 ≤ fI⊥Λ−1
I fI + BI ≥ 0 (2)

where Λ−1
I = JIA

−1JT
I and BI = (1+ε)JI q̇

−. JI represents
the Jacobian from the joint space to the contact space for
impact. Joints’ velocities are updated by:

q̇+ = A−1JT
I fI + q̇− (3)

Equation (2) can be solved using Lemke’s algorithm, from
where we get impact forces fI .

C. Equations for solving contact forces

From Ruspini and Khatib’s approach, new constraints
appear for solving contact problems. These constraints are
written in terms of acceleration: relative normal accelerations
should be zero at contact points and positive normal force f
(reaction force) should be applied:

0 ≤ f⊥Λ−1
c f + Bc ≥ 0 (4)

where Λ−1
c = JcA

−1JT
c and Bc = JcA

−1 [Γjoint − b− g] +
J̇cq̇. Γjoint represents the applied joint torques and Jc is the
same as JI for contact. This equation is written into an LCP
form and thus can also be solved with Lemke’s algorithm.

From now, we extend Ruspini and Khatib’s approach by
including friction. We will denote f as the contact force
considering friction. We consider Coulomb’s law as the fric-
tion model. Since friction introduces a non-linear condition
(||ft|| ≤ µfn), it can not be integrated as an additional



constraint to the existing LCP (as for impact forces) unless
discretization of friction cones is made [4], [5].

Moreover, equation (4) has been written in terms of ac-
celerations. To avoid any problems described in [3], we
formulated the problem in terms of velocity (which is the
most common way) by integrating equation (4) with a simple
Euler integration, that is:

ac = Λ−1
c f + Bc (5)

we get
vk+1

c = dtΛ−1
c f +

(
dtBc + vk

c

)
(6)

with dt the time step and k the step. As our goal is to provide
exact contact forces, we solve this problem with an iterative
Gauss-Seidel approach, combined with a Newton-Coulomb
method [12].

Now, considering the equation of motion of the robot (1),
we can add contact forces with Γ = Γjoint + JT

c f , so that
we obtain:

q̈ = q̈f=0 + q̈f �=0 (7)

where

q̈f=0 = A−1 [Γjoint − b− g] and q̈f �=0 = A−1JT
c f (8)

q̈f=0 is already known as it is equation (1) computed by
Featherstone’s algorithm, without taking into account external
force (except gravity). From q̈f=0, we get free linear and
angular accelerations by:

af=0 = Jq̈f=0 + J̇ q̇f=0. (9)

It is worth noticing that as we solve contact problems in
terms of velocities, we can update the dynamics directly in a
velocity formulation which is:

q̇ = q̇f=0 + q̇f �=0 (10)

where q̇f=0 is the free velocity of the bodies given by
integrating q̈f=0 and

q̇f �=0 = A−1JT
c dtf + q̇k (11)

with q̇k the joint velocities at one time step before. This way
allows integrating just once to get joint positions.

D. Dynamic model with contact

As we do not know when a collision occurs or whether
there is contact or not, we must check the contact state. On
the contrary of Anitescu’s and Stewart’s approaches, we use
an event-based approach. Contact forces are solved if any
contact is present. Before solving equations (2) and (4), we
have several parameters to find, which are Λ−1

c and relative
velocities and accelerations of contact points. From equation
(9), we get Bc by making a projection to the contact space
with respect to the three directions (normal and tangential).

To compute Λ−1
c , we need A−1JT

c . Let consider that there
is no gravity (g = 0), no torques (Γ = 0), no joint velocities
(q̇ = 0). The free joint acceleration q̈f=0 becomes then
zero, so that in equation (7) only the term A−1JT

c f remains.

Algorithm 1: Resolution of contact forces with friction

Data: q̈f=0 (or q̇f=0), Λ−1
c , vci, Bc

Result: f
begin

for each contact i← 1 to m do
vrelative

ci ← BcTe + vci

while (not convergence) do
for each contact i← 1 to m do

vci ← GaussSeidelSolver()
if vnormal

ci = 0 then
check ‖fti‖ < µfni

fi ← NewtonContactSolver()

for each body i = 1 to n do
q̈i ← q̈f=0i + A−1JT

c fi or
q̇i ← q̇f=0i + A−1JT

c dtfi + q̇k

end

We compute again the second and the third recursion of
Featherstone’s algorithm for each contact points, setting f to
unit forces with respect to the normal and tangential directions
in the contact space as external forces. We obtain from the
third recursion unit joint accelerations:

q̈f=1 = A−1JT
c (12)

and linear accelerations:

af=1 = Jcq̈f=1 = JcA
−1JT

c (13)

We obtain Λ−1
c . For Λ−1

I , as we do not consider friction for
impact, we make a projection of Λ−1

c to the normal direction.
BI is obtained by integrating relative accelerations of

collision (contact) points obtained from q̈f=0 and multiplying
it by (1 + ε).

In the case one wants to use LCP formulation to solve
contact forces, slight modifications have to be made which
are the computation of unit joint accelerations with respect to
the directions of the discretized friction cones, that means as
many directions as facets.

Regarding algorithm complexity, Chang and Khatib [13]
proposed a O(nm+m3) algorithm for computing Λc through
the computation of Λ−1

c , with n the number of links and
m the number of contacts. Actually, their algorithm for
computing Λ−1

c is in the worst case (which means all bodies
in contact) O(nm + m2) because they manage to avoid
unnecessary computation processes, for example they update
the dynamics of only bodies in contact, whereas with our
method, we update the dynamics of the whole system. Our
method is in the best case as efficient as Chang and Khatib’s
(O(nm + m2)), but is easier to implement. In the future,
we plan to thoroughly investigate this issue. The general
algorithm is presented in Fig. 2.

III. IMPLEMENTATION

In problems of contact with friction, collision detection is
an important issue to avoid bodies penetrating each other.
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Fig. 2. Algorithm for dynamics computation with contact and friction.

Various collision detection libraries have been proposed and
for our purpose, we chose PQP2. Given the geometry of the
bodies, we can either request the pairs of colliding triangles
of two bodies, and the minimal distance between these two
bodies. The main interesting point with this library lies in
the proximity query feature as it allows preventing bodies
to penetrate each other by setting all points located in a
bounded area around each body as contact points, whereas
requesting the pairs of colliding triangles implies the bodies
to overlap and meanwhile the computation of contact points
with an appropriate algorithm such as Möller’s one [14]. It is
worth noticing that the last method may result in redundant
contact points implying to remove them, thus slowing down
the simulation. Detecting overlapping bodies is a common
feature of PQP and previously implemented Pierre Terdiman’s
library, OPCODE3, which does not integrate proximity query
feature. We made a comparison between these two libraries
on simple objects using overlapping tests and we saw that
using PQP resulted in more acceptable contact points than
OPCODE, without any gain of computation time.

Dealing with impact, since dynamic simulation is computed
in discrete domain and with a constant time step, our method
requires contact states to be considered at two successive
times t0 and t0+step. As a matter of fact, collision may

2http://www.cs.unc.edu/ geom/SSV/
3http://www.codercorner.com/Opcode.htm

occur between these two times, at a time ti that has to be
determined, and so the impact force has to be applied at
this time on the collision points. Since the exact trajectory
of the body is unknown, the impact time may be found using
an interpolation between the two positions of the body. For
sufficient small time step (0.001sec) one may take the time
t0 as the time of impact.

IV. ILLUSTRATIVE EXAMPLES

To illustrate our work, two demonstration examples have
been simulated and another has been conducted also by
experiment. All the simulations have been performed using a
bi-AMDTM64 2.5Ghz processor, with a time step of 0.001sec.
We took the HRP-2 humanoid robot (30 dof) as character for
our simulations and experiment.

A. Simulations

The first example consists in grasping an object on a table
by reaching it. For this purpose, the robot bends forward with
its chest and uses one of its hand as a support on the table
so that it can reach the object without falling. We make the
robot bend sufficiently so that it leans forward. The coefficient
of friction has been set to 0.4 between each object of the
scene. As the snapshots in Fig. 3 show, when the robot bends
forward, the hind parts of the feet start getting off the platform
and slipping on it. The table retains the robot falling as the
legs of the robot collide the table. The distance between the
robot and the table is sufficiently small so that the feet can
not slide anymore. By using its left hand as a support on the
table, the robot does not rely only on its legs for its global
stability and does not tip out to the side.

The second example is a quite similar task as depicted in
Fig. 1. We ask the robot to push a cart on which we put a 3kg
box. The cart is pushed for some distance, then the robot lifts
it up intentionally and release it so that the box falls down. In
this scenario, we show that our simulator can handle dynamics
computation of many objects in the environment besides the
robot, toward a highly multi-contact resolution. Snapshots of
the simulation are shown in Fig. 4. The box bounces a bit
as the cart moves. As in the previous example, friction cones
and contact forces have been illustrated.

Besides these two examples, we performed several tests
involving more than 50 contacts and we made a comparison
between the Gauss-Seidel approach and the LCP formulation
in terms of size of matrices. In the second example there
are at most 67 contact points. Using our algorithm, we get
for Λ−1

c a square matrix of dimension 201, whereas if we
used algorithms with LCP formulation, like for example
Miller, with 8-sided friction cones and without taking into
account joint constraints, we would get for a square matrix
of dimension at least 1734.

In Fig. 5, we show the average CPU time obtained for our
simulator from several tests involving many contact points.
We can observe that the computation time grows roughly in
m2, with m the number of contact, which corresponds to
what we said in section II.D.



Fig. 3. HRP-2 reaching an object on a table (the last four snapshots show contact points at gripper, feet, legs and hand).

Fig. 4. HRP-2 pushing a cart, then lifting it up and finally releasing it (the last two snapshots show contact points at hands and box).
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Fig. 5. Average CPU time obtained with Gauss-Seidel approach.

B. Experiment

In order to validate both simulations, we decided to make
experiments on the real platform and compare what we get
with the simulations. In one experiment we ask the robot to
lean forward and make an object fall on a table by pushing
it. Because the robot collides soon the table, its feet do not
slide. Fig. 6 shows the comparison between the simulation
and the experiment. As the snapshots show, in simulation,
the robot and the object move in a similar way as in the
experiment, especially the object slides while falling, the
robot’s legs and feet collide the table and the platform re-
spectively without apparent rebound. We measured the sliding
distance of the object on both simulation and experiment,
and we found a difference of about 2mm after sliding, which
means the simulation matches well the experiment and thus
our simulator can handle contact problems with friction in

a realistic manner, assuming that there may be small visual
errors in measurements and we did not take exactly the same
parameters like coefficient of friction and model of the object.
We are planning to perform exact measurements of position
and forces at hand, legs and feet and compute precisely the
gap between simulation and experiment. If we take exactly
the same parameters and we improve dynamics computation,
we expect that the gap between simulation and experiment
will nearly disappear.

V. CONCLUSION

This paper presented a new dynamics simulator for hu-
manoid robots with contact and friction and solving them
by using operational space and constraint-based method. We
showed that we can consider friction without cone discretiza-
tion which results in an efficient algorithm. We also showed
the effectiveness of our proposed algorithm by experiment.

We should have a closer look to the computation time
to allow haptic interaction. We plan to implement a uni-
fied approach for impact and resting force. We should also
optimize the code for dynamics computation and test other
integration methods. We will devise a dedicated module for
torque control.
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