
Interactive dynamic simulator for humanoid with
haptic feedback

Jean-Rémy Chardonnet1,2, François Keith2, Abderrahmane Kheddar1,2, Kazuhito
Yokoi2 and François Pierrot1

1 CNRS Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier,
France

2 AIST/CNRS Joint Japanese-French Robotics Laboratory, Japan

Abstract. In this paper we present an interactive dynamic simulator for humanoid.
In our software, the user can interact directly with the robot through a haptic
probe and meanwhile feed back with reaction forces subsequent to its actions. The
simulator allows also creation and manipulation of virtual objects by the robot,
by the human or in a joint collaborative way. This dynamic simulator uses fast
computation dynamics and constraint-based methods with friction. It is part of a
general framework that is being devised for general prototyping and collaborative
scenario studies with haptic feedback. The different ingredients of the simulator are
presented with an simulation scenario.

1 Introduction

Simulation is a research topic that is being more and more developed since many years
as it has many applications in various fields such as robotics, computer games, virtual
reality, medical and chemical science, etc. Dynamics simulation is needed to validate
physical models, and adding interaction by means of haptic behaviours highly increases
realism and allows performing manipulation or collaborative tasks. But interacting with
the environment supposes to deals with problems of modeling properly contact, friction,
impact and deformation and it still remains a challenging research.

In this paper we present an interactive dynamic simulator for humanoids with force
feedback and solving contact forces with friction using constraint-based methods. Our
goal is to provide high quality and fast simulations. We present a new computation
method of the operationnal space inertia matrix as well as a simulation scenario. We
integrated our simulator in a general framework that is being developed for general
prototyping and collaborative scenario purposes.

2 Previous work

Concerning the resolution of contact forces with friction, many proposed dynamics si-
mulators use penalty-based methods, like in Yamane and Nakamura (2006). Even if
these methods are easy and fast to implement, they require parameters tuning which



can affect robustness of the simulation. An alternative to penalty-based methods is
constraint-based methods, in which contact constraints are integrated to the dynamics.
Constrained dynamics is generally expressed as a linear expression (Baraff (1994)). These
methods are more and more used as accuracy is highly increased, but adding friction
adds non linearity, requiring friction cones to be discretized (Anitescu and Potra (1996)).
However this discretization can be avoided by using iterative algorithms (Liu and Wang
(2005)). Renouf and Acary (2006) made a comparison between different methods for
solving constraint-based contact forces. These methods are implemented in a dedicated
software SICONOS1.

Many interactive dynamic simulators have been presented. Son et al. (2000) proposed
a general framework for interactive dynamic simulation. They included haptic interac-
tion. However they do not explain how they take into account contact forces and their
main application is for a fixed-base manipulator. Ruspini and Khatib (1999) presented an
impressive framework for interactive dynamic simulation with contact using constraint-
based methods but it is not clear how friction is integrated. Duriez et al. (2006) showed
interactive simulation for deformable objects using constraint-based methods and sol-
ving contact with friction using iterative algorithms. Chardonnet et al. (2006) proposed
a fast dynamic simulator for humanoids, based on Ruspini and Khatib’s work and taking
into account correct Coulomb’s friction, meaning without discretizing the friction cones.
They however did not included any haptic device. We are using their work as the basis
of the proposed simulator. There are few dynamic softwares simulating complex systems
such as humanoid robots, taking into account good contact forces and in which the user
can interact directly with all the elements in the environment.

3 Constraint-based method architecture

3.1 Overview

The computation of the contact forces follows Chardonnet et al. (2006)’s approach:
first, we compute the free acceleration of the bodies using Featherstone (1987)’s algo-
rithm, then the acceleration due to contact forces. The total joint acceleration q̈ is
described by the following equation:

q̈ = q̈free + q̈c = A−1(q)[Γ− b(q, q̇)− g(q)] + A−1(q)JT
c fc (3.1)

or, in the operational space

ẍ = ẍfree + ẍc = JA−1(q)[Γ− b(q, q̇)− g(q)] + Λ−1
c fc (3.2)

where A is the inertia matrix of whole robot, Γ the vector of joint torques, b the cen-
trifugal and Coriolis effects, g the gravity, fc the contact forces, J is the Jacobian matrix
and Λ−1

c the inverse of the operational space inertia matrix introduced by Khatib (1987).
In order to compute the acceleration due to contact, we calculate the forces corres-

ponding to each contact point using an iterative Gauss-Seidel approach that has been
1http://siconos.gforge.inria.fr



recently applied to robotics by Liu and Wang (2005), combined with a Newton-Coulomb
method (Jean (1993)). This requires to find Λ−1

c that we will note Λ−1 from now on.
For this purpose, Chang and Khatib (2000) defined Ωi,j , the 6×6 inertia matrix that

relates the spatial acceleration of link j and the force acting on link i:

ẍj =
(

aj

αj

)
= Ωi,jfi (3.3)

The inverse of the operational space inertia matrix, Λ−1
ei,ej

can be related to Ωi,j by:

Λ−1
ei,ej

= i
ei
XΩi,j

j
ej

X
T

(3.4)

where i
jX relates the frame change from i to j and end-effector frames ei and ej are at

the tips of links i and j.
Chang and Khatib’s computation of Ω is divided into three loops: the first one

computes additional data, the second one goes from the root to the contacting bodies to
compute the diagonal part of Ω and the last one starts from the nearest common mother
of all contacting bodies to compute the off-diagonal parts Ωi,j,i6=j .

To avoid computing new data and searching the common mother, we propose a dif-
ferent method: we compute again the second and the third recursions of Featherstone’s
algorithm for each contacting body, but without gravity (g = 0), torques (Γ = 0) or
joint velocity (q̇ = 0); thus the free joint acceleration (q̈f=0) becomes null. Besides, we
use the data already computed during the calculation of the free acceleration. Ωi,j is
computed by applying six times Featherstone’s algorithm:

Ωi,j = (0ẍj . . . 5ẍj) (3.5)

where uẍj is the spatial acceleration of body j associated to the spatial unit force ufi
applied on body i with ufi[y] = 1 if u = y, else 0, and y = {0, 1, 2, 3, 4, 5}.

3.2 Implementation

The size of Λ−1 depends on the number of contact points m: if we handle friction, it
becomes a 3m × 3m matrix. This matrix may have some null elements if two colliding
bodies do not interact (for exemple they are on the floor but they are not in contact
together). In order to have a full rank matrix, we sort the colliding bodies into collision
groups, each of them having its own matrix Λ−1. Two bodies belong to the same collision
group if there is a sequence of unfixed bodies in collision that connect them. This allows
to reduce the size of the Λ−1 matrices and thus reduce their computational cost and so
accelerate the computation of the forces using Gauss-Seidel like algorithm. The overall
flow chart for one step computation is presented in Figure 1.

3.3 Algorithm complexity

Computation of the operational space matrix is time-consuming, so different methods
have been proposed to reduce its cost. We propose a new method that is faster. The
following arrays compares the number of mathematical operations required to compute



Figure 1. Algorithm of the dynamic model with collision.

Λ−1 for a n-dof multibody with m contact points. We note C the number of contac-
ting bodies of the multibody, b the number of bodies that are between the base and a
contacting body and d(i,j) the number of joints between bodies i and j (d(i,j) = d(j,i)).

Chardonnet et al. (Table 1) Chardonnet et al.’s method computes Λ−1 by apply-
ing the second and the third recursions of Featherstone’s algorithm three times for each
contact point. The complexity is thus in O(m2 + mn).

Table 1. Operations required to compute Λ−1 using Chardonnet et al.’s method.

× ÷ 144m +39bm +36βm +27mm+1
2

+ − 99m +36bm +21βm +27mm+1
2

where βm =
∑

i∈m di,0, βm < nm.

Chang and Khatib (Table 2) The algorithm proposed by Chang and Khatib com-
putes Λ−1 in two steps. First it computes Ω, then projects it into the contact space. The
complexity of the first step depends on the number of contacting bodies, in the worst
case (all bodies contacting) it is in O(n2). The second step is always in O(m2 + mn).

This method has a lower complexity than Chardonnet’s algorithm, but the computa-



tion of Ω is more complex to implement.

Table 2. Operations required to compute Λ−1 using Chang and Khatib’s method.

× ÷ 286 +153b +72αC +54Cm + 27mm+1
2

+ − 235 +179b +66αC +54Cm + 27mm+1
2

where αC =
∑

i,j∈C | j>i di,j .

New method (Table 3) Our new method presents the same steps as Chang and
Khatib’s one. The computation of Ω however changes. It remains in O(n2) in the worst
case, but is easier to implement. Besides, compared to Chardonnet et al.’s method, this
method has a lower complexity in O(mn).

Table 3. Operations required to compute Λ−1 using the proposed method.

× ÷ 252C +78Cb +72βC +54Cm + 27mm+1
2

+ - 180C +72Cb +42βC +54Cm + 27mm+1
2

with βC =
∑

i∈C di,0, βC < nn+1
2

The m2 coefficient is the same for the three methods. Thus we will prefer methods
that reduce the cost in mn.

3.4 Simulation results

We made some performance tests to compare each method. We took a 30 degree-of-
freedom humanoid robot (HRP-2), standing on its two feet, each of them having four
contact points with the ground. The processor used is a bi-AMDTM64 2.5Ghz, and the
time step is 1ms. We can see that our new method is faster than the other two ones.

Table 4. Comparaison of the computation time of each method.

Chardonnet et al. Chang New method
Computation of Ω (µs) ∅ 11.171 8.219
Total computation of Λ−1 (µs) 85.688 15.8570 12.875

4 Haptic interaction

Interaction with the virtual environment allows for example the realization of collabora-
tive manipulation tasks with force feedback or testing external force perturbation on a
walking pattern or on a given implementation of a task controller. Since our simulator is
centered on haptic interaction, we need to integrate a haptic device. For our purpose we



interfaced the PHANTOM c©Omni
TM

device commercialized by SensAble Technologies2.
This device has six degrees of freedom with a three degree-of-freedom force feedback.

We need to consider two different ways of interacting: simply touching and dragging.
In both cases, interaction will add an external force fe to the dynamics of the objects:

q̈ = A−1(q)[Γ− b(q, q̇)− g(q)] + A−1(q)JT
c fc + A−1(q)JT

e fe (4.1)

When touching an object, an external force will be applied at the contact point
between the object and the virtual tip of the haptic device. This force is given directly
by the device via the Sensable OpenHaptics

TM
Toolkit, and weighted with an arbitrary

chosen coefficient. The contact point is obtained via the collision detection algorithm
provided by this library.

Dragging objects is useful for tasks like pick-and-place or collaborative tasks. As the
user moves the device, the object must behave accordingly while the user feels its weight.
To achieve this, the most common way used in interactive simulations is to model a
virtual spring-damper system between the device and the object, that is:

fe = kp(xdevice − xcontact) + kv(ẋdevice − ẋcontact) (4.2)

where xdevice and xcontact are the position/orientation of the haptic device and the one of
the end-effector respectively. Altough this method is very fast and easy to implement,
the most difficult part is the choice of kp and kv. kv is chosen so that kv =

√
2mkp, with

m the mass of the object.

5 Simulation scenarios and results

5.1 Computation time of Λ−1

In order to highlight the advantage of sorting the colliding bodies into multiple colli-
sion groups, we realized the following simulations. We took k = [1, 30] cubes contacting
only the floor, each cube having m = 4 contact points. For a fixed k, we compared
the following cases: 1) all cubes belong to the same collision group; 2) each cube is a
collision group. In the first case, the size of Λ−1 is mk×mk, meaning computation time
will be in (mk)2, whereas in the second case, the size of each Λ−1 is m ×m, meaning
computation time will be in km2. The results are depicted in Figure 2. This preliminary
sorting allows a more efficient calculation of contact forces.

5.2 Simulation scenario

For the following scenario, we use the 30-dof HRP-2 robot built by Kawada Industries.
We placed a table on which there is an object to be handled by the robot. The HRP-2
robot grasps it and handles it. Once it has taken the object, we pick it using the haptic
device and play with the robot by pulling/pushing in all directions. This is somehow a
very simple collaborative task. The screenshots are shown in Figure 3. For clarity, we
did not display contact forces. The thin orange bar in Figure 3 represents the virtual tip
of the haptic device.
2http://www.sensable.com



0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

Number of cubes

C
om

pu
ta

tio
n 

tim
e 

(m
s)

 

 

Multiple collision group

Single collision group

Figure 2. Computation time regarding the number of cubes.

Figure 3. Screenshots of HRP-2 handling an object and being manipulated by a user.

In this simulation once the robot has taken the object there are 40 contact points.
As simulations slow down when the number of contact points increases, one step takes
around 5.2ms, thus, not allowing real-time interaction. However, we are working on
improving this aspect by optimizing the number of contact points and computing the
resulting forces per body rather than forces per contact point.

6 Conclusion and future work

We presented a new interactive dynamics simulator for humanoids with haptic feedback.
This simulator handles fast computation of contact forces with friction using constraint-
based method and keeping true friction cones that guarantee accurate results. Adding
a haptic module allows the user to interact with objects in the environment with force
feedback and perform simple tasks, such as collaborative tasks. We showed a new method
to compute the operational space inertia matrix that reduces computation time of contact
forces. In future works, we plan to extend the simulation and the computation of contact
forces to deformable skin by adding flexibility to the joints and to the bodies, so that



we will be able to simulate realistically human-shaped avatars such as androids. We
also need to make some experimental validation of our simulator by comparing the data
measured by forces sensors and the data computed in simulation.

Bibliography

M. Anitescu and F. A. Potra. Formulating dynamic multi-rigid-body contact problems
with friction as solvable linear complementarity problems. Reports on computational
mathematics, 03, October 1996.

David Baraff. Fast contact force computation for nonpenetrating rigid bodies. In SIG-
GRAPH, pages 23–34, Orlando, July 24-29 1994.

Kyong-Sok Chang and Oussama Khatib. Operational space dynamics: Efficient algo-
rithms for modeling and control of branching mechanisms. In IEEE International
Conference on Robotics and Automation, pages 850–856, San Francisco, CA, April
2000.

J-R. Chardonnet, S. Miossec, A. Kheddar, H. Arisumi, H. Hirukawa, F. Pierrot, and
K. Yokoi. Dynamic simulator for humanoids using constraint-based method with
static friction. In IEEE International Conference on Robotics and Biomimetics, pages
1366–1371, Kunming, China, December 17-20 2006.

Christian Duriez, Frédéric Dubois, Abderrahmane Kheddar, and Claude Andriot. Re-
alistic haptic rendering of interacting deformable objects in virtual environments.
IEEE Transactions on Vizualization and Computer Graphics, 12(1):36–47, January-
February 2006.

Roy Featherstone. Robot dynamics algorithms. Kluwer Academic Publishers, 1987.
Michel Jean. Numerical methods for three dimensional dynamical problems. In M.H.

Aliabadi and C.A. Brebbia, editors, Conference Contact Mechanics, Southampton,
page 71, July 1993.

Oussama Khatib. A unified approach for motion and force control of robot manipulators:
The operational sapce formulation. IEEE Journal of Robotics and Automation, 3(1):
43–53, February 1987.

Tong Liu and Michael Yu Wang. Computation of three-dimensional rigid-body dynamics
with multiple unilateral contacts using time-stepping and gauss-seidel methods. IEEE
Transactions on Automation Science and Engineering, 2(2):19–31, January 2005.

M. Renouf and V. Acary. Comparison and coupling of algorithms for collisions, contact
and friction in rigid multi-body simulations. In European Conference on Computa-
tional Mechanics, Lisbon, Portugal, June 2006.

Diego C. Ruspini and Oussama Khatib. Collision/contact models for dynamics simulation
and haptic interaction. In International Symposium of Robotics Research, pages 185–
195, Snowbird, Utah, October 9-12 1999.

Wookho Son, Kyunghwan Kim, Nancy M. Amato, and Jeffrey C. Trinkle. Interactive
dynamic simulation using haptic interaction. In IEEE International Conference on
Intelligent Robots and Systems, pages 145–150, November 2000.

Katsu Yamane and Yoshihiko Nakamura. Stable penalty-based model of frictional con-
tacts. In IEEE International Conference on Robotics and Automation, pages 1904–
1909, Orlando, Florida, May 2006.


