
Framework for Haptic Interaction with Virtual Avatars

Paul Evrard François Keith Jean-Rémy Chardonnet Abderrahmane Kheddar

Abstract— In this paper we present an integrative frame-
work centered on haptic interaction with virtual avatars. This
framework is devised for general prototyping and collaborative
scenario studies with haptic feedback. First we present the
software architecture of the framework and give details on some
of its components. Then we show how this framework can be
used to derive in a short time a virtual reality simulation. In
this simulation, a user directly interacts with a virtual avatar
to collaboratively manipulate a virtual object, with haptic
feedback and using fast dynamics computation and constraint-
based methods with friction.

I. INTRODUCTION

Recently, several simulators for virtual avatars have been
developed for various purposes and applications. In the com-
puter graphics community, avatars dynamic simulators are
proposed with dynamic controllers for off-line or interactive
physics behavior for a plausibly realistic animation in gaming
or motion generation of digital actors, e.g. see [1][2][3], but
to our best knowledge interactivity with haptic feedback is
not of a major concern or is not integrated in a generic
framework. In the robotics field, dynamic simulators have
also been developed for the purpose of planning or sensory
control simulation. For example, Son et al. [4] proposed a
general framework for robotic dynamic simulation with inter-
active capabilities including force feedback. This simulator
accounts for constraint-based contact modeling with friction;
it uses a hybrid method to switch between different contact
status. Khatib’s team proposed an impressive framework,
called SAI, for interactive dynamic simulation [5] using the
operational space formulation with prioritized tasks [6] and
was probably among the firsts to use haptic feedback for
interaction with a virtual avatar. At AIST, an open platform
named OpenHRP has been developed to be dedicated to the
general humanoid studies [7]. The next release (version 3)
is forecast to be distributed freely with open source code.
However, OpenHRP is not interactive and does not include
force feedback. There are more advanced versions that are
commercially available or forecast to be so (e.g. R-Station or
Microsoft Robotic Studio). In virtual prototyping, Duriez et
al. [8] showed interactive simulation for deformable objects
using constraint-based methods and solving contact with fric-
tion using iterative algorithms that include haptic feedback.
Using the same basis as Ruspini and Khatib’s work [5],
Chardonnet et al. [9] proposed a fast dynamic simulator for
humanoids without discreete Coulomb’s friction cones and
able of handling complex shapes.

The authors are with AIST/CNRS Joint Japanese-French Robotics
Laboratory, Tsukuba, Japan {evrard.paul,francois.keith,
jr-chardonnet,abderrahmane.kheddar}@aist.go.jp

This work extends our previous framework [10] to han-
dle fast constrained-based dynamic computation with force
feedback. Comparing to previous work, we demonstrate that
our simulator is able to handle complex shapes in real-time
and integrate force feedback without any specific treatment.
Our framework intends to include not only task-driven simu-
lations, but also cognitive aspects linked to haptic interaction
such as haptic communication and advanced interaction with
digital actors that can be either virtual or real (robots).
This paper focuses on the proposed integrative software
architecture. The dynamics and computer haptics models
have been discussed in [10]. This framework is devised to
integrate developments in digital actors control with a focus
on haptic tasks and communication.

II. SOFTWARE ARCHITECTURE

A. Presentation of AMELIF

Our software developments were realized under an inte-
grative framework called AMELIF. This framework proposes
a structure and an API for the representation of virtual
scenes including articulated bodies, and interfaces for driving
simulations and manipulating the elements of the scene.
AMELIF has been created in order to allow fast and easy
prototyping of virtual reality algorithms (related to colli-
sion detection, dynamics, interaction with virtual avatars...),
and most particularly algorithms related to virtual avatars.
The modularity of our framework allows the customization
and replacement of most components without modifying
the core application, thus guarantying consistency between
the developments and interoperability between customized
components. AMELIF is a cross platform framework and
has been successfully tested under the Windows and Ubuntu
Linux operating systems. It is based on the wxWidgets C++
library [11], but the wxWidgets API is hidden to the users
of the framework so that they do not need to know anything
about this library. The components developped under this
framework can be either open-source or released as dynamic
libraries.

Building modules as separate libraries allows customiza-
tion and prototyping while manipulating as little code as pos-
sible: to work on high-level interaction with virtual avatars,
only the binaries of the required modules are needed, which
relieves from the pain of setting up all the modules and
building them in a monolithic way. It also allows users who
do not care for some modules not to have to know they exist:
a user who is not interested in dynamics will never have to
manipulate interfaces related to dynamics as he will simply
not install the dynamic simulation module.



AMELIF includes a core application to display and run
the simulations, and a core library that provides interfaces
for communication with the core application and a set of
utilities and interfaces that can be used by all the components
as a common basis. One of the communication interfaces
allows writing simulations that can be run from the core
application. This interface has three main methods: one that
is responsible for the initialization of the scene, one that
drives one simulation step, and one for the cleanup. The
state of the virtual scene is accessible from these methods.
Each implementation of this interface has to be compiled as
a dynamic library that will be loaded by the application.
The application will automatically call the methods for
initialization, simulation and cleanup; the simulation will be
executed in its own thread.

B. Architecture and components

Modules developped under AMELIF are intended to
work together with minimal dependencies (e.g. a component
should not depend upon its client components). Components
integrated to this framework eventually grow and get more
complex with time, as the framework has been devised for
prototyping. Components should be robust to changes of the
components from which they take their input, while having
no specific knowledge about their own client components.
Finally, algorithms should all be written in such a way
that they need not be edited when new components are
developped.

Four modules have already been developped and
integrated to AMELIF: the scene library, the collision
detection module, the devices library, the dynamic simulator.
Figure 1 shows the dependencies between the interfaces of
each module. The dialog boxes and main programs created
by users of AMELIF communicate with the application
through the core library. They can capture and handle
events generated by the mouse or the keyboard and send
instructions to the application to modify its behavior.
All the modules potentially use the interfaces and tools
provided by the core library (although this is not necessary,
this is the case for all the modules we integrated up to now).

1) Scene library: The scene library provides components
for the creation, display and manipulation of virtual scenes.
A virtual scene in AMELIF contains two kinds of bodies:
simple bodies and linked bodies. An articulated body is
a set of linked bodies connected by joints. ”Decorations”
can be attached to bodies (e.g. frames attached to bodies),
which position and orientation can be defined relative to
their parent body in the scene or in the world frame. Bodies
are associated with basic information e.g. geometry, mass,
position, external forces, inertia.

The scene library is central as it stores the current state
of the scene and all its geometric information. Modules
can indirectly interact together through the scene library by
modifying the state of the scene: for example controllers
will act on the joint torques of articulated bodies, while the
dynamic simulator will read these torques and use them

Fig. 1. Dependencies among interfaces of AMELIF

together with the forces applied on bodies to update their
accelerations and the joint accelerations. Almost all modules
developped under AMELIF will rely on the scene library
as it provides the common representation of the scene and
its entities and the interfaces to manipulate them. For this
reason, modularity and flexibility were major constraints
during the development of this module. Each component
of the scene library can be customized independently, and
without having to modify existing code of the module.
One can, for example, use its own representation of
multi-bodies, rather than the default one, without modifying
the other elements of the scene or existing parsers. This
mechanism allows the extension and customization of the
scene library at various levels without editing any existing
code. Moreover, as long as the customized components
comply with the interfaces of the module (using a Bridge
pattern [12] if necessary), they can be used by other
researchers with very little effort.

2) Collision detection: The collision detection module
provides interfaces to trigger the detection of collisions
between sets of bodies of the scene. A user has the
possibility to create different sets of bodies and to detect
collisions among these sets independently. This can be
useful when the virtual scene includes elements that are
totally separated. Among the groups, it is possible to
associate flags to pairs of bodies. These flags will determine
which data is required from the collision detection low-level
library about the specified pair of bodies (proximity distance,
interpenetration. . . ). Finally, it is possible to exclude pairs
from a set of bodies, or to add pairs and detect collisions
among the specified pairs only.

3) Device management: The devices library manages
external devices such as haptic devices. It provides a
high-level interface to get information about various
devices that can be used within AMELIF. The haptic
device library possibly uses the collision detection and



the dynamic simulator to handle interactions between the
haptic probe and the virtual environment. This dependency
can be reversed if the haptic device is provided with
its own collision detection library and the ability to
compute the feedback force; in this case, the dynamic
simulator would rely on the haptic device to take into
account the interaction force between the haptic tool-tip
and the environment for the computation of direct dynamics.

4) Dynamic simulator: The dynamic simulator provides
interfaces to drive a dynamic simulation and to run
usual algorithms related to dynamics (direct dynamics,
computation of the operational space inertia matrix. . . ).
The dynamics simulation is responsible for computing
accelerations from the forces applied on bodies and
for resolving algorithms to handle contacts, impacts,
deformations, etc. It is also responsible for integrating the
computed accelerations and updating the state of the scene.
This module depends on the collision detection for bodies
and articulated bodies not to pass through each other.

The collision and dynamics modules can communicate
with other modules in two ways: they can either be used
as usual components that are queried on demand; or they
can be used as publishers that will send events to their
listeners, according to the well-known Observer (or Pub-
lisher/Subscriber) design pattern[12]. This way of communi-
cating with other modules has a strong advantage upon the
usual query-on-demand communication as it allows a clear
and automatic separation between algorithms and code that
handles output data types when polymorphism can not easily
be used (a typical case in communication among modules).
Client code can also be made aware of new output infor-
mation automatically, whereas with query-on-demand, the
user needs to read the documentation of the queried module
to keep aware of new outputs. This mechanism is used by
the collision detection module to send information about
detected collisions to all the subscribers modules, which can
either handle the collision as soon as it is received or store the
information for future use. Likewise, the dynamic simulator
publishes interactions, which are collisions augmented with
a contact force information. A publisher module has the
responsibility for defining the interface of its subscribers.
Thus, the publisher module has control over the data that
a client module can receive and can or must handle. A
publisher module is aware of the existence of its clients and
thus can have control over them while being independent of
the specific type of its client.

C. Default implementation

1) Collision detection and dynamic simulation: Each
module integrated to AMELIF defines a set of interfaces
with a default implementation for each interface. Additional
implementations can be developped if needed, and these
implementations can be substituted to the default ones if
they follow the contracts established by the interfaces. The
default implementation of the collision detection relies on

PQP1 and supports the computation of proximity distances
and intersections between triangles. Our dynamic simula-
tor is implemented as a listener of the collision detection
module. Once the collision detection module is initialized,
the dynamic simulator will register as one of its subscribers.
Each time a collision is detected, the dynamic simulator will
preprocess the collision and store the resulting information
for the next step of the direct dynamics. Currently, the
dynamic simulator listens to all collisions types published by
the collision detection but only handles punctual collisions.

The implementation of the direct dynamic model based
on Featherstone’s Articulated Body Method (see in [10],
[9]), strongly relies on the joints of a multi-body. Whereas
the same information will always be needed from the links
of an articulated body (mass, inertia, position. . . ), informa-
tion about the joints is subject to changes depending on
the joint types. While with one degree-of-freedom joints,
several quantities that are involved in the Featherstone’s
algorithm are real values, the same quantities for spherical
joints are matrices. The joint positions and velocities will
likewise be real values for single degree-of-freedom joints
and vectors or quaternions for multiple degrees-of-freedom
joints. Explicitly relying on the joint type in the Featherstone
algorithm would make the maintenance of the direct dynamic
model component difficult, as the algorithm would need
to be rewritten for each new joint type that would be
taken into account. Therefore, we wrote the algorithm in
term of a polymorphic joint hierarchy. Each type of joint
handles its specific computations itself; the code outside
the polymorphic joints is generic and will thus be robust
to the addition of new joint types or to any change in the
representation of joints.

The dynamic simulator can mix collisions handled with
the penalty method and collisions handled with constraint-
based methods. The general algorithm for one step is the
following:
• First, apply the gravitational force to each body.
• Then check for interactions between the haptic device

(if any) and the scene; add the interaction force to the
current force applied to the body in contact with the
haptic probe.

• Then handle penalty interactions: compute the penalty
force and add it to the current forces applied on inter-
acting bodies. Then compute the free accelerations of
all the bodies and joints.

• Handle constraint-based interactions, compute the con-
strained accelerations and add them to the free acceler-
ations.

• Finally integrate the system.
2) Haptic interfacing: Our framework is centered on

haptic interaction with virtual environments and with virtual
avatars. An example of such a haptic interaction is the real-
ization of a collaborative manipulation task with haptic feed-
back. For this purpose, we interfaced the PHANToM c© Pre-
mium 1.5 High ForceTM device commercialized by SensAble

1www.cs.unc.edu/˜geom/SSV



Technologies2. This device has six degrees of freedom with
a six degree-of-freedom force/torque feedback.

For the time being, we consider two different ways of
interacting: touching or dragging objects (including avatars).
In both cases, interaction will add an external force fe to the
dynamics of the objects:

q̈ = A−1 (Γ(q)− b (q, q̇)− g(q))+A−1JT
c fc +A−1JT

e fe
(1)

When an object is touched, the feedback force is ob-
tained via the Sensable OpenHapticsTM Toolkit. This library
provides a collision detection algorithm that computes the
feedback force due to contact between the virtual tip of the
PHANToM c© handle and the virtual environment, as well as
the coordinates of the contact point. The interaction force
at the contact point is computed by weighting the feedback
force by an arbitrary chosen coefficient. This force is added
to the dynamics equation during the computation of the free
acceleration of the bodies.

Dragging objects is useful for tasks like pick-and-place,
pushing or collaborative tasks (with avatars). As the user
moves the device, the object behaves accordingly. To achieve
this, the most common way used in interactive simulations
is to model a virtual coupling between the device and the
dragged object using a virtual spring-damper force:

fe = kp(xdevice − xcontact) + kv(ẋdevice − ẋcontact) (2)

where xdevice and xcontact are the positions/orientations of the
haptic device and of the object, respectively. kv is chosen
so that kv =

√
2mkp, with m the mass of the object.

Again, this force is added to the dynamics equation during
the computation of the free acceleration.

III. DEMONSTRATOR

To illustrate the advantages of our software architecture
and the capabilities of our simulator, we developped a small
demonstrator in which a user interacts at different levels
with a virtual avatar. We also introduce some modules that
are currently under development and being integrated to
AMELIF: the Haptic Perception module and the Visual
Perception module. The goal of this section is to emphasize
the possibilities offered by our framework for prototyping
algorithms centered on interaction with virtual avatars.

A. Scenario

In this demonstration, a virtual HRP-2 humanoid robot
stands in front of a table upon which lies an object. The robot
first goes to a predefined initial posture, and then stands idle.
The user touches the robot with a haptic probe; the robot
is triggered by this action and stares at the body that was
just touched. The robot then sees the haptic probe near the
touched body (if the haptic probe is in its field of view). It
thus starts to stare at the probe. The user moves the probe
toward the object on the table and just waits aside. After a
given amount of time during which the probe is close to the
object, the robot starts focusing on the object and graps it.

2www.sensable.com

Once the object is grasped, the robot’s arm is compliant to
forces applied on the object, which allows the user to move
the object to any configuration together with the robot. Let
us examine how such a behavior can be implemented under
AMELIF and how, starting from this implementation, virtual
prototyping for Virtual Reality-related algorithms centered
on human-avatar interaction can easily be realized.

Fig. 2. Structure of the demonstrator

B. The virtual HRP-2 avatar

The highest level component of the demonstrator is the
HRP-2 avatar. This component will implement a finite state
machine that will drive the avatar into different states. In
each state, a different set of behaviors are activated. From
the definition of the scenario, five states can be drawn: the
”going to initial position” state, the ”idle” state, the ”focus
on cursor” state, the ”grasping phase” state and the ”task”
state. As the scenario is very simple, these states are just
sequential. Once we leave a state, we can never come back
to this state. This make the implementation of the Finite State
Machine very easy. The ”going to initial position” state is
straightforward and just rely on controllers that will servo
the joints to follow specified trajectories defined off-line. The
”idle” state is just a state where the robot keeps its current
position and can just rely on a simple PD controller.

C. Dynamic simulation

The very first thing to do is to simulate the virtual
environment. AMELIF provides default implementations for
the visual and haptic rendering of a scene, low-level haptic
interaction with free-bodies and constraint-based dynamic
simulation with frictions. All we have to do is to load
the modules, parse XML files in which the environment is
described using the parser provided with the framework, and
run the components in the main program.



(a) (b)

(c) (d)
Fig. 3. The different steps of the simulation: (a) Go to initial configuration
(b) Trigger the robot by patting its hand (c) Show it the object (d) Move
the object together

Fig. 4. Interacting with the HRP-2 avatar using a haptic device

D. Focus on the haptic probe

The ”idle” state is left when the robot is touched. There-
fore, we need to let the HRP-2 avatar know when something
touches it. Typically, this can be implemented with the Skin
component, which is part of the Haptic Perception module.
This module is currently under development and proposes
interfaces and components related to haptic perceptions (var-
ious force sensors, skins. . . ). The Haptic Perception module
is implemented as a subscriber of the dynamic simulator.
Indeed, the simulator outputs collisions and their associated
interaction forces and bodies. When a virtual avatar is regis-
tered in the Haptic Perception module as having a skin, the
Haptic Perception module will trigger it each time this avatar
is involved in a collision, and will send it the associated
interaction force. This communication between the Haptic

Perception module and the avatar is realized through a Skin
component, which allows users to model various phenomena
related to the perception of forces by the skin.

The ”focus on cursor” state can be implemented in a
similar way. Instead of the Haptic Perception module, we
use a Visual Perception module. This module allows an
avatar to be triggered on different conditions. The simplest
way of triggering the avatar is to associate a Field of View
(FoV) component to the avatar. A FoV component raises
messages when objects of the scene that have been registered
as visible objects in the Visual Perception Module enter and
leave the field of view. We have the possibility to easily add
uncertainty about the position of the objects in the field of
view by adding an occluding component between the FoV
and the avatar.

In our demonstration, we did not add any uncertainty and
considered the avatar was able to perfectly determine the
position of objects in his field of view. Using a very simple
controller, we servo the joints of the robot’s neck so as to
stare at the cursor when the cursor is inside the field of view.
When both the haptic probe and the object on the table are
in the field of view, the avatar looks at the distance between
them and if it stays under a given threshold during a given
amount of time, the ”focus on cursor” state is left and the
”grasping phase” state is entered.

In our demonstration, the grasping phase is implemented
using pre-defined joint trajectory. However, using the jaco-
bian computation algorithm provided in the scene library, an
inverse kinematics algorithm could be used to automatically
reach the object at any location.

E. Task

In the ”task” state, the virtual HRP-2 was position-
controlled using a PD joint controller. To make the robot
compliant to the interaction force with the haptic device,
the desired joint positions qd are defined by the following
equation:

M q̈d + Bq̇d = JT
e fe (3)

where M and B are diagonal matrices of positive coefficients
corresponding to a virtual inertia and a virtual damping, fe
is the interaction force with the haptic device, and Je is the
Jacobian relating joint velocities to Cartesian velocities and
angular velocities for the kinematic chain that starts from
the root body of the avatar (here, the waist of the robot)
and ends at the body touched by the haptic device. To get
the haptic device force, we either need to subscribe to the
dynamic simulator and listen for interactions between the
haptic device and the environment or to directly query the
haptic device manager. For our demonstration, we chose the
first solution.

F. Results

Figure 2 shows the final architecture of the demonstrator,
including components that are part of the framework and
components that are specific to the demonstrated scenario.
The relationship between the different components and mod-
ules is represented by arrows. The only components that we



need to write to implement this scenario are the controllers
used by the avatar as well as the higher-level behavior encap-
sulated in the Avatar component. We ran the demonstration
on a computer equipped with a PHANToM c© Premium 1.5
High ForceTM. The robot indeed reacted according to the
scenario. Figure 3 shows screenshots of the different states
of the scenario. The translucid, light blue pyramid represents
the field of view of the robot. The haptic probe is represented
by the orange bar. The setup of the demonstration is shown
on figure 4. Although most parts of the demonstrator use
naive and simple implementations, it lays the basis for more
complicated simulations where sensor noise for the haptic
and visual perception can easily be integrated. A user who fo-
cuses on the haptic interaction during the task phase and does
not want to start from scratch can use such a demonstrator
and focus on the task behavior without caring about the other
components, while other users can at the same time work
on aspects related to vision. The integration of their own
components to the demonstrator is easily realized if the users
comply to the proposed interfaces. The overall amount of
code for this simple, skeletic demonstrator is rather small and
the development cost for the demonstrator was no more than
a couple of person-hours (not including the haptic and visual
perception modules which are provided to the user). The
demonstrator is robust to changes in the modules on which
it depends; the implementation of the dynamics simulator
and collision detection modules used by this simulator would
have no influence on the demonstrator’s code. A user can
relplace one of these modules by any other implementation
by changing only two lines of the demonstrator’s code. Any
haptic device can be integrated to AMELIF; replacing the
haptic device used in the demonstrator by another integrated
haptic device would then require to change only two lines
of code.

IV. CONCLUSION AND FUTURE WORK

In this paper, we presented a framework called AMELIF,
centered on interaction with virtual avatars. This framework
provides integrative aspects by its flexibility and extensibility
and allows fast and easy prototyping for algorithms related
to dynamics, collision detection, haptic and visual rendering
and low- and high-level interaction with virtual avatars.
Various utility tools and components are also available.
Several modules were developped under this framework
which together form a solid basis for simulating virtual
reality environments. Other modules, related to perception,
are currently being integrated. In the near future, various
control architectures will be integrated, including Operational
Space Control, stack of tasks, optimal control, and others.

The integrated simulator has been used to demonstrate
haptic interaction with virtual avatars. The virtual avatar
was enhanced with low-level behaviors and a simple higher
level behavior that switches low-level controllers according
to events that occur during the simulation. The goal of this
demonstrator was to show how this framework can be used
to derive Virtual Reality scenarios involving different kinds
of interactions with virtual avatars using different modalities,

for example to prototype algorithms. In the future, we will
use this framework to study and simulate higher level behav-
iors based on semantics that will be associated to patterns
of interaction force between avatars and their environment.
These behaviors will be based on an optimization of task
sequences, allowing smoother and faster motions and thus
more realistic haptic interaction with virtual avatars.

ACKNOWLEDGMENTS

This work is partially supported by grants from the
ImmerSence EU CEC project, Contract No. 27141 www.
immersence.info/ (FET-Presence) under FP6.

REFERENCES

[1] J. Hodgins and W. Wooten, “Animating human athletes,” Robotics
Research, pp. 356–367, 1998.

[2] A. Shapiro, D. Chu, B. Allen, and P. Faloutsos, “The dynamic
controller toolkit,” in The 2nd Annual ACM SIGGRAPH Sandbox
Symposium on Videogames, San Diego, CA, August 2007.

[3] S. Hasegawa, I. Toshiaki, N. Hashimoto, M. Salvati, H. Mitake,
Y. Koike, and M. Sato, “Human-scale haptic interaction with a reactive
virtual human in a real-time physics simulator,” Comput. Entertain.,
vol. 4, no. 3, p. 9, 2006.

[4] W. Son, K. Kim, and N. M. Amato, “A generalized framework for
interactive dynamic simulation for multirigid bodies,” IEEE Transac-
tions on Systems, Man, and Cybernetics, vol. 34, no. 2, pp. 912–924,
April 2004.

[5] D. C. Ruspini and O. Khatib, “Collision/contact models for dynamics
simulation and haptic interaction,” in International Symposium of
Robotics Research, Snowbird, Utah, October 9-12 1999, pp. 185–195.

[6] L. Sentis, “Synthesis and control of whole-body behaviors in hu-
manoid systems,” Ph.D. dissertation, Stanford University, July 2007.

[7] H. Hirukawa, F.Kanehiro, and S.Kajita, “Openhrp: Open architecture
humanoid robotics platform,” in Int. Symp. Robotics Research, 2001.

[8] C. Duriez, F. Dubois, A. Kheddar, and C. Andriot, “Realistic haptic
rendering of interacting deformable objects in virtual environments,”
IEEE Transactions on Vizualization and Computer Graphics, vol. 12,
no. 1, pp. 36–47, January-February 2006.

[9] J.-R. Chardonnet, S. Miossec, A. Kheddar, H. Arisumi, H. Hirukawa,
F. Pierrot, and K. Yokoi, “Dynamic simulator for humanoids using
constraint-based method with static friction,” in IEEE International
Conference on Robotics and Biomimetics, Kunming, China, December
17-20 2006, pp. 1366–1371.

[10] F. Keith, P. Evrard, J.-R. Chardonnet, S. Miossec, and A. Kheddar,
“Haptic interaction with virtual avatars,” in Proceedings of the Euro-
Haptics (Madrid June 9-13), 2008, pp. 630–639.

[11] J. Smart and K. Hock, Cross-Platform GUI Programming with
wxWidgets, 2005. [Online]. Available: http://www.wxwidgets.org

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Addison-Wesley
Professional, 1995.


