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Abstract: Physically based simulation is an indispensable component of many interactive

virtual environments. The main challenge of virtual reality applications is the realtime re-

quirement. Advanced simulation methods as, e.g., the finite elements method (FEM) require

significant computational power. However, the performance increases due to higher clock

speed are tapering off. Instead, the compute power is increased by replicating processing

units, making parallel computing a necessity for all performance demanding applications.

In this paper we analyze the runtime and scalability of a dynamic FEM simulation on

dualcore and quadcore architectures. Methods for both small and large deformation simula-

tion are tested and parallelized using OpenMP. The algorithms significantly profit from the

multicore architectures, with minimal changes to the serial code.

Keywords: multicore architectures, shared memory parallelization, physically based mod-

eling, finite elements method, virtual reality

1 Introduction

In the past, a lot of effort has been invested to make computer generated virtual environments

look realistic. Physically based modeling (PBM) is the next step toward making virtual

objects behave realistic. The users are familiar with the behavior of objects in the real world,

therefore providing ’real physics’ in the virtual environment allows for an intuitive interaction

with the virtual objects. There is a wide range of application areas that benefit from PBM,

for example assembly simulation, robotics, training and teaching (medical, military, sports),

and entertainment. Existing methods for the simulation of rigid body dynamics, deformable

objects and fluids have been adapted from the computational engineering sciences. The

main challenge of virtual reality applications is the realtime requirement, meaning that

the time needed to simulate a time step of a dynamic simulation must be shorter than

the time step itself. In the computing industry, performance increases due to higher clock

speed are tapering off. Instead, the compute power is increased by replicating processing

units (multicore architectures). In order to fully utilize all computational resources, parallel



computing is necessary even for desktop computers.

In this paper, we analyze the most commonly used approaches for physically based sim-

ulation of deformable objects from the parallelization point of view with special focus on

multicore architectures. In section 2 we give an overview of related work, section 4 reviews

the governing equations of the dynamic finite element (FE) simulation. We describe our test

cases in section 5 and the parallelization of the dynamic FE simulation using OpenMP in

section 6. We introduce the hardware architectures used for testing in section 3 and present

the results in section 7. The paper closes with a conclusion and outlook.

2 Related Work

[NMK+05] provide an overview of physically based deformable models in computer graphics.

The goal of an interactive physical simulation as used in games or virtual environments is the

visually plausible behavior of the simulated objects. Interactivity and stability of the simu-

lation are necessary conditions, good accuracy is desirable. Several solutions utilizing special

hardware including GPUs [OLG+05, GEW05], the IBM Cell Broadband Engine [DMB+06]

and the AGEIA PhysX processor [Age06] for the performance optimization of the physical

simulation of rigid or deformable objects have been proposed recently. However, in order

to use the hardware acceleration, both the simulation code and data structures have to be

substantially redesigned in order to map to the specific hardware, which is a nontrivial task

requiring special and deep knowledge of the hardware architecture used. Moreover, the end

users have to purchase a specific hardware in order to be able to use the optimizations.

Another promising strategy is the employment of general purpose multicore architectures

[OH05, SL05] as, e.g., the AMD Opteron or the Intel Xeon dualcore processors allowing

for parallel processing of multiple tasks. [TPB07] present a parallelization approach for

cloth simulation on an AMD Opteron machine with two dualcore processors. They use

parallelization techniques that are typically used on distributed memory systems (domain

decomposition followed by a matrix restructuring). They designed an own multithreaded

parallel programming model. The OpenMP standard [OMP05] offers a shared memory

parallelization model for the C/C++ and Fortran programming languages, which are the

most commonly used languages in computational engineering sciences. Compared to lower-

level parallelization approaches as, e.g., Posix-Threads, OpenMP requires the least design

changes of an existing serial code.

In this work, we analyze the linear finite elements method (FEM) as well as the coro-

tational FEM approaches. The linear FEM with constant parameters is the simplest FEM

based approach. However, it is only suitable for small deformations. For large deformations,

the simulation parameters change over time, as they depend on the current deformation

state. Especially, the linear strain measure is not rotationally invariant and therefore leads

to disturbing artifacts whenever the simulated object or its parts change their orientation.

The corotational method was introduced by [MDM+02] and improved by [HS04] and [MG04].

The deformation is decomposed into a rigid rotation part and a pure deformation part avoid-



ing the problem of the classical linear approach. [MG04] achieve interactive simulation rates

for approximately 1,000 tetrahedral elements with both the linear and the corotational meth-

ods on a 1.8 GHz Pentium IV PC. In addition to the elastic deformation they also simulate

plastic deformation (e.g. melting) and fracture. [HS04] compare different approaches for the

simulation of large deformations. They reach a stable simulation with realtime update rates

for approximately 3,000 tetrahedral elements on a 2 GHz Pentium IV PC using the coro-

tational formulation based on the polar decomposition of the deformation gradient. Both

[MG04] and [HS04] use implicit time integration schemes.

In order to profit from recent developments in the computing industry (chip level par-

allelism) and to allow for larger datasets to be handled in realtime, we parallelized the

algorithms mentioned above and analyzed the runtime behavior and scalability. Here we

present an approach that uses several processors or cores in one computer that share the

same memory. As will be described in the following, the presented solution requires only

minimal changes to the source code and the algorithms do not need to be modified at all.

Nonetheless, significant improvements on commodity architectures can be realized.

3 Multicore Architectures

We evaluated our parallelized algorithms on two commodity dualcore architectures that

basically differ in how they share the on-chip L2 cache. In addition, we had access to a

prototype of a system with Intel’s quad-core architecture.

Figure 1: The AMD dualcore Opteron system

a) AMD Opteron 875 dualcore processors (Fig. 1), 2.2 GHz, four of which are grouped in

one Sun Fire V40z server. Each core has a 1 MB L2 cache, which is not accessible by

the other cores. This machine has a ccNUMA architecture where the memory access

time depends on the location relative to a processor. On such a system locality is



(a) The dualcore Xeon (Woodcrest) system (b) The quadcore Xeon (Clovertown) system

Figure 2: The Intel multicore architectures used for testing.

important in order to achieve high performance. We used the Sun Studio Express

C++ compiler under Solaris.

b) Intel Xeon 5160 dualcore processors (codename Woodcrest, Fig. 2a), 3 GHz, two of

which are grouped in one Dell Power Edge 1950 server. Each processor has a 4 MB

L2 cache shared by its cores. This machine has a flat memory model. We utilized the

Intel 9.1 C++ compiler under Linux.

c) Intel Xeon 5354 quadcore processor (codename Clovertown, Fig. 2b), 2.4 GHz, two of

which are grouped in a server. Every two cores on one chip share 4 MB of L2 cache.

It has to be noted, that we tested on a preproduction version of the processor and the

chipset, which might not achieve the full performance of the final version. We used the

Intel 9.1 C++ compiler under Linux.

High optimization level (-O3) and multifile optimization (-ipo) were used on all systems.

4 The Dynamic Finite Element Simulation

The dynamic FE system is described by the equation

Mü + Du̇ + Ku = f (1)

where u is the vector of nodal displacements, K is the global stiffness matrix, M is the mass

matrix and D is the damping matrix. The stiffness matrix is a sparse symmetric matrix,

where the sparsity pattern corresponds to the elements’ connectivity. The mass and damping

matrices are typically diagonal. The left hand side of equation (1) corresponds to the object’s

internal forces, whereas the right hand side corresponds to the external load. The dimension

of equation (1) is 3N , where N is the number of nodes in the FE mesh.



Figure 3: The test case Hippo. The simulation mesh consists of 20,870 elements (left).

In order to solve equation (1), the original second order ordinary differential equation

(ODE) is split into two first order ODEs introducing velocity v = u̇ and acceleration a =

v̇ = ü. The current nodal acceleration can be obtained by evaluating the current forces

divided by the mass.

F = f − Dv − Ku (2)

a = M
−1F (3)

When the external forces are balanced by the body internal forces, the resulting force F

acting on the body is zero and consequently the body acceleration is zero. When the external

and internal forces are not balanced, the body or its parts undergo a nonzero acceleration.

The acceleration of the nodes caused by the unbalanced external and internal body forces

is the key to the object deformation. The nodal acceleration can be integrated in time to

obtain the velocities of the nodes, which can be integrated in time again to obtain the nodal

displacements.

In order to perform the numerical integration of acceleration and velocity, the simulation

time t is discretized into time steps of size ∆t. Theoretically, any numerical method for

solving the initial value problem of ODEs can be used. In practice, the applied method has

to be fast enough to allow for realtime simulation. Moreover, the stability of the integration

scheme is crucial for interactive applications. Therefore, we use the implicit Euler (IE)

integration method.

When applied to equation (1), the IE method leads to
[

M − ∆t
∂F

∂v
− ∆t2

∂F

∂u

]

∆v = ∆tF(t) + ∆t2
∂F

∂u
v(t) (4)

∆u = ∆tv(t + ∆t) (5)

The modified conjugate gradients (ModifiedCG) method as described in [AB03] can be used

to solve this system of equations in each simulation step. In addition to the standard

conjugate gradients (CG) method, the ModifiedCG accounts for constraints.



Figure 4: The test case Bar. The simulation mesh consists of 12,800 elements (left).

5 Test cases

We created two benchmark datasets. The Hippo dataset (Fig. 3) consists of 20,870 tetrahe-

dral elements and 5,550 nodes. The material density is ρ = 1000 kg

m3 , with an elastic modulus

E = 0.1MPa and a Poisson’s ratio ν = 0.33. The object is falling to the floor without any

other constraints. The stiffness matrix remains constant during the simulation and thus the

linear FE approach is used.

The second benchmark, the Bar (Fig. 4), consists of 12,800 tetrahedral elements and

3,321 nodes. The material density is ρ = 100 kg

m3 with an elastic modulus E = 0.1MPa and

a Poisson’s ratio ν = 0.33. The left side of the object is fixed and the bar is bending under

gravity. This is an example of a large deformation, where the stiffness matrix depends on

the current deformation state. The corotational FEM is employed to simulate this test case.

Compared to problem sizes that typically require parallelization to be solved in reasonable

time, both test cases are rather small, but are still challenging for realtime simulation.

Depending on the CPU architecture, the matrix and the associated vectors of the Hippo

dataset may fit into the on-chip L2 cache. The global stiffness matrix K has 5550 × 5550

elements, thereof 63,526 are non-zero (sparse matrix with 0.2% fill rate). Each element of

the matrix is a dense 3 × 3 matrix. The compressed row storage scheme is used to store the

stiffness matrix. As the matrix is symmetric, only the upper triangular matrix is stored.

The memory footprint of the global stiffness matrix is approximately 1.3 MB.

Although the global stiffness matrix for the Bar dataset is not built explicitly, for neigh-

bored mesh elements or localized force vectors it is possible to profit from locality, as will be

described later. Thus, the corotational FEM algorithm has a high cache efficiency as well.

6 Implementation

This section describes the implementation and parallelization of the dynamic FE simula-

tion. Figure 5 shows the simulation main loop. The functions ApplyExternalForces and

ApplyInternalForces correspond to equation (2). Vector S stores the constraints (for more

details, we refer to [AB03]). For the sake of simplicity, we assume that matrix A has been



Figure 5: The pseudo code of the main simulation loop.

precomputed and remains constant during the simulation. The line ModifiedCG(A,b,dv,S)

corresponds to the system of equations (4). It has to be solved for dv, which is then used to

update the current state consisting of nodal positions and velocities.

First of all, we carried out performance analysis experiments to retrieve the runtime pro-

file of both benchmarks without parallelization. For both we used an iteration time step of

∆t = 40 ms and we simulated a total time of 5 s. Thus, 125 implicit Euler steps are per-

formed. In each IE step, 10 CG iterations are performed. Table 1 shows the portions of total

simulation time spent in the most time consuming functions. The major part of simulation

Hippo Bar

total runtime 7 s 36.4 s

ApplyInternalForces 58 % 11 %

ModifiedCG 30 % 88 %

Table 1: Runtime profiles of the Hippo and Bar benchmarks. The largest amount of to-

tal simulation time is spent in the ApplyInternalForces and ModifiedConjugateGradients

functions.

time is spent in only two functions. The ApplyInternalForces function evaluates the inter-

nal forces by adding the contributions of all elements to the global force vector (compare to

equation (2)). The time spent in the ModifiedCG function is dominated by the multiplica-

tion of the sparse matrix by a vector. For the Hippo, the matrix A =
[

M − ∆t∂F

∂v
− ∆t2 ∂F

∂u

]

is constant and can be precomputed. It has the same size and sparsity pattern as the global

stiffness matrix. However, the matrix-vector multiplication still takes about 60 % of the time

spent in ModifiedCG. For the Bar, the stiffness matrix (and thus also the matrix A) depends

on the current deformation state. The orientation of each element is updated every 200 ms

within the ApplyInternalForces function. Instead of storing the global stiffness matrix

explicitly, we compute the required matrix-vector product on the fly from the contributions

from all elements. In this case, the time spent in the matrix-vector multiplication takes

about 98 % of the time spent in ModifiedCG.

The above analysis shows that the largest benefit can be achieved by the parallelization of

both the ApplyInternalForces and the ModifiedCG methods. The ApplyInternalForces



Figure 6: ApplyInternalForces - parallelized C++ code. OpenMP directives are printed

in blue bold.

function contains a loop over all elements summing the forces’ contributions into a global

vector. The contribution of each element only depends on the current state of the element

itself. Typically, this can be done efficiently using a reduction operation. The current version

of the OpenMP specification does not allow for reductions on high level datatypes [TaM06],

therefore we created a private force vector for each thread and at the end, all private vectors

are summed within a critical section into a shared force vector. During our performance

analysis experiments we found that this technique is cache efficient, as all updates during

the loop are written to a local vector that is not distributed among several cores.

Figure 6 shows the parallelized code of the ApplyInternalForces function. The OpenMP

directives are printed in blue bold. The #pragma omp parallel construct declares a par-

allel section. When the program encounters this construct, a team of threads is created

to execute the parallel region. The shared attribute lists variables that are shared by all

threads within the parallel region. The #pragma omp for construct declares a loop whose

iterations will be executed in parallel. The iterations of the loop are distributed among

the OpenMP threads that already exist in the parallel region. The binding between the

threads and the loop iterations is controlled by the schedule attribute. The nowait clause

avoids a synchronization barrier at the end of the for loop. The #pragma omp critical

construct restricts execution of the associated region to a single thread at a time. Within

the ApplyInternalForces function the critical section is used to avoid concurrent writing

when adding the results of each thread stored in a private priv forces vector to the shared

forces vector. More detailed description of OpenMP directives can be found in [OMP05].

In the ModifiedCG algorithm (Fig. 7), it is not possible to parallelize the iteration loop,

as each iteration depends on the previous one. Each iteration consists of several vector

operations, e.g., Scale, Add, Dot, MultiplyComponents and a matrix vector multiplication

Multiply. Most of these operations can be parallelized in a trivial way. However, a trivial



Figure 7: ModifiedCG - parallelized C++ code. OpenMP directives and parallelized sub-

routines are printed in blue bold. The Dot and Multiply functions contain an implicit or

explicit synchronization barrier (red bold).

parallelization of the vector operations would lead to a synchronization barrier at the end

of each operation. Usually, a CG-type method is parallelized in OpenMP by extending

the parallel region over the iteration loop including the system setup and - if possible -

the preconditioner. Then the work inside the vector operations can be shared among the

threads by using orphaning, which allows for placing the worksharing directives in a different

scope (e.g. a subroutine) than the enclosing parallel region. Placing orphaned worksharing

directives in the subroutines is problematic if these are used in a serial part of the program.

Therefore, an orphaned version of each vector math subroutine has to be created. Moreover,

the parallelized vector operations have to ensure that a certain thread is accessing the same

parts of the vectors across all such operations. We did this by using a static schedule of

fixed chunksize and added - where applicable - the nowait directive to minimize the number

of barriers needed inside an iteration. In our implementation, four synchronization barriers

per ModifiedCG iteration are needed. The Dot function contains an implicit barrier because

of reduction. The Dot function is called two times per ModifiedCG iteration. The Multiply

function contains an explicit barrier at its beginning ensuring that the input data are ready

and an reduction barrier at its end.



(a) Runtime in seconds for 5 seconds simulation time

(red line).

(b) Speedup

Figure 8: Results for the Hippo test case. The deformation is computed using the linear

FEM.

(a) Runtime in seconds for 5 seconds simulation time

(red line).

(b) Speedup

Figure 9: Results for the Bar test case. The deformation is computed using the corotational

FEM.

7 Results

Figure 8 shows the results for the Hippo dataset. The simulation scales up to three threads. A

speedup of only 1.5-2 can be reached. The poor scalability is caused by the low computational

cost of all parallelized routines compared to the synchronization time. We used the Sun

Analyzer to measure the time distribution in the compute kernel and the OpenMP library

separately and found the overhead for creating a parallel region and for explicit barriers

increasing in the same rate as the compute time decreases. We verified these results by

comparing with the EPCC benchmark suite [BO01]. However, the realtime limit is reached

for over 20,000 elements on one or two cores on all platforms. As the complexity of the

algorithm is linear in the number of elements, it is possible to simulate a FE mesh with up

to 40,000 elements on three Woodcrest or Clovertown cores in realtime. For the Clovertown,

the required number of cores will already be available in a commodity single socket system.



For the Bar benchmark, the computational costs in both the ApplyInternalForces and

the ModifiedCG functions are higher and, therefore, a better scalability can be expected.

Figure 9 shows the results for the Bar dataset. We reached a speedup of up to 6.5 on

eight Clovertown cores and 3.4 on four cores on all platforms. However, the realtime limit

for nearly 13,000 elements has only been reached on the Clovertown platform. With five

OpenMP threads, the Clovertown performance drops down unexpectedly. The effect is

reproducible, but we do not have a substantiated explanation for it. As the complexity of

the algorithm is linear in the number of elements, it is possible to simulate up to 10,500

elements on four Woodcrest cores in realtime. This is a noticeable improvement, compared

to the approx. 3,000 elements that can be simulated in realtime by a serial algorithm.

8 Conclusion and Outlook

The algorithms examined in this work profit from the current development in the computing

industry of placing multiple processing units on one chip. The parallelization of the serial

algorithms was straight forward, only minimal changes to the C++ source code were nec-

essary. On Clovertown, the first quadcore architecture available on the consumer market,

we were able to handle a dataset with 13,000 elements using the corotational FEM for the

simulation of large deformations in realtime. The achieved speedup is comparable to the

values achieved by advanced parallelization techniques as domain decomposition and matrix

rearrangement (cp. [TPB07]).

The methods described in this paper have been integrated into our surgery simulator.

Surgical simulation is one of the most challenging application areas of PBM. In addition to

tissue deformation and its visualization, collision detection and force feedback have to be

processed as well. Moreover, tissue cutting has to be provided. The deformation, visualiza-

tion, collision detection and haptics processes run in parallel, each in a separate thread with

its specific update rate. As can be seen from the results presented above, the computation-

ally most intensive part, the FEM based deformation, significantly profits from multicore

architectures. We expect the surgery simulator system to benefit from upcoming parallel

architectures, that will be multisocket multicore machines, by binding the different software

components to sets of processing units separately.
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