Creating & processing 3D geometry:
smooth boundary representations

1. Representations
 - Discrete models: points, meshes, voxels
 - Smooth boundary: Parametric & Subdivision surfaces
 - Smooth volume: Implicit surfaces

2. Geometry processing
 - Smoothing, simplification, parameterization

3. Creating geometry
 - Reconstruction
 - Interactive modeling, sculpting, sketching

Why do we need Smooth Surfaces?

Meshes
 - Explicit enumeration of faces
 - Many required to be smooth!
 - Smooth deformation???

Smooth surfaces
 - Compact representation
 - Will remain smooth
 - After zooming
 - After any deformation!

Parametric curves and surfaces

Defined by a parametric equation
 - Curve: \(C(u) \)
 - Surface: \(S(u,v) \)

Advantages
 - Easy to compute point
 - Easy to discretize
 - Parametrization

Parametric curves: Splines

Motivations: interpolate/approximate points \(P_k \)
 - Easier to give a finite number of “control points”
 - The curve should be smooth in between

Why not polynomials? Which degree do we need?

Spline curves

- Defined from control point
- Local control
 - Joints between polynomial curve segments
 - Degree 3, \(C^2 \) or \(C^1 \) continuity

Choice of a representation?

Notion of “geometric model”
 - Mathematical description of a virtual object
 (enumeration/equation of its surface/volume)

How should we represent this object…
 - To get something smooth where needed?
 - To have some real-time display?
 - To save memory?
 - To ease subsequent deformations?
Creating & processing 3D geometry: smooth boundary representations

Interpolation vs. Approximation

Splines curves

Mathematical formulation?
- Curve points \(= \) linear combination of control points

Desirable properties for the "influence functions" \(F_k \)?

Properties of influence functions?

1. Affine invariance

Invariance to affine transformations?
- Same shape if control points are translated, rotated, scaled

\[\sum F_k(u) = 1 \]

- Influence coefficients are barycentric coordinates
- Prop: barycentric invariance too. Application to morphing

Properties of influence functions?

2. Convex hull

Convex hull: \(F_k(u) \geq 0 \)

- Curve points are barycenters

- Draw a normal, positive curve which interpolates
- Can it be smooth?

Properties of influence functions?

3. Variance reduction

No unwanted oscillation?

No intersections curve / plane \(\leq \) control polygon / plane

- A single maximum for each influence function

Properties of influence functions?

4. Locality

Local control on the curve?
- easier modeling, avoids re-computation

Choose \(F_k \) with local support
- Zero and zero derivatives outside an influence region
- Are they really polynomials?
Properties of influence functions?
5. Continuity: parametric / geometric

- Parametric continuity C1, C2, etc
 - Easy to check
 - Important if the curve defines a trajectory!
 Ex: \(q(u) = (2u, u) \), \(r(t) = (4t+2, 2t+1) \).
 Continuity at \(J = q(1) = r(0) \) ?

- Geometric continuity G1, G2, etc

Splines curves
Summary of desirable properties

\[C(t) = \sum F_k(t) P_k \]

- Interpolation & approximation
 - Affine invariance \(\sum F_k(t) = 1 \)
 - Locality \(F_k(t) \) with compact support
 - Parametric or geometric continuity

- Approximation
 - Convex envelope \(F_k(t) \geq 0 \)
 - Variance reduction: no unwanted oscillation

Splines curves
Most important models

- Interpolation
 - Hermite curves C1, cannot be local if C2
 - Cardinal spline (Catmull Rom)

- Approximation
 - Bézier curves
 - Uniform, cubic B-spline (unique definition, subdivision)
 - Generalization to NURBS

Cardinal Spline, with tension=0.5

Uniform, cubic Bspline

Cubic splines: matrix equation

\[Q_i(u) = (u^3 \ u^2 \ u \ 1) \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & -3 & 0 & 1 \end{bmatrix} P_i \]

\[M_{spline} = \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & -3 & 0 & 1 \end{bmatrix} \]

\[M_{knot} = \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & -3 & 0 & 1 \end{bmatrix} \]
Creating & processing 3D geometry: smooth boundary representations

Splines surfaces

- Tensor product: product of spline curves in \(u \) and \(v \)
 \[Q_{i,j}(u, v) = (u^3 u^2 u 1) \cdot (v^3 v^2 v 1) \]

- Smooth surface?
- Convert to meshes?
- Locality?

Splines surfaces

- Expression with separable influence functions!
 \[Q_{i,j}(u, v) = \sum B_i(u) B_j(v) P_{ij} \]

Historic example

Can splines represent complex shapes?

- Fitting 2 surfaces: same number of control points

Can splines represent Complex Shapes?

Closed surfaces can be modeled
- Generalized cylinder: duplicate rows of control points
- Closed extremity: degenerate surface!

Can we fit surfaces arbitrarily?

Subdivision Curves & Surfaces

- Start with a control polygon or mesh
- Progressive refinement rule (similar to B-spline)
- Smooth? use variance reduction!
 - "corner cutting"
Creating & processing 3D geometry: smooth boundary representations

How Chaikin’s algorithm works?

\[
Q_i = \frac{3}{4} P_i + \frac{1}{4} P_{i+1} \\
R_i = \frac{1}{4} P_i + \frac{3}{4} P_{i+1}
\]

Subdivision Surfaces

- Topology defined by the control polygon
- Progressive refinement (interpolation or approximation)

Example: Butterfly Subdivision Surface

- Interpolate
- Triangular
- Uniform & Stationary
- Vertex insertion (primal)
- 8-point

\[a = \frac{1}{2}, \quad b = \frac{1}{8} + 2w, \quad c = -\frac{1}{16} - w \]

\[w \text{ is a tension parameter} \]

\[w = -\frac{1}{16} \Rightarrow \text{surface isn’t smooth} \]

Example: Doo-Sabin

Works on quadrangles; Approximates

Comparison

<table>
<thead>
<tr>
<th>Catmull-Clark (primal)</th>
<th>Doo-Sabin (dual)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Original control mesh.</td>
<td>(b) Control mesh after one subdivision.</td>
</tr>
</tbody>
</table>
Creating & processing 3D geometry: smooth boundary representations

Subdivision Surfaces

Benefits
- Arbitrary topology & geometry (branching)
- Approximation at several levels of detail (LODs)

Drawback: No parameterization, some unexpected results

Extension to multi-resolution surfaces: Based on wavelets theory

Advanced bibliography

1. **Generalized B-spline Surfaces of Arbitrary Topology**
 [Charles Loop & Tony DeRose, SIGGRAPH 1990]
 - n-sided generalization of Bézier surfaces: “Spatches”

2. **Xsplines** [Blanc, Schlick SIGGRAPH 1995]
 Approximation & interpolation in the same model

3. **Exact Evaluation of Catmull-Clark Subdivision**
 [Jos Stam, Siggraph 98]
 Analytic evaluation of surface points and derivatives
 - Even near irregular vertices,
 - At arbitrary parameter values!
Creating & processing 3D geometry: smooth boundary representations

Advanced bibliography

4. Subdivision Surfaces in Character Animation

[Tony DeRose, Michael Kass, Tien Truong, Siggraph 98]

Keeping some sharp creases where needed

Advanced bibliography

5. T-splines & T-NURCCs [Sederberg et al., Siggraph 2003]

T-splines d³, C²: superset of NURBS, enable T junctions!
- Local lines of control points
- Eases merging

T-NURCCs: Non-Uniform Rational Catmull-Clark Surfaces with T-junctions
- Superset of T-splines & Catmull-Clark
- Enable local refinement
- Same limit surface.
- C2 except at extraordinary points.

Comment représenter la géométrie ?

• Représentations par bord / surfaciques / paramétriques
 - Polygones (surfaces discrètes)
 - Surfaces splines
 - Surfaces de subdivision, surfaces multi-résolution
• Représentations volumiques / implicites
 - Voxels (volumes discrets)
 - CSG (Constructive Solid Geometry)
 - Surfaces implicites

Adapter le choix aux besoins de l’animation et du rendu!