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Abstract. Stereophotometric computer vision is based on the inver-
sion of an equation system which represents the physical reflection phe-
nomenon under different lighting conditions. In noisy conditions, the sys-
tem has generally no solution, and the typical way to solve it is to find
the solution which minimizes some error function. This paper proposes
a new approach to deal with this system, using the so-called Geomet-
rical Compatibility Function. The problem is turned into a root-finding
in a one-dimensional space and the robustness is largely improved with
respect to wrong reflectance model coefficients.

1 Introduction

1.1 BRDF and the surface model

Stereophotometric methods for computer vision, first introduced by Woodham
[7], aim to locally compute from different images the tangent plane at each point
of a surface, in order to deduce a surface model. They are based on the knowledge
of the Bidirectionnal Reflection Distribution Function (BRDF), which represents
the scattering of reflected light through the directions of the local exterior half-
space (fig. 1).

Most real-world materials do not have the Lambertian property which leads
to linear equations. There are typically two kinds of non-Lambertian phenomenons:
specularities and specular diffuse reflection. Specularities (mirror-like reflections)
were much studied in order to avoid their influence on the computation, or to use
them for geometrical deductions [1, 2, 3]. The approach is to treat them apart
from diffuse reflection. The specular diffuse reflection is difficult to deal with,
since it needs knowledge of the BRDF and involves more complex and unstable
equations. It was shown [4] that for a large class of BRDFs, three equations
( thus three images ) are needed to obtain a unique solution. The problem is
that the BRDF is usually unknown, thus approximations lead to errors in the
reconstruction of the normals.
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Fig. 1. The grey 3d-surface represents the values of a plausible non-Lambertian
BRDF (n, s,v) for different viewing directions

1.2 Computing the normals

The input data is composed of several images created under different known
lighting conditions. From a physical point of view [6, 5], radiance Lr cast through
direction v is quantified by the expression:

Lr(n,v) =

∫

Ω

L(s)n.sBRDF (n, s,v)dωi (1)

where L(s) is the irradiance from direction s, expressed in W.m−2.st−1, and Ω
the exterior half-space. When the BRDF is known, and with three available
images, equation 1 and numerical data allow us to build equation systems, the
solution of which provide the local normal coordinates on a regular grid n(i, j)
which corresponds to the pixels grid.

2 A new method for computing the normals

2.1 Creating the equation system

In order to simplify equations, the light source is typically assumed to be a
single point at infinity, of known power, and we will only deal with diffuse reflec-
tion, without interreflections. The radiance equation 1 becomes Lr(s,n,v) =
L(s)n.sBRDF (n, s,v) with L(s) expressed in W.m−2. In the case of a non-
Lambertian reflection [8, 9, 10], the system:




Lr(s1,n,v) = L1

Lr(s2,n,v) = L2

Lr(s3,n,v) = L3

is not linear, and has no root in case of noisy data or inappropriate BRDF. With
a two-equation system, there are two solutions in the general case. The classical
approach is to minimize some cost function like the quadratic difference between
estimated and measured radiances. The dimensions of the search space may be
two or three, depending on how you parametrize the normal.



2.2 Root-Finding Resolution

Principle. Most BRDFs used for reconstruction are functions of n.v and n.s,
like those of Blinn, or Torrance-Sparrow. We will use one suggested by Lewis [5],
for its physically plausible analytical form, which leads to the radiance relation

L(n, s,v) = L(s)n.s(Kd +Ks(
n.s+ n.v

‖s+ v‖ )n) (2)

where Kd,Ks and n are independent real coefficients. The first one corresponds
to the Lambertian part of the reflection, the others define what is usually called
the forescatter lobe.

Notice that this radiance function is monotonically increasing with respect
to n.s and n.v. This means that, for measured values R and L(s), given a
certain n.v, you can find the corresponding n.s = ns(n.v) with a binary search.
The problem is to know the value of n.v. For three images taken with a fixed
camera and different known lighting directions, it is easy to compute the ai
coefficients such that v = a1s1 + a2s2 + a3s3. The linearity of the dot product
leads to n.v = a1n.s1 +a2n.s2 +a3n.s3. Replacing the nsi(n.v) functions in the
above relation creates a function that we will call the Geometrical Compatibility
Function (GCF), and the desired value must be a root of this function (fig.2):
a1ns1(n.v) + a2ns2(n.v) + a3ns3(n.v)− n.v = 0
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Fig. 2. The root provides the desired nsi values

Validity of the method. The necessary condition to create the Geometrical
Compatibility Function is that the light directions must be linearly independent.
A sufficient condition for the uniqueness of the root is that all the ai were
positive, and the BRDF monotonic with respect to n.v and n.s. It means that
for most reflection models, with the camera inside the (s1, s2, s3) trihedron, we
can implement efficient binary search resolutions.

It might seem strange that the radiance equations system has no root whereas
the above function does. The reason is that we did not enforce the ‖n‖ = 1 con-
dition. This allows us to define a measure of quality defined as e = (n2 − 1)2.
This error will further be denoted as estimated error. The normal is then renor-
malized. Numerical experiments detailed further show that it is a reliable quality



evaluator. Compared with a minimization, a root-finding has the advantage to
provide an exact bracketing of the solution for any desired precision. We can
also expect a quicker convergence.

Extension to different points of view This method is based on the fact that
n.v is the same for each image when you change only the lighting source. For
three images with the same source and different camera positions, the geomet-
rical compatibility equation turns into s = a1v1 + a2v2 + a3v3 and the method
can be adapted.

3 Experimentation

The minimization was implemented with a Powell’s algorithm, whereas the root-
finding used a Newton-Raphson algorithm [11]. Numerous tries were made to
compare the robustness of the two methods. A theoretical 64 × 64 surface was
created, represented by points and normals. Three illuminations were simulated,
the radiances for each pixel were computed with radiance equation 2.

The important features are robustness with respect to false reflection coef-
ficients (Kd,Ks, n) and noisy data. The error function we use is the standard
deviation between the initial and reconstructed normals. This value will be use-
ful for two reasons: measuring the quality of the reconstruction, and if the es-
timated error is correctly related to the real error. It is actually important to
know whether the estimated error is reliable or not, because if it is, we can ex-
pect to improve our reconstructions by minimizing the error with respect to the
reflection coefficients.

The following figures show the influence of a wrong Ks on the accuracy of
reconstruction. The surface is Lambertian when Ks = 0. The curves are very
similar for Kd. For wrong n values, both methods lead almost to the same result.
The horizontal axis shows the different values Ks, whereas Kd and n are correct.
The vertical axis shows the average deviation in degrees of the objective errors of
the two methods, and the value of the estimated error. For clarity, the estimated
error of the classical approach was not drawn.
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Fig. 3.
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The above figures show the different errors in noiseless conditions for a quasi-
Lambertian surface (fig. 3) and for a non-Lambertian one(fig. 4). We can see that
root-finding is much less sensitive to wrong coefficients. The estimated error can
lead to the exact ones.
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Fig. 6.

Figures 5 and 6 show the results with the same surfaces and a white, Gaus-
sian noise with a standard deviation of two percent, which is a sensible value
for modelizing real conditions. The new approach seems more sensitive to noisy
data, since the error is bigger around the exact coefficients. However, wrong
coefficients quickly compensate and reverse the difference. It means that in ordi-
nary conditions we can expect a better reconstruction with unknown coefficients.
Furthermore, the estimated error keeps a minimum around the exact coefficient,
this will be helpful to improve it. Further tries showed that this minimum cor-
responds more precisely to the exact coefficients than the estimated error of the
classical approach. Once we have the best coefficients, we can always improve
the result by minimization.

The total time, including normal reconstruction, integrabilization, and in-
tegration is less than five minutes for a 512 × 512 surface on an standard SGI
INDY workstation.

4 Conclusion

Considering the Geometrical Compatibility Equation allows us to turn the nor-
mal reconstruction into a root-finding problem. For a large class of reflectance
models, the root is unique and can be found with binary search. This approach
is continuously suitable from Lambertian to non-Lambertian surfaces. Different
tries were made to compare the efficiency of this method with a classical approach
under the same hypotheses. The root-finding seems more sensitive to noisy data
but much less with respect to wrong reflectance coefficients. The provided esti-
mated error is smooth and has one minimum around the exact coefficients. This
new approach could be useful for non-Lambertian or quasi-Lambertian surfaces,
whose reflectance function is almost always unknown.
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