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Abstract

This paper presents an approach to animate elastic deformable ma-
terials at interactive rates using space-time adaptive resolution. We
propose a new computational model, based on the conventional
Hooke’s law, that uses a discrete approximation of differential op-
erators on irregular grid. It allows local refinement or simplification
of the computational model based on local error measurement. We
in effect minimize calculations while ensuring a realistic and scale-
independent behavior within a given accuracy threshold. We demon-
strate this technique on a real-time virtual liver surgery application.

1 Introduction
Although simple interactive animation techniques exist and are used
in virtual reality systems for instance, they mainly simulate rigid
bodies. Using simplified solid mechanics laws, they focus on is-
sues like collision detection and contact modeling, where naive ap-
proaches are computationally intensive [Bar96, Fau98]. A smaller
amount of effort has been put into deformable object simulation.
The majority of the existing techniques have to be performed off-
line, and cannot be used in a virtual environment with real-time dis-
play.
However, recent work has demonstrated unrivaled low computation
times for deformable objects or surfaces [BW98, DSB99]. These
approaches rely on implicit integration to advance the simulation in
time with no or few concerns about stability even at large time steps.
We may soon observe a number of VR applications, like interactive
animation of deformable tissues for surgery training for instance.
The current state-of-the-art animation techniques use constant spa-
tial discretization (fixed number of mass elements). Yet, we should
be able to save even more computation in adapting discretization ac-
cordingly to the complexity of the occurring motion. A body under-
going significant local deformation should be refined in this region
only, to ensure both a precise geometrical description of the defor-
mation and a prescribed accuracy. Large amount of computation
may be saved using such an adaptive technique, similarly to what is
now widely used in simulation of lighting by radiosity techniques.
Unfortunately, ensuring a same global behavior for the object, what-
ever the discretization rate is, remains challenging.

1.1 Prior work
The first model in Computer Graphics to animate deformable bod-
ies was introduced by Terzopoulos et al. [TPBF87], using finite dif-
ferences or finite elements for the integration of energy-based La-
grange equations. This initial model, based on Hooke’s law for
perfectly elastic objects, has been improved subsequently to handle
plasticity and fractures [TW88, TF88]. Finite element techniques
have also been proposed [GMTT89], including a real-time simu-
lation of elastic bodies [BNC96, DCA99], but using quasi-static
models, thus loosing the dynamic behavior. As these physically-
based methods are computationally intensive, other approaches ap-
peared, allowing fast animation of simple dynamic objects by tak-
ing into account only some possible deformations or vibration
modes [PW89, WW90, MT92]. Unfortunately, such restrictions on
the behavior considerably affect the realism of the animation.
As mentioned earlier, all these techniques use a fixed space dis-
cretization rate, and also usually a fixed time discretization rate. Re-
cently, a model using adaptive resolution has been developed for the
simulation of hanging clothing [HPH96].

�iMAGIS is a joint project of CNRS, INRIA, INPG & UJF.
fdebunne,mpcg@imag.fr fmathieu,barrg@cs.caltech.edu

This article was published in the proceedings of the Eurographics Work-
shop on Computer Animation and Simulation’99, Springer-Verlag Editor.

The mass-spring network modeling the piece of cloth refines locally
as soon as two adjacent springs form an angle exceeding a given
threshold to provide a more accurate shape description. This idea al-
lows the model to converge towards the static equilibrium faster by
limiting the number of masses used during the calculation. Unfortu-
nately, such a simple model cannot guarantee a global and identical
behavior during the animation: the dynamic behavior of the sim-
ulated object will change incoherently when a refinement occurs.
Additionally, mass increases with subdivision. Even if collisions
with obstacles are handled correctly, the cloth weight changes and
prevent any adequate simulation if the cloth is pulled for instance.
Another model, introduced for highly deformable materials like
dough or mud, proposes a space and time adaptive physics-based
technique based on SPH [DCG96, GCD+98]. This time, a state
equation which represents the object’s behavior (like stiffness) is de-
fined by the user. The particles discretizing the material subdivide
and merge according to a local energy criterion, and derive appro-
priate interaction forces from the state equation to ensure the same
global behavior. Simulating structured objects like human organs
with this method is, however, inappropriate. From a theoretical point
of view, the SPH formalism is really adequate for a large number of
particles if a desired accuracy is called for. In practice, the model
as proposed simulates viscous fluids, and is not well conditioned for
structured objects. We use the same “philosophical” approach in this
paper, as we propose to adaptively simulate a given equation of mo-
tion. Yet a large amount of particles is no longer needed to obtain
convincing results.

1.2 Approach
In this paper, we propose to improve upon the amount of sample
points needed to animate deformable objects. Using a general elas-
ticity model, we derive a partial derivative equation guaranteeing a
global behavior for the object in Section 2. We then propose in Sec-
tion 3 simple differential operators to integrate this latter PDE even
on moderately irregular grids. Once an error criterion is defined, we
demonstrate in Section 4 that a space-time adaptive integration, us-
ing local refinement/simplification of the mass and time discretiza-
tion, is easily handled. We describe our implementation in Section 5,
detailing data structures and surface display. Finally, we show a vir-
tual surgery simulation resulting from our approach in Section 6, and
conclude in Section 7.

2 A general physical model
In this paper, we basically simulate the same model as in [TPBF87].
Nevertheless, we distinguish from this approach in our mathematical
development. This section reviews the standard physics used by our
method, detailed in [TG70] for instance.



2.1 Notation
We use a slightly nonstandard notation for the sake of simplic-
ity throughout this paper. Vectors will be indicated in bold: u =�
ux uy uz

�T , matrices in calligraphy: A = uuT . We also make use
of compact notation for derivatives. For instance, ux;y = ∂ux=∂y, or
uz;xx = ∂2uz=∂x2.
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Figure 1: (a) Forces acting around a mass element. (b) Force acting
on a given surface element dS, centered on a point M and defined by
its normal n.

2.2 Stress tensor
A small element M of matter receives forces from all around (Fig-
ure 1(a)). One way to describe these peripheral forces acting locally
is to evaluate the surface force (called stress) acting on a given sur-
face element centered on M with a normal n. This force F will have
a component along n, analogous to a pressure, and an orthogonal
component, creating shearing (Figure 1(b)). The stress tensor then
defines a linear application between all normals and their associ-
ated stresses. This 3�3 symmetric matrix, usually noted σ, actually
gives the applied stress force F for a given surface element with nor-
mal n:

σn = F:

From this tensor, we deduce the resulting force per volume unit act-
ing on the matter element as being the divergence of σ1. Then, if
ρ is the mass density of the considered element, g the gravity ac-
celeration, and a the acceleration of this element, we can use the
fundamental principle of mechanics to write:

ρa = Div σ+ρg: (1)

In order to compute the stress tensor, we need to know the current
state of deformation undergone in the material to derive local forces
from it. We next define the strain tensor for that matter.

2.3 Strain tensor
We call d the displacement of an element of matter from its initial
position. This defines a vector field in the body. A pure translation
of an object will create a constant displacement field, while complex
deformation can create an arbitrary field as sketched in Figure 2.

DeformationRest position Translation
Figure 2: An object and some possible displacement fields defining
the current shape.
By definition, the gradient of this vector field is:

A = grad(d) =

0
@ dx;x dx;y dx;z

dy;x dy;y dy;z
dz;x dz;y dz;z

1
A (2)

The antisymmetric part of this matrix represents only the rotational
part of the displacements, while the symmetric part, called strain

1The divergence operator Div for a matrix is the vector formed of the
divergence div of each line, with div(u) = ux;x +uy;y +uz;z.

rate tensor and noted ε, expresses the intrinsic deformation rate act-
ing on an element of matter:

ε=
1
2
(A+AT

)=
1
2

0
@ 2dx;x dx;y +dy;x dx;z +dz;x

dx;y +dy;x 2dy;y dy;z +dz;y
dx;z +dz;x dy;z +dz;y 2dz;z

1
A (3)

As for the stress tensor, we emphasize that this tensor captures only
first-order deformation rates, and must be seen as a linear approxi-
mation of the local deformations.

2.4 Deformation law
A physical model for an object defines how this object deforms ac-
cordingly to applied forces, and vice-versa. Thus, we have to define
a relation between the stress tensor and the strain tensor. We choose
the Hooke’s law as it is one of the simplest, yet it describes precisely
enough a large range of common materials. This law stipulates (with
I3 being the 3�3 identity matrix):

σ = 2µε+λtrace(ε) I3 (4)

Given this hypothesis, we can now deduce displacements from
forces, or forces from displacements.

2.5 Lamé equation
If we use the above deformation law, the global equation of motion
can be rewritten, omitting gravity for simplicity, as (see [TG70]):

ρa = µ∆d + (λ+µ)∇(div d) (5)

by just substituting Hooke’s law in the fundamental equation of mo-
tion ρa = Div σ and expanding the different derivative terms. This
formulation, initially due to Lamé, encapsulates the strain/stress law
in a partial derivative equation that offers another interpretation of
the Hooke’s law. We note that such a physical model is the com-
position of a wave propagation and of a volume preservation con-
straint. Since the acceleration is the second time derivative of the
displacement d and ∆d is the sum of the second spatial derivatives,
the first part of the latter equation ρa = µ∆d is, indeed, a hyper-
bolic partial derivative equation, also called wave equation. The ve-
locity of propagation in this case is: c =

p
µ=ρ. The other part,

ρa = (λ+µ)∇(div d), represents a volume preservation term. Since
div d is the volume expansion, following the gradient of the volume
expansion will tend to restore the initial volume. According to the
values of λ and µ, we can interpret Hooke’s law as a deformation
wave with more or less compressibility 2. This interpretation will
help us to design our numerical simulation.

3 Simulation at a fixed resolution
In this section, we present how we implement the physical model in-
troduced above for a fixed, given resolution. Although we basically
simulate the same model than in [TPBF87], our numerical algorithm
is completely different. In particular, we will show that we can ex-
tend it to handle adaptive resolution easily.

3.1 Principle
Since we need to simulate a given material at different levels of res-
olution, we have to rely on a behavior equation (which can be called
state equation, or differential equation of motion) defined regardless
of any time or space discretization. As mentioned in the previous
section, we decide to adopt the general Hooke’s law to describe our
physical model. In order to spare as much computation as possible,
we will use the Lamé equation (Equ. (5)) as no strain and stress ten-
sors need to be used. It encapsulates the physical model into a simple
partial differential equation, hiding the use of strain and stress, thus
sparing memory requirement. Animating an object requires a mass
discretization, followed by an integration of the PDE over the sam-
ple point-masses, and over time. As the object moves and deforms,

2Although it can not be perfectly achieved with this formulation, the
preservation of the object’s volume is usually considered as good when
λ> 100µ, which we use in our examples.
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Figure 3: A 10 cm cube oscillating with gravity, one of its face being fixed. We measure the vertical displacement of one of its corner (arrow)
at different spatial resolutions. Levels are made of 64, 512 and 4096 particles. Note that no damping at all was used for this simulation.

the discretization may end up being an almost arbitrary grid. We
thus need to define a way to efficiently integrate this PDE over an
irregular sampling, while ensuring a good accuracy threshold.

3.2 Discrete approximation of operators
To be able to integrate Equ. (5), we just need to approximate two
operators: the Laplacian of the displacement field, ∆d, and the gra-
dient of the divergence of the same field: ∇(div d). Although Finite
Difference formulas exist on regular grids, they do not apply here:
we must assume an arbitrary complex grid since the object continu-
ously deforms, and also because the discretization itself may change.
However, approximating such operators on irregular grids is not an
easy task, and has been extensively analyzed in physics and mathe-
matics.

Laplacian operator
Milne in his thesis shows how sensitive the approximation of a sec-
ond derivative can be in 1D, creating noise source problem as soon
as neighboring samples are not centered [Mil95]. Fortunately, the
extension of Finite Differences in 1D proposed by Fornberg [For88]
solves this noise problem. It consists in fitting a quadratic function
between a sample and its two closest neighbors. For three samples
of a function f spaced at respectively ∆ and δ from the central point,
we obtain:

f 00i =
2

δ+∆

�
fi�1 � fi

δ
+

fi+1 � fi

∆

�

A straightforward generalization of this formula to 3D gives the
scale-dependent umbrella operator [DMSB99, Fuj95] (where li j =

kli jk= kxi �x jk is the distance between sample points i and j.):

∆di =
2

∑ j li j
∑

j neighbors

d j �di

li j
(6)

This simple formulation, recently introduced in Computer Graphics
for mesh smoothing through diffusion for its better properties com-
pared to the uniform umbrella operator, allows us to have a good
approximation of the Laplacian whose accuracy depends little on
the neighboring distribution of particles. We delay the quantitative
results to Section 3.3.

Gradient-of-divergence operator
Now that we have a robust Laplacian operator, we must derive a
gradient-of-divergence operator in a coherent way, to provide a sta-
ble pair of operators for our simulations.
By expanding again the second derivatives involved in the Laplacian
operator, we find the following relation:

∆ d = ∇(div d)�∇� (∇�d) (7)

where � is the cross product operator.

We know that the divergence of d is a measure of the volume expan-
sion as mentioned in Section 2.5. As shear strains don’t create any
volume change, only normal (also called radial) strains affect the
volume. Therefore, we propose to decompose the Laplacian into a
radial and a rotational component. Remembering that for any vector

Rotational componentsRadial components +Relative displacement field =

v

(u.v) u

u  (u  v)

u

Figure 4: The displacement field can be separated in two compo-
nents: the radial component (created by pressure forces) and the
rotational component (created by shear forces).

v and unit vector u, we decompose v along u and a vector normal
to u through the relation: v = (v �u)u�u� (u�v) with u = li j=li j
(see Fig. 4), we can expand Equ. (6) into:

∆di =
2

∑ j li j
∑

j neighbors

d j �di

li j

=
2

∑ j li j
∑

j neighbors

h
(d j �di) �

li j
li j

i li j
li j
�

li j
li j
�

h li j
li j
� (d j �di)

i
li j

=
2

∑ j li j
∑

j neighbors

[(d j �di) �
li j
li j
]
li j
li j

li j
�

2

∑ j li j
∑

j neighbors

li j
li j
� (

li j
li j
� (d j �di))

li j

(8)
Therefore, comparing Equ. (7) and (8), we decide to identify the
radial component as being the gradient of divergence:

∇(div d)i =
2

∑ j li j
∑

j neighbors

[(d j �di) �
li j
li j
]
li j
li j

li j
(9)

We will see in the next section that these two operators provide good
results in practice.

3.3 Algorithm and Validity
The overall algorithm to animate our deformable model is straight-
forward. At each time step:

� On each particle, evaluate the internal forces using the Lapla-
cian and the gradient-of-divergence operator,

� Deduce the acceleration using Equ. 5,

� Integrate the acceleration over a time step dt to update posi-
tions and velocities.

The Laplacian and gradient-of-divergence operators behave very
well at different resolutions. Figure 3 demonstrates that even in
three different resolutions, an object undergoes the same deforma-
tion in time. It validates our scale-dependent umbrella operator, and
we can move forward to adapt discretization.



4 Space-time adaptive simulation
Conventional models usually discretize matter at fixed resolution in
space, and often use a fixed time resolution too. These discretization
rates have to be defined by the user a priori. As the number of mass
elements and the size of the time step often affect the overall result
of the animation, the user has to go through a series of trials and cor-
rections before obtaining what (s)he wanted. Moreover, if a shock
happens during the animation, the time step of the whole sequence
(resp. the number of particles) has to be taken small enough (resp.
large enough) to avoid divergence, resulting in unbearable computa-
tion times.
Numerous CG techniques use adaptive time step, but we propose to
optimize the sampling rate of our deformable model both in space
and time. Similar techniques already exist in computational physics,
as the adaptive finite element method for instance. In this paper,
we propose a simpler model that results in a relatively straightfor-
ward implementation and a reduced computational time. Our model
is designed to offer an automatic adaptive resolution both in time
and in space that concentrates computations where and when re-
quired. This section reviews this technique, which will offer the
user a tunable trade-off between precision and efficiency by concen-
trating computations where and when required.

4.1 Space adaptivity
Since the basic model developed in the previous sections ensures
a same behavior at any spatial resolution, we can adapt the spatial
discretization rate during the simulation. If the user uses a tool to
manipulate the object, adding new sample points with refined time
step near the tool to increase the quality of the simulation in this area
is particularly convenient. We will obtain a more accurate feedback
force, along with enhanced visual complexity. When the user moves
the tool to another place, the previous area can be simplified back,
so that computations are now mainly dedicated to the new area of
interest. Therefore, two criteria have to be defined: a criterion con-
trolling if refinement has to be performed, and another criterion al-
lowing simplification. The first criterion is important for accuracy,
while the other one is capital to save computations.

Adaptivity criteria
Our physical model relies on approximations of second derivatives
of the deformation field, indicating the rate of displacement vari-
ation. As mentioned earlier, the stress/strain tensors assume local
linear deformation. As a consequence, we need a refined sampling
whenever the displacement field varies too suddenly, i.e., when the
local “frequency” is too high for the current discretization rate. A
linear approximation does not fit such cases anymore. This can be
tested using the Laplacian operator (which measures the variation
from linearity), already available, through the following relation:

h2
jj∆djj> εmax (10)

where h represents the shortest distance between this particle and
its neighbors. We found this coarse, yet fast estimation adequate in
practice: in our tests, spatial refinements appear where and when we
intuitively thought it should.
Similarly, we use an opposite criterion for the simplification. A par-
ticle and its siblings can be replaced by a single coarser particle if,
for each of them:

h2
jj∆djj< εmin (11)

Once again, despite the simplicity of this criterion, we obtain ade-
quate results as simplifications appear in “calm” areas as desired.

4.2 Time adaptivity
Once the space discretization has been adapted accordingly, time
discretization has also to be adapted to prevent instabilities. Keep-
ing a too large time step can introduce severe inaccuracies due to the
approximation of constant acceleration during this time step. Nev-
ertheless, too little a time step would lead to consequent loss of effi-
ciency. We thus have to adapt the time step carefully. Moreover, we
want to adapt the time step locally, so that regions undergoing no or
little stress are not updated as often as regions with high stresses.

Time stepping
We use Courant’s condition [DCG96] for the Lamé equation:

dt < h

r
ρ0

λ+2 µ
(12)

where h represents the smallest distance between this particle and
one of its neighbor, and ρ0 the material’s rest density. This time
step is the maximum allowable one for this particle, but we also
ensure that the time step is sufficiently small to handle sudden and
fast deformations. This can be done for instance by constraining the
time step to satisfy:

jja dtjj= jj∆vjj< ∆vmax

This way, we will never get fast velocity changes, plausible cause of
divergence. We will pick the biggest time step satisfying the two
above criteria, ensuring an optimized time step for each particle.
Other criteria can be added depending on the application to make
sure no instabilities can arise during the animation.

4.3 Validation
Implementing these criteria for space-time adaptivity exhibits stable
and adequate behaviors. As demonstrated in Figure 5, an object at
its coarsest resolution at rest will subdivide in highly stressed re-
gions, i.e., where the user acts and in regions where the deformation
propagates. The time steps are adapted automatically to ensure a sta-
ble result. Here, the scale-dependent umbrella operator is critically
needed, as we deal with an irregular resolution [DMSB99].

(a) (b)

Figure 5: A parallelepiped undergoing a tool’s deformation. Figure
(a) shows the coarser (24 particles) and higher (1056 particles) res-
olutions. Figure (b) shows the intuitive sampling occurring during
simulation (the particle’s color is proportional to its displacement).

5 Implementation
In this section, we detail our implementation, presenting data struc-
tures that efficiently handle the multiresolution properties of our
method. We also describe a damping implementation as well as the
surface representation we used for visualization.

5.1 Spatial data structures
This implementation is not as general as the model described in pre-
vious sections: we optimized it for limited deformation in order to
improve the efficiency of our simulation. We have chosen to limit
the range of applications of our simulator to soft materials (such as a
human organ). If we assume that during the simulation, the material
will not be deformed too much, we can assume that the topology will
not change. In practice, this means that the neighborhood of a given
point of matter will remain the same, thus allowing us to precompute
and store it, saving a lot of computational time. It also allows us to
build a hierarchical representation of the material.

Topological octree All the particles are sorted in an octree, the
8 children (resp. the parent) of a given particle being the particles
which will sample the same zone of space if this particle splits (resp.
merges). The octree structure is well suited for a hierarchical repre-
sentation of space, since a cube recursively divided in 8 new cubes
offers the only uniform sampling of space at each level of subdivi-
sion. The octree is constructed in a bottom-up fashion as follows
(see Figure 6):
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Figure 6: Recursive bottom-up construction of the octree. Size rep-
resents particle’s mass

– (a) The cubic 3D grid is fitted on the simulated object bounding
box and is then recursively divided up to its higher level.
– (b) We then determine which of these small cubes are inside the
object and simply skip the other ones. The remaining particles form
our octree’s higher level, their mass is computed as being the object
total mass divided by their number (for a uniform material).
– (c)&(d) The previous levels are then recursively built from this
one, regrouping each group of 8 (or less on the boundary) particles
in a new one, using

m = ∑mi ; p =
∑mipi

m
(13)

where m is the mass, and p is the position of the parent particle.
This average guarantees mass preservation and offers a good spatial
sampling of the object.
Note that this is a topological octree and not a spatial octree. It
stores the particles’ child/parent relationships, but does not represent
a classical octree division of space, as it will be deformed during the
animation when particles move.

Neighbor structure At a given level of hierarchy, we define a
particle’s neighborhood as the set of all the particles that are adjacent
in the topological octree, by a face, an edge or a vertice. Figure 7
shows this in 2D.

(a) (b)

(c)
Figure 7: Definition of the neighbors (in bold lines) of a given parti-
cle (filled), in 2D. (a) same level, (b) higher level and (c) lower level.
In 3D, each particle has 89 potential neighbors.

In order to restrict the number of possible neighbors, and for sam-
pling quality reasons, we will ensure that our octree remains re-
stricted [VB87]. During the animation, two neighboring active par-
ticles can only differ by one level in the hierarchy (see Figure 8(a)).
It limits the number of possible neighbors of a given particle, and
still assuming that the object is not too deformed, allows us to pre-
compute and store the entire neighborhood of each particle. In prac-
tice, in 3D, the total number of potential neighbors is 89 for each
particle, but as they cannot be all active at the same time, the effec-
tive maximum number of active ones is 56 (if all the neighbors are
split), and the minimum is 14 (all the neighbors are merged).

Neighbors’ face

Parent

Parent’s neighbors

barycenterChild
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Figure 8: (a) During a simulation, particles’ neighbors can only
belong to the same level of resolution, to the level above, or the level
below. (b) The local coordinate system (bold arrows), defined by the
parent’s neighbors ensures a good spatial sampling, even when the
object is deformed.

Structure update The restricted octree imposes some con-
straints for splitting/merging particles. At each time step, splitting
and merging lists are computed using the criterion described in sec-
tion 4.1. These lists are then parsed, favoring splitting for the sake
of stability:
– A particle can merge if and only if all its neighbors have an equal
or lower level in the hierarchy.
– A particle can split if and only if all its neighbors have an equal
or higher level in the hierarchy. If it’s not the case, the lower level
neighbors are inserted in the splitting list, so that this particle can
split later (perhaps not at the next time step as the neighbor may also
have to wait before splitting : this is a recursive process).
Each particle has pointers to all its potential neighbors, and keeps
a list of all the active (i.e. really simulated) particles among them.
When a particle merges or splits, precomputed tables allow us to
update its active neighbor list with no computations, as well as the
active neighbor lists of its neighbors.

Position When some particles merge, their parent averages their
different values (position, speed, displacement...) to update its own
values. The problem is more complex when it comes to the splitting
of a particle. As we want our sampling of space to be as uniform as
possible, the positions of the new particles have to be carefully com-
puted. We chose to define the particle’s position in a frame centered
on its parent position (See Figure 8(b)).
The axis of this frame are defined by the parent’s neighbors (through
the center of mass of these neighbors for each direction). This local
coordinate system provides adequate new particle positions, even if
the splitting occurs when the object is deformed. A special treatment
is done for boundary particles which local frame is defined by the
mirrored parents’ neighbors. During the simulation, if the parent’s
neighbors are not currently active, their positions are computed from
their children using (13). When merging, each particle stores its new
local coordinates, so that it appears at the same place when its parent
splits again.

5.2 Temporal data structure
As each particle samples a volume eight times smaller than its
parent, Courant’s condition (see x4.2) stipulates that its time step
should be at least twice as small as the one its parent uses. As a
consequence, and in order to synchronize the time steps easily, we
choose the time steps to be a power of two multiple of the minimum
time step (those of the smallest particles), which is determined from
the material’s stiffness using equation (12).

In practice, all the active particles are sorted in lists corresponding to
their time step, which are parsed when needed. Changing a particle’s
time step simply means to transfer it to another list. Determining at
each time step which lists have to be simulated can be very quickly
done using a binary operation on the value of the current number of
iterations done.

5.3 Internal damping
Adding damping forces in this model allows us to handle a larger
set of materials’ behaviors. Damping adds realism in the anima-
tion which would elsewhere oscillate endlessly. Note that these
oscillations, which are perfectly normal for an undamped elastic
system, are indeed obtained with our simulation which presents a
great stability during the simulation. We add to each particle a
first damping force which is negatively proportional to its speed
(Fd =�kd :speed).
We also add an artificial “viscosity” in our model, by adding a force
which represents the effects of a particle neighbors’ motions on the
particle itself. In other words, this force will try to make a particle
follow its neighbors’ average motion, adding internal coherence in
the material. Inspired by SPH formulations [Mon92, DCG96], we
have chosen to use

Fv =
kv

∑ j m j
∑

neighbors j

m j(v j �vi) (14)

This formulation can be seen as an extension of those used with
a uniform sampling of space. As our octree remains restricted
during the animation, it gives good coherent results in practice.



The influence of a neighbor has been chosen to be proportional to
its mass (intuitively linked to the contact surface). This force was
restricted to its damping action: it cannot accelerate a particle, nor
can it inverse the direction of its speed.

Note that damping is very special, as we cannot guarantee a same be-
havior whatever the resolution. Our strategy, close to similar work in
physics [Mon92], is to use the previous formulation as it minimizes
the observed behavior difference at each level. However, we only
slightly use this force in our examples, mainly to create a more rigid
material. As the user only sees the multiresolution result, and as the
result is visibly plausible, we stick to this method.

5.4 Surface management
We describe here how this model is embedded in a graphics environ-
ment: the discrete particles are linked with a surface representing the
current shape of the object. The displayed surface is a visual inter-
face, exhibiting the deformations that take place in the material and
hiding the granularity of the model, so that the user is not even aware
of the adaptive granularity. It is also used to detect collisions, and to
transmit external forces to the internal physical model.

Surface representation The surface display has to be real-
time, and a triangulated surface seems appropriate as most graphics
engines use triangles as a primitive. The resolution of the mesh
depends only on the desired visual quality, and can be completely
separated from the internal discretization.

The motion of the mesh nodes is defined with respect to the motion
of the inner particles. We link each mesh node with some of the inner
particles, chosen to be the m-th closest ones within a given radius
from the node in the rest position. For each of these links, a constant
offset defined as the vector joining the particle’s rest position and the
mesh node is precomputed. During the animation, the position n of
the node, is determined as a weighted average of its linked particles’
positions pi plus their respective offset oi. The links’ weights wi are
chosen to be inversely proportional to the length of the oi vector:

n =
1

∑links i wi
∑

links i

wi(pi +oi) wi =
1

jjoijj

Practically, we noticed that a very small number of particles are suf-
ficient to produce convincing animations, which is useful for real-
time applications (we use m = 4 currently). This surface motion’s
smoothing is intended to hide the underlying possible coarse reso-
lution. The smoothing can be controlled by adjusting the maximum
number of linked particles m, as well as the maximum offset length
(radius of influence of the nodes, hence of the particles).
Although this model, as the offset is a constant translation, should be
limited to rigid bodies motion or small deformations, it gives con-
vincing results in practice. We hence avoid the need to use finer
methods, such as the computation at each time step of a local refer-
ence frame for each particle, based on its neighbors positions, and in
which the offset could be defined.

Handling multiresolution In our case, the problem is slightly
more difficult since particles may appear or disappear during the
simulation. We chose to create a hierarchy of links, a parent particle
being linked with all its children’s linked nodes. For each of these
nodes, the link’s offset is also precomputed from the rest position,
and its weight is the sum of its children links’ weights to this node.
During the simulation, active particles are parsed, and each of them
gives its weighted position contribution to the nodes it’s linked with.
The way we computed the links ensures that the surface nodes will
not be affected by a split or a merge of the inner particles as long as it
takes place when they are at their rest positions. In practice, the pos-
sible surface popping effect can be controlled by the split and merge
thresholds which indirectly determine how far from its rest position
a particle can split/merge, thus determining the maximum surface
visible shift. As a result, surface popping is almost not noticeable in
our tests.

Collision detection We use the hardware-based collision detec-
tion described by [LCN99]. An offscreen rendering returns a list
of the triangles that intersect the tool. Their nodes are then pulled

out of the tool, and these displacements are transmitted to the inner
linked particles (if a particle is linked with several moving nodes,
it averages their imposed displacements). A simulation step is then
normally performed and the accelerations these particles compute
are then summed and transmitted to the user’s force feedback de-
vice.

6 Results
We tested our implementation on different basic examples, and on
a concrete medical simulation. We describe these tests and discuss
results in the next two sections.

6.1 Proof-of-concept example
We chose the “classical” rod example to begin our tests. A rod is
attached to a wall at one end, and bends under gravity, in a damped
media. Figure 9a shows the initial and equilibrium positions. The
Lamé coefficient for this rod are µ = 5000 and λ = 1000000.

level 2 3 4 adaptive
nb of particles 4 32 256 4-88
simulation time (cpu units) 0.87 4.29 38.90 5.27

This table shows averaged simulation times for this simulation, us-
ing different space resolutions. As expected, the adaptive simulation
offers a good trade-off, giving a computational time close to the one
we have with 32 particles (3 levels), while taking advantage of the
potential 256 simulated particles of level 4. The number of particles
really simulated varies between 4 (beginning of the simulation) and
88 (before stabilization), stabilizing at 32 (as with level 3) when the
rod is its rest position (see Figure 9b for reference snapshots of the
animation)

(b)(a)

t = 0.189
rest position

t = 0.195

t = 0.0 t = 0.163 t = 0.188

t = 0.235

Figure 9: A rod oscillating under gravity. (a) reference simulation
made with 256 particles. (b) adaptive simulation snapsnots.

6.2 A real-time application
Providing simulators for surgeon-apprentices has several significant
advantages, both ethical and financial: it substitutes for corpses or
animals, and improves the training as the surgeons can practice as
much as they want for the same cost. In the context of laparoscopic
surgery 3, the liver operation is a perfect case to study, being one of
the most common operation with this medical technique.
We use the simulation technique developed in this paper to imple-
ment a laparoscopic surgery simulator. Using volume and surface
data from a typical human liver, we provide a real-time liver simula-
tor, that reacts to surgery tools as displayed on Figure 10. The mul-
tiresolution nature of our simulation is the key in this context: sim-
ulation at fixed fine resolution would be overkill. Focusing compu-
tations where and when needed using our space-time adaptive tech-
nique is vital for efficiency. We achieve a 30 Hz simulation using
an R10K SGI Onyx2, simulating an average of 100 active particles.
The frame-rate is constant and guaranteed by a limitation of the com-
putational time, which varies linearly with the number of particles,
weighted by their respective time step level.

7 Conclusions and future work
We proposed in this paper a multiresolution animation technique
to animate deformable structured objects. This new computational
model benefits from an adaptive sampling of both space and time
to minimize calculations. Based on Hooke’s law, it makes use of
discrete scale-dependent approximation of derivative operators on

3Laparoscopic surgery is a minimally invasive technique, where surgeons
operate using tools that are introduced into the patient’s body.



Figure 10: Although the imposed strain sometimes highly exceeds
the small deformations formalism, our model still presents good re-
sponse to the user’s stress. Adding textures highly increase the real-
ism of the simulator.

irregular meshes. Using intuitive criteria, we refine or coarsen au-
tomatically our mass sampling to guarantee an adequate error toler-
ance.
This approach is very general, and can be easily enhanced. Implicit
integration for instance could suppress all the adaptive time steps
while still guaranteeing stability for applications where little accu-
racy suffices. Better thresholds to control the errors would also be
very useful for more accurate applications. The new discrete differ-
ential operators introduced in this article behave well on a not too
deformed grid and could be enhanced to handle a larger range of
simulations. Multiresolution animation would then become a pow-
erful and efficient tool, like radiosity is, after many improvements
over the last decade.
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