
Computer Animation of Human Walking: a Survey

Franck Multon1, Laure France2, Marie-Paule Cani-Gascuel3, Gilles Debunne3

1 IRISA,
Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France

2 BIP/INRIA,

ZIRST- 655 ave. de l'Europe, 38330 Montbonnot Saint-Martin, France
3 iMAGIS-GRAVIR/IMAG

BP 53, F-38041 Grenoble cedex 09, France

Abstract: This paper surveys the set of techniques developed in Computer Graphics for an-

imating human walking. First, we focus on the evolution from purely kinematic \knowledge-

based" methods to approaches that incorporate dynamics constraints, or use dynamics sim-

ulations to generate motion. Then, we review the recent advances in motion editing, that

enable the control of complex animations by interactively blending and tuning synthetic or

captured motions.

Keywords: computer animation, human walking, motion synthesis and control, kinematics,

dynamics, motion capture.

1 Introduction

Animation of human walking is a crucial problem in Computer Graphics: Many synthetic scenes involve

virtual humans, from special e�ects in the �lm industry to virtual reality and video games. Synthesizing

realistic human motion is a challenge: all viewers of an animation are also all experienced observers of

human locomotion and will notice any artifact in the motion. However, we may be unable to give an

objective reason why a motion is unrealistic. These points increase the di�culty of the task.

The study of walking motions has generated much interest in other �elds such as biomechanics and

robotics. It appeared about �fteen years ago in Computer Graphics, with the �rst work on \knowledge-

based" animation of human �gures. The interest for this area has never decreased in the Computer

Animation community, even though the task is not easy, since techniques based on kinematics, dynamics,

biomechanics, robotics and signal processing may be required. Indeed, animation or simulation of human

walking interest several �elds of application including robotics (such as the biped robot developed by

Honda), art, behavioral simulation, entertainment, education and biomedical researches. According to the

kind of application, the constraints that the model has to solve are di�erent. On the one hand, for video

games and virtual reality, one of the major constraints is to minimize the ratio between the computation

cost and the capabilities of the model (adapting the gait to the environment, taking external forces into

account, etc.). On the other hand, biomedical researches require to develop accurate models that obey the

physical laws. Other applications of Computer Graphics such as video-clips or special e�ects in cinema

also require to design accurate models that deal with artistic or cartoon's laws [7] without caring of the

computation cost. For these reasons, models currently proposed in computer animation are designed

in order to be applied in a speci�c application area. Hence, we can group these models in two main

families: interactive models that involve low computation costs and o�-line models that can use heavy

computation time in order to obtain the required motion. Nowadays, several commercial packages provide

the user with tools that automatically synthesize walks and deal with motion-capture data. However,

1

the capabilities of such packages can be improved in order to be applied in other application areas than

entertainment: interactive animation, biomedical simulation, etc. Thus, a survey on human-like �gure

animation is interesting in order to underline what are the solutions available at present time (included

in commercial packages) and what should be the future developments (current topics of research).

To this end, this survey provides a comparative study of previous work in the area of motion control in

Computer Graphics, focusing on the solution each method brings to the animation of human walking

according to the kind of application. Whereas robotics proposes several kinds of walking models, this

survey only focuses on the solutions that have been adopted in computer animation (coming from robotics

or other research areas such as biomechanics or simulation). Rather than presenting a purely historical

review, we classify previous work into three main groups, and emphasize the intrinsic advantages and

limitations of each approach:

� Procedural methods based on knowledge-based kinematic animation are reviewed in Section 3.

� The attempts to incorporate dynamics constraints in the generation of motion or to use dynamics

simulation are presented in Section 4.

� Lastly, the approaches enabling the interactive edition of either captured or synthetic walking

motions are detailed in Section 5.

This classi�cation clearly shows the evolution stream of the �eld, since the �rst group of approaches were

mainly developed from 1982 to 1990, the second group from 1988 to 1996, and the last group has just

arisen within the last two years. Moreover, this decomposition can also be viewed as a way to identify

three ways of introducing knowledge in the walking models. Procedural approaches embed biomechanical

and empirical knowledge on human locomotion, such as walking cycles studied in biomechanics. Dynamics

is a way to incorporate mechanical knowledge as di�erential equations that enforce the respect of dynamic

laws. Finally, by modifying captured motions, the system directly works on basic knowledge on human

motion: real trajectories. In this last type of approach, trajectories are the knowledge that is used to

compute human motion.

Section 6 concludes by listing the problems that are still open and that will undoubtedly inspire future

research in the next few years.

2 Background

2.1 Animating virtual humans

Animating very complex models such as virtual humans is usually done by extracting a simpler rep-

resentation of the model, a \skeleton", namely an articulated �gure made of rigid links connected by

hinges. Motion is �rst computed for this \skeleton", that can be displayed interactively. Once the an-

imator is satis�ed with the global motion sequence, he may compute higher quality representations of

the moving character, by coating the skeleton with deformable surfaces modeling skin [15, 47, 44, 46] or

clothes [28, 13, 53, 52].

This paper focuses on methods for generating the motion of skeletons of articulated �gures that will

represent virtual humans. An example of such an articulated �gure is shown on Figure 1. Mathematically

speaking, the skeleton is a hierarchy of local frames, each of which is characterized by its position and

orientation with respect to its parent frame. The set � = (�1; ::; �N) of parameters corresponding to each

degree of freedom of the �gure, together with its derivative according to the time, is called the \state

vector" or the \generalized coordinates" of the articulated �gure. Synthesizing motion of the skeleton

thus consists in de�ning how the state vector changes over time.

2

Z

X

X

Z

X Z

Ankle-1D

Foot-1D

Knee-1D

Elbow-1D

Waist-3D

Shoulder-3D

Z

Neck-3D

Hip-3D

Z
Wrist-2D

Waist-3D

Shoulder-3D

X

X

Y

Y

Y

Y

Y

Y

Y

Y

Figure 1: Articulated �gure with thirty degrees of freedom.

2.2 Human walking

Researchers in biomechanics [40, 17] characterize human walking as the succession of phases separated

by footstrikes fs (the foot is in contact with the ground) and takeo�s to (the foot leaves the ground).

In gait terminology, a stride is de�ned as a complete cycle from a left foot takeo� to another left foot

1 step

lFS rFS

rTO lTO

= left footstrike = right footstrike

= left takeoff= right takeoff

support
double

support
doublesingle

support
single

support

rTO lTOrFSlFS lFS

phases

states (left) (right)

left stance left swing

right swing

0% 50% 100%

right stance

Figure 2: Characteristic phases of a walking motion.

takeo�, while the part of the cycle between the takeo� of the two feet is called a step. Four footstrike

and takeo� events occur during a stride: left takeo� (lto), left footstrike (lfs), right takeo� (rto), and

right footstrike (rfs). This leads to the characterization of two motion phases for each leg (see Figure 2):

1. the period of support which is referred to as the stance phase,

2. the period of non-support which is known as the swing phase,

A more accurate description of the walking phases is provided by Nilsson et al. [40]. They use ex-

tension and exion steps for de�ning locomotion sub-cycles associated with each articulation. Each

extension/exion step is characterized by its place in the walking cycle, its duration, and the associated

lower and upper angle bound values. Nilsson et al. study how these values change according to the

velocity of walking. When the velocity increases, the duration of the double support state decreases to

zero, which means that the walker has switched from a walk to a run.

3

The main problems encountered while designing a walking model depend on the kind of application, but

include:

� ensuring that the motion of the body parts looks realistic,

� to verify that the contact between the human-like �gure and the environment (especially the terrain)

is realistic,

� accommodating variable grounds such as slope terrains or stairs,

� adapting the motion to the synthetic actor's anatomy,

� personifying the gait such as making the human-like �gure walk as a woman, be less or more tires,

etc.,

� accounting for changes in the mechanical structure of the walker which makes it possible to modify

the motion when it carries heavy objects or is submitted to the win,

� making the walker react to external events or forces such as pushes or collisions,

� making sure that the forces and torques required to execute the computed motion are realistic.

Of course, depending on the kind of application, these problems are more or less important. In virtual

reality, accounting for the environment is more essential than computing realistic forces and torques

whereas, in biomedical applications (generally carried out in prede�ned environments) the relevance of

the torques is essential. The di�culty of designing a walking model is proportional to the number of

the above problems it solves. For example, designing a model that only focuses on computing realistic

motions of the legs without taking the environment into account is easier than making a synthetic actor

walk on complex terrains while maintaining it balance and being subject to external forces. All along

this survey, we recall for each kind of model the problem that can be solved and what are its limits.

One problem in synthesizing realistic walking motion, common to several types of application, is the

penetration of the feet into the ground. Under the hypothesis that the feet do not slide, the inequal-

ity constraints specifying that the feet should stay above the ground may be converted into equality

constraints holding during the support phases. Modeling double support is a problem since computer

animation algorithms, that easily cope with open chains, have di�culty handling closed loops. This is

one of the reasons why walking motions are harder to model than running, for which there is no double

support.

The question of handling interactions with the ground leads us to a strategic question: should we use

physically-based simulation to help compute realistic motions? The answer is unclear. First, the role

played by dynamics is less important in a walking motion than in other human motions such as running,

jumping or diving [27]. Second, the way somebody walks tells us a lot on his/her personality and mood,

which will be by essence very di�cult to evaluate and to model. Half of the models presented in this paper

use dynamics, while the other half do not. In the �rst case, a good simulator providing accurate modeling

of contacts/friction with the ground will be required. The main problem will be to �nd parameterized

controllers that generate muscular actions over time. These actions should make the human model walk

while maintaining its balance. Here, techniques developed in the robotics community for the control of

biped robots may help (we will address this issue in Section 4). If a kinematic animation method is chosen,

the model will mostly rely on descriptions of walking motions such as those provided in biomechanics.

3 Kinematic animation

The �rst set of tools developed for motion speci�cation in Computer Animation is based on forward

and inverse kinematics. We �rst present these tools, and then look at the way they were applied to the

generation of human walking. These techniques use empirical and biomechanical knowledge on human

motion in order to compute realistic motions.

4

3.1 Forward and inverse kinematics

Forward kinematics consists in specifying the state vector of an articulated �gure over time. This speci�-

cation is usually done for a small set of \key-frames", while interpolation techniques are used to generate

in-between positions. The main problems are the design of convenient key-frames, and the choice of

adequate interpolation techniques. The latter problem, and in particular the way orientations can be

represented and interpolated has been widely studied [54]. Designing key positions is usually left onto

the animator's hand, and the quality of resulting motions deeply depends on his skills. In many cases,

available physical and biomechanical knowledge such as the characterization of motion phases described

in Section 2.2 for human walking, can help the animator to create relevant key-frames.

The exclusive use of forward kinematics makes it di�cult to add constraints to the motion, such as

those specifying that the feet should not penetrate into the ground during the support phases. These

constraints may be solved using inverse kinematic algorithms. Here, motion �X of the end link of a

chain (ie. a foot) is speci�ed by the animator in world coordinates. The system computes the variation

�� of the state vector (ie. the orientations between intermediate links) that will meet the constraint.

The relation between the \main task" �X and the angular displacements �� takes the form:

�X = J�� (1)

where J is the Jacobian matrix of the system [54]. J is often not directly invertible, due to the di�erent

dimensions of X and � (ie. there is an in�nity of angular positions at joints that lead to the same

Cartesian position of a foot). So the most frequently used solution is [4]:

�� = J+�X + �(I � J+J)�z (2)

where J+ is the pseudo-inverse of the Jacobian matrix J , � is a penalty constant, I is the identity matrix,

and �z is a constraint to minimize, called the secondary task. This secondary task is enforced on the null

space of the main task. Thus, the second term does not a�ect the achievement of the main task, whatever

the secondary task �z is. Generally, �z is used to account for joint angular limits or to minimize some

energetic criteria.

3.2 Kinematic animation of human walking

Most of the kinematic approaches used for generating synthetic human locomotion rely on biomechanical

knowledge, and combine forward and inverse kinematics for computing motions.

In the eighties, methods were developed to automatically generate families of key-frames from biome-

chanical informations, thus providing easy tuning of the resulting motion. This is done through �nite

state machines controlled by high level parameters such as step length and step frequency. The �rst

approach of that class is de�ned by Zeltzer [58, 59]. It embeds biomechanical knowledge of locomotion

into hierarchical concurrent state machines which control the gait of a synthetic skeleton. A key-posture

is associated to each state. These postures are linearly interpolated to produce in-between angular values.

A �rst method for ensuring non-penetration with the ground while using forward kinematics consists

in changing the root limb of the skeleton when the support foot changes: at each foot-strike, the new

support foot becomes the root, its position being �xed in world coordinates. This method is used by

Bruderlin and Calvert [8], who simulate an inverted pendulum for computing realistic motion for the

stance-leg. In that paper, only one joint of the support leg moves at a given time, which may lead to

slightly arti�cial motions. Bruderlin and Calvert [9] improve the technique by simultaneously simulating

all the degrees of freedom, leading to smooth and parameterizable walking gaits. Note that the same

kind of approach has more recently been used for the animation of human running [10].

Another way to maintain extra constraints on the foot position is to use inverse kinematic algorithms

[22, 21, 4, 6]. Boulic et al. [4] �rst use a standard forward kinematics approach, generating key-positions

that are interpolated. A \leg-correction" process is then used to modify invalid in-between postures:

5

if a foot penetrates the ground, an inverse kinematic algorithm is applied to modify its position, thus

modeling contact with the ground (see Figure 3). As shown in [5], the secondary task provided by inverse

kinematic approaches may be used to maintain the character's balance.

Prediction

kinematic
param.

co
ns

tr
ai

nt
s

success/failure

High-level Parameters Handling

Leg Correction

Figure 3: Synopsis of Boulic's locomotion system.

3.3 Discussion

Compared to the direct design of key-frames, the kinematic techniques presented above rely on a certain

understanding of the basic walking motion mechanisms, at least from a purely descriptive point of view.

The quality of the motion thus relies on the quality of the model (ie. the �nite state machine that

synthesizes the motion), rather than on an artist's skills. One of the main advantages of these models is

the high level parameters they provide (such as velocity, step length, etc), leading to the generation of

families of di�erent gaits. Another advantage is the low cost of computations. The complexity of inverse

kinematic algorithms is O(n3) with respect to the number of joints (due to the inversion of the Jacobian

matrix), but since the algorithm is usually used for one leg, this does not have an important e�ect on the

e�ciency of computations.

Most shortcomings come from the geometric interpolation process which is used for generating inter-

mediate frames: angular trajectories are independently computed for each joint, although there should

be a strong coupling between joint motions. Moreover, the interpolation process may �lter the intrinsic

dynamics of the locomotion, leading to a loss of realism. Lastly, although most terrains are not at, there

is no easy way to generate walking motion on a rough terrain from these approaches. The adaptation of

the walk to such terrains would have to be explicitly described while designing the model.

4 Dynamics

In many cases, accounting for dynamics is essential to ensure that the motion is realistic:

� if the synthetic actor has to carry loads,

� if the human-like �gure has to react to external forces such as pushes or the wind,

� if the ground is complex such as stairs or slope terrains,

� if the energy requires to produce the motion belongs to a realistic interval.

Dynamics approaches may be used either for adding constraints that guarantee a certain realism to

a prede�ned motion, or for directly synthesizing the walk. Thus, in this kind of approach, the main

knowledge that is used to ensure realism is dynamics. As in the previous section, we �rst give a short

global review of the dynamics simulation techniques before describing the applications to human walking.

6

4.1 Forward and inverse dynamics

Newton's laws are known as the fundamental principle of dynamics. They link the forces (resp. torques

for rotations) to the resulting motion (resp. rotation) from the equation:

f = m:�x (3)

where f represents the force applied to an object, m its mass and �x the second derivative with respect

to time of the position vector x. The equation looks similar for rotations, where torques and angular

positions are linked by:

t = i:�� + _� � i _� (4)

where t is the torque, i the inertia matrix, _� is the angular velocity and �� the angular acceleration.

Forward dynamics is the application of these laws which calculate the motion generated by a given

force. Conversely, inverse dynamics methods calculate the forces that would generate a given motion.

The equations above hold for a single solid. Speci�c methods [29, 2, 20, 1] have been used to apply these

equations to an articulated skeleton, modeled as a hierarchy of rigid solids (namely the limbs) connected

by joints. A full description of these methods is beyond the scope of this paper. We briey describe the

two basic approaches.

The �rst method was introduced by Isaacs and Cohen [29] and relies on a Lagrangian formalism. Using

generalized coordinates (each limb angular position is expressed in its father's local coordinate system),

a \generalized mass matrix" M can be computed. Computing motion then means solving an equation

of the form: F =M: �X, where F now represents a generalized force vector (consisting of all the di�erent

forces applied on each solid of the system) and X is the generalized coordinate vector. Since the matrix

M depends on the relative positions of the solids, it changes over time and has to be inverted at each time

step. Inverse dynamics can easily be combined with forward dynamics using this method: a value is given

to some of the unknowns �X while tagging as unknown some components of F . This leads to animations

where the motion of certain degrees of freedom is speci�ed by the user while other joint motions are

automatically computed from applied forces.

Another approach that avoids this expensive matrix computation was �rst introduced by Barzel and

Barr [2]. Each solid is independently simulated at each time step. Extra forces are then computed to

guarantee constraints on joints. These forces restore the joint constraints, and the next time step can then

be simulated. Adding inverse dynamics is also straightforward with this method: a motion is speci�ed

for parts of solids. The others for which motion is computed by simulation, will then be \pulled" by the

user-controlled solids.

4.2 Dynamics as an a posteriori constraint

One approach for bene�ting from the realism o�ered by dynamics laws without having to specify the

forces that create the motion is to use dynamics as a constraint. Motion is �rst computed a standard

kinematic model. A post-processing stage then checks the physical relevance of motion.

The system of Ko and Badler [30, 31] (see �gure 4) uses inverse dynamics to compute torques needed

to perform a given motion. They then verify their validity (do they maintain balance and comfort? do

they keep joint stress under a threshold?). Motion is corrected if needed, with hand-tuned coe�cients

that link kinematic positions of the synthetic actor to inverse dynamics results. This correction consists

in adding ��(t) (computed by the inverse dynamics balance control module in order to retain balance)

to the kinematic initial trajectory �0(t). For the next computation step, the inverse dynamics balance

control accounts for the corrected joint angles:

�(t+�t) = �0(t) + ��(t)

If the update should be done on the movement of one foot that is in contact with the ground, it also

a�ects the kinematic module for the generation of the next step.

7

Generation

Kinematic locomotion

Motion modification

Inverse Dynamic

Balance Control

Comfort Control

Figure 4: Synopsis of the locomotion system from Ko and Badler.

Thanks to this system, the synthetic actor automatically adjusts his posture by bending his pelvis if

he is holding a heavy weight. During a walking cycle, the impacts with the ground make it di�cult

to compute the equivalent forces and torques at contact time. Ko and Badler simplify the problem by

assuming a linear displacement of the contact point on the foot during the support phase. A more precise

solution, based on an interaction model [18] which includes collision detection and Coulomb friction with

the ground is used by Faure et al. [19], which provide the torque curves that correspond to a family of

parameterized kinematic motions.

Adding dynamics constraints to kinematically computed motion results in a good compromise between

realism and control, since it helps the animator to design more realistic motions without changing his way

of interacting with the system. However, the two-stages process produces extra computations and does

not guarantee the convergence of the process: a number of steps could be needed before the corrections

of the kinematic model lead to a physically valid motion (imagine for instance a virtual actor trying to

control balance at each time step while walking down stairs). In this kind of system, nothing ensures that

that their is no conict between the speci�ed kinematics and the �xes required by the inverse dynamics.

Moreover, one can wonder if the inverse dynamics module that is used to account for new physical

phenomena (such as maintaining the balance in getting up and down stairs) makes it possible to compute

the accurate required ��(t). Even if possible, would it be more e�cient to directly simulate the model in

that case ? So, we now present techniques that directly produce realistic (dynamically sound) motions.

4.3 Spacetime constraints

The combination of forward and inverse kinematics allows parts of articulated �gures to follow prede�ned

key-framed trajectories, but does not provide any help for de�ning these trajectories. Witkin and Kass [56]

propose a new formulation of the problem, called \spacetime constraints": the basic idea is to compute

the �gure motion and the time varying muscular forces on the whole animation sequence instead of doing

it sequentially in time. The discrete values of forces, velocities and positions over time are set in a very

large vector of unknowns. A set of constraints between these unknowns is speci�ed. They include:

� constraints on initial, �nal and some intermediary positions and velocities, through which the user

controls the motion;

� constraints that limit muscular forces, or that model contact with the ground;

� the Newtonian physical laws that provide a constraint between forces and positions at two consec-

utive time steps. This constraint is added for each instant in time.

The vector of unknowns is computed during an iterative constrained optimization process. This is done

by specifying a cost function, which is then minimized. This function is often set to the sum of squared

muscular forces over time, which means that the system is trying to �nd the motion that spends as little

8

energy as possible given the user-de�ned goals. A typical approach for solving a constrained optimiza-

tion problem is the Sequential Quadratic Programming method: at each iteration, the cost function is

minimized �rst, then the error over all constraints is minimized. This process is applied iteratively until

the animator is satis�ed.

However, this method su�ers from several limitations. Firstly, the high computational complexity of the

problem (and the large number of unknown) limits the length of animation sequences. The speci�cation

and the numerical integration steps are non-interactive, which makes it di�cult to embed these tech-

niques in an animation design system. Because constraints and goals may be non-linear, the user is not

guaranteed that the numerical process will converge to an acceptable solution. Second, since dynamics

is treated as a constraint between unknowns, and since the system compromises between all constraints

to be able to �nd a solution, dynamics laws may not be entirely respected when the user stops the

iterations (this may not be a problem if the animator is just looking for visual realism). Lastly, since

every constraint in the animation must be speci�ed "a priori", collisions and contacts between objects

are modeled by constraints on positions that hold during speci�c time intervals. This prevents the use of

an automatic collision detection and response module during the animation.

Cohen [16] presented an improved method for solving space-time constraints. It relies on \spacetime

windows" which are designed interactively, and enable the solution of a given part, in space and time, of

the animation. A window is de�ned on a sub-set of degrees of freedom and on a sub-interval of time. An

iterative optimization process searches for functions describing the motion of each degree of freedom in

the window, that minimizes a goal while maintaining a set of weighted constraints. The solution for each

spacetime window represents a partial solution of the entire animation. The global solution, continuous

in space and time, is obtained by combining the partial windows solutions. Due to visual and numerical

feedback on the progression of animation, the animator can add new constraints, increase or decrease

previous constraint weights, or modify intermediary solutions. The animator thus interacts and guides

the optimization in order to make it converge to an acceptable solution. Several other improvements

have been proposed such as the reformulation of the evolution of the degrees of freedom in hierarchical

wavelet representation [36]. This representation allows the signi�cant reduction of the computational cost.

Nevertheless, a major drawback of space-time constraints still remains: collisions with the environment

are not detected and treated automatically. They are simply considered as contact constraints, that are

speci�ed from their beginning to their end by the animator.

This kind of technique has been more speci�cally applied to the animation of biped walks by van de

Panne [49]. His approach consists in using plani�cation algorithm in order to compute footprints. These

footprints are considered as constraints that drive the motion of the biped's center of mass submitted

to the gravity and external forces. An optimization technique is used to minimize a two-term function

in order to prevent non-physical and unnatural motions (comfort). Finally, the motion of the legs is

computed by using inverse kinematics. Gleisher [23, 24] go further this approach by de�ning a set of

spacetime constraints for all the trajectories and not only for the center of mass. Indeed, as inverse

kinematics generally considers only one pose in its computation, he prefers to control all the trajectories

along the whole sequence. To this end, he constrains the variations d(t; x) (where t is the time and x

is a vector that represents the parameters of the motion) around an initial motion m0(t; x0). On the

one hand, these constraints consist in equations and inequations that represent speci�c aspects of the

motion that should be maintained. On the other hand, they drive the changes d(t; x) in order to reach

speci�c points at speci�c times. This method does not directly account for dynamics but is another

way to use spacetime constraints in order to compute several realistic walks. Moreover, the kinematics

constraints used in these approaches are quite simpler to de�ne than dynamics constraints. Indeed, the

desired motion is easier to specify this way than tuning energetical and mechanical criteria.

All the above approaches tend to o�er the animator a tool to interactively modify the process of motion

computation. In contrast, the next approaches that we will describe propose on-the-shelves models of

human locomotion that deal with the intrinsic dynamics of human motion. Controllers make it possible

to drive these dynamics while accounting for empirical and biomechanical knowledge on human gait.

9

4.4 The use of Controllers

The aim of the use of controllers is to animate a synthetic human �gure with forward dynamics, which

allows us to automatically take into account the e�ects of the interactions of the �gure with the virtual

environment. In this framework, the main problem is to �nd the actuator forces (modeling the action of

the \muscles" of the virtual human), that will make it perform the desired motion.

Computing the actuator actions is usually done in a hierarchical process: The animator uses classical

key-frame or kinematic techniques to de�ne a desired motion. A \dynamics controller" then computes

forces and torques required to achieve the goal. Finally, the standard forward dynamics process computes

the motion that results from the set of applied forces and torques. In this framework, the speci�cation of

the goal motion o�ers high level control to the animator, while physical realism is obtained through the

use of the dynamics controller, and through the integration of forces (that includes collision and friction

forces with the environment). An intermediate controller is often introduced to allow gait re�nements

and coordination of the movements.

Before the animation starts, the animator speci�es the behavior he wishes to simulate by providing

the high level controller introduced above. The dynamics controller used to compute forces during the

simulation is responsible for stabilizing posture, maintaining the locomotion cycle, controlling the speed

and the direction of motion, and regulating the behavior of the joints. Based on the current state of the

model and on the desired state, the controller computes forces and torques to apply to each actuator

located on the joints. These forces can be speci�ed by proportional-derivative controllers (PD controllers),

that specify the dynamics behavior of the joints:

f = �kp(q � qd)� kv(_q � _qd)

where kp and kv are proportional and derivative gains respectively, (q; _q) is the current state of the system

(position and velocity), (qd; _qd) is the desired state of the system.

Van de Panne et al. [51] introduce a two-layered architecture to control the gait of such a dynamics

system. The high level controller consists of a �nite state machine, called pose control graph, in which

states are associated to a pose of the �gure (ie. a shape, but not a position). The transition between

two adjacent states, which determines the motion between the corresponding poses, is realized by PD

controllers. These PD controllers, placed on each joint, compute the required forces and torques to lead

the articulated �gure to the speci�ed pose (the next state in the graph). Figure 5 depicts such a graph for

the human walk. This concept is particularly well suited to cyclic motions, such as walking: the movement

Figure 5: Finite state machine for the walk of an articulated �gure

is generated by a cyclic graph that only describes a cycle of the considered motion [42, 27, 33, 51]. Cyclic

pose control graphs provide a mean to represent and automatically control open-loop periodic motions.

This technique can be extended to closed-loop control, that uses information provided by sensors. For

instance, transitions between poses may be parameterized by contact information.

10

4.4.1 Hand-tuning of controllers

The approach introduced above has been widely studied for various kind of motions. Speci�c controllers

have to be designed for a given behavior. For instance, Raibert and Hodgins [42] de�ned a controller to

animate dynamics running of quadruped and biped creatures, by regulating the running speed, organizing

the use of legs and maintaining the balance. Several other approaches [27, 26] make it possible to animate

dynamics athletic behaviors such as running, bicycling, vaulting and diving, by controlling appropriate

features of the considered movements.

These techniques seem to necessitate a long period of interactive tuning, since parameters are �rst found

by trial and error, and then tuned. Indeed, empirical laws determine angles in the state machines that

specify a high level description of the behavior to be simulated. Moreover, an open-loop control strategy

with �ne-tuning of control parameters is needed, which makes it di�cult to reuse these parameters for

another �gure with a di�erent morphology [41].

4.4.2 Automatic generation of controllers

An alternative to hand-tuned controllers is their automatic generation. Some approaches of this kind

attempt to start from scratch: The user de�nes an articulated �gure and a goal function to optimize (for

instance, going as far as possible in a given time). The system automatically generates and optimizes a

set of controllers, that may result into very di�erent and surprising locomotion modes. Van de Panne

and Fiume [50] model controllers as \Sensor-Actuator Networks" ie. non-linear directed graphs with

weighted connections, that compute actuator torques from internal nodes linked to binary sensors data

(giving information about the environment such as contact). The internal parameters of the system

are �rst generated randomly, and then optimized according to a given criterion. Ngo and Marks [39]

use a similar approach, where parameter values for the controller are searched with genetic algorithms.

Sims [45] goes further in the use of genetic algorithms by simultaneously computing the evolution of

the creature morphology that best suits a given mode of locomotion. As the only interface to control

the motion is a cost function, these kinds of methods require lots of trials, and consequently need huge

computational resources. In addition, most of them were only used in 2D and there is very little chance

that the resulting motion resembles well-known motion such as human walking.

Applying dynamics control methods to 3D �gures gives rise to the challenging problem of maintaining

the balance. Although walking motions should be cyclic, the open-loop control of a 3D �gure most

often yields a motion that takes several steps, and then the �gure falls over. Laszlo et al. [35] propose

an automatic method for generating walking motions that maintains the balance from given open-loop

controllers (such as a pose-control graph). The method is based on \limit cycle control". This extra

control module tailors the open-loop controller by regulating some of its variables according to observed

perturbations on motion. This automatic addition of closed-loop control yields stable and robust walking

motions, that however do not have the visual quality of real human motion.

4.5 Discussion

Adding biomechanical knowledge concerning human motion to the inverse dynamics module allows us

to guarantee that the computed motion is anatomically feasible. If the forces are properly and robustly

computed, the character may be able to handle interactions with his environment. This may be essential

for animating autonomous actors in virtual reality applications. Collisions with other objects, walking on

a variable terrain, walking in water or against the wind could be simulated using these methods, o�ering

a powerful tool to animators.

However, techniques based on controllers and dynamics simulation su�er from a high computational

cost compared to kinematic techniques. This makes them di�cult to use in interactive animation tools.

Moreover, the mechanical parameters are very di�cult to calibrate with respect to human anatomy

(damping e�ects between bones, etc.). In addition to the calibration of the mechanical model, the

11

designer of such a system has to deal with the calibration of the controller gains in order to obtain

realistic motions. Consequently, resulting motions are usually not as realistic as those generated by hand

using kinematics, which o�er direct control on the e�ective motion rather than trying to model its causes.

5 Animation Based on Motion Data

We have just seen that many dynamics models were designed in the nineties in order to synthesize human

�gure motion, but it is unlikely that dynamics simulation will solve all animation problem. Researchers

have thus turned to other kinds of approaches. The recent progress in motion capture techniques makes

it possible to directly use human motion data. In this last type of approach, the knowledge that is

used to ensure realism consists in the captured trajectories themselves. We now describe some of these

approaches.

5.1 Motion Capture

All the previous approaches deal with biomechanical, mechanical or empirical knowledge on human

motion. The goal of this kind of approaches is to work directly on data which are provided by captured

motions. Thus, in last few years, motion capture techniques have been widely used to animate 3D

rigid-body skeleton. By using magnetic or optical technologies, it is possible to store the positions and

orientations of points located on the human body. A further computation provides the link between the

synthetic skeleton and the real skeleton, in order to adapt data to the new morphology. Several approaches

[37, 3] have introduced techniques to adapt captured trajectories to a di�erent synthetic skeleton. Such

systems also deal with errors introduced during the capture process, such as numerical approximations,

calibration error, electronic noise, etc. The method consists in recovering angular trajectories which

are applied to a synthetic articulated body. Given sensor positions and orientations, a modi�ed inverse

kinematic optimization algorithm is used to produce the desired joint trajectories. The synthetic skeleton

thus plays exactly the same motion as the real actor.

For most applications, the captured motion needs to be modi�ed in order to create a variety of speci�c

animations, that may take the synthetic environment into account. For instance, when interaction be-

tween two synthetic actors is required, their movement has to be modi�ed to model this interaction (by

dealing with problems of contacts, trajectory tracking, etc.). To this end, two main families of techniques

have been introduced in the last few years: motion blending and motion warping.

5.2 Motion blending

Motion blending needs a database of characteristic motions (described either in the frequency or temporal

domain) and consists in interpolating between their parameters in order to produce new motions.

Unuma et al. [48] used Fourier expansions of experimental human motions to interpolate or extrapolate

the human locomotion. First, angular trajectories are expressed using Fourier series in the frequency

domain:

�n = �0 +
X

�ksin(2�k
n

N
+ �k) (5)

A low-band �lter is applied to keep only the �rst parameters (~�p; p 2 [0:::3]). Once these parameters are

obtained for several di�erent locomotion styles, it is possible to interpolate from one set of parameters

(�1k; �
1
k) to another (�2k; �

2
k):

~�k = s�2k + (1� s)�1k (6)

where s is a real value ranging from 0 to 1. New motions can be obtained by interpolating between two

pre-computed motions. Resulting motions are completely de�ned by the value of s and by the two sets

of parameters of original motions. For example, to make a synthetic actor walk in a more or less tired

fashion, it is possible to interpolate between a normal and a tired gait.

12

Whereas Unuma et al. worked with trajectories in the frequency domain, Guo and Roberge [25] used

parametric frame space interpolation of key-framed motions. Every motion with m articulations is

expressed in a m-dimensional space Pm = (a1; a2; :::; am). Thus, for n key-frames Km
1 ;Km

2 ; :::;K
m
n ,

it is possible to compute in-between angular trajectories by a m-dimensional interpolation function F (s),

where s is the arc-length parameter. The resulting angular trajectories are mapped to a horizontal line

segment through a parameter conversion to obtain a 1-D frame space. Once these operations have been

carried out on k referenced motions, it is possible to create new motions as linear combinations (or

weighted sums) of the reference interpolation functions Fi(x); (i = 1; 2; :::; k), where x is the coordinate

of the 1-D frame space. For human locomotion, four di�erent locomotion styles are considered: short-

step (ssw), long-step (lsw), short-step running (ssr) and long-step running (lsr). Figure 6 depicted an

example of frame space interpolation for the human locomotion cycle.

SSR LSR

LSWSSW

time

Figure 6: A position curve de�ned in the frame space.

Wiley and Hahn [55] have also introduced a technique to interpolate pre-recorded captured motions.

Numerous captured motions de�ne a parameter space (such as the position of an end-e�ector, styles of

walk, etc.), and new motions are obtained by interpolating parameters of some captured motions with

cubic splines. The problem of this technique is the size of the database that depends on the required

precision of the resulting motion. Moreover, for human motion, several di�erent postures correspond,

in general, to a unique parameter (such as the position of the hand). These customized postures may

be taken into account in this kind of model if new parameters are added (according to these families of

motions). Consequently, the volume of the database of pre-recorded motions increases proportionally to

this number of parameters. To decrease the volume of this database, Ko and Cremer [34] introduced

a system called vrloco, which automatically blends motions computed by kinematic models of human

locomotion (described in [30]) instead of captured motions. Depending on direction and velocity, the

system automatically generates footprints and selects the appropriate style of gait.

Whereas the previous approaches use linear interpolation to blend two pre-recorded motions, Rose et

al. [43] use spacetime constraints to transit from one movement to another. Basic operators such as

parallelism, addition and subtraction are de�ned for a basis of elementary motions. The transition

between two motions is then obtained while dealing with dynamics constraints such as minimizing the

required energy (as described in subsection 4.2).

The main advantages of the motion blending techniques are the low computation cost and the use of

motion capture trajectories as primary data (to ensure the maintainance of intrinsic dynamics of the

movement). The main drawback of these techniques is that the number of possible e�ects such as

weariness, nervousness, etc. relies on the number of pre-recorded motions. Making a human �gure walk

in a more or less tired manner is possible if and only if a normal walk and a tired walk are recorded.

Moreover, for these techniques, the authors generally assume that transitions between two parameter

sets are linear (or cubic) and continuous in time. In frequency and temporal domains however, nothing

ensures that an interpolated (or extrapolated) parameter set produces realistic motions. Finally, in some

cases, interpolation between two parameter sets is dangerous. For instance, when we move our hand, we

may decide to completely change the body con�guration: for example, by squatting if the altitude of the

hand is lower than a given threshold. Interpolated postures, in this particular case, will not be realistic.

13

5.3 Motion warping

We call motion warping all techniques that take well-known trajectories (described by key-frames or

motion captured trajectories) and modify them in order to change the motion. To this end, two main

groups of approaches are considered: signal study in the temporal or in the frequency domain.

Witkin and Popovic [57] modi�ed a reference trajectory �i(t) (where i represents the ith parameter of

the system) by interactively tuning the position of selected key-frames and by scaling and shifting �i(t):

8i; �0i(t) = a(t)�i(t) + b(t)

t = g(t0)
(7)

Function a(t) is used to scale the signal and b(t) is used to change the center of scaling of a. The

deformation from time t to t0 is a constrained interpolation based on Cardinal splines. Thus, the resulting

sequence satis�es the constraints of new key-frames with respect to the pattern of the initial motion.

Moreover, blending of several motions can be obtained by weighted sums. Ko and Badler [32] also

introduced a method to modify a reference motion recorded as sequences of key-frames:

Q = f(ti; vi)ki = 1; : : : ; ng

where ti is a real number with ti < ti+1, and vi is any dimensional vector. By changing the morphology

of the synthetic �gure, new parameters (ti; vi) are automatically computed to make new character walks.

Whereas these parameters are changed, the characteristics of the original gait are preserved.

Instead of studying trajectories in the temporal domain, Bruderlin and Williams [11] applied image and

signal processing techniques in the frequency domain to reuse, modify and adapt animated human motion.

The goal is to make libraries of animated motion with high level motion editing at interactive speeds. To

this end, multi-resolution �ltering (�gure 7 depicts such a multi-resolution �ltering process) of angular

trajectories have been used to de�ne a reduced set of motion parameters:

G

L

G4

L4

G3

L3

L2

G2

G1

L1

G0

Lowpass filter

Bandpass filter

Figure 7: Principle of the multi-resolution �ltering process.

G0 = L0 + L1 + :::+Gn (8)

where G0 represents the initial signal and Ln�1 = Gn�1 � Gn. To produce new motions, the signal is

reconstructed di�erently by tuning weights gk associated to each parameter:

G0 = Gfb +

fb�1X

k=0

(gk:Lk) (9)

14

where fb = log2(m), if m is the length of G0. Depending on which frequency band gk is modi�ed, the

resulting motion is tuned (more or less tired, nervous, exaggerating, etc.). Moreover, this technique makes

it possible to interpolate from one set of frequency parameters to another, as in motion blending tech-

niques. Compared to Fourier analysis, multi-resolution analysis is interesting for non-periodic perturbed

signals. But, in the special case of locomotion, that is a quasi-periodic motion, the most important part

of the signal is contained in the few �rst harmonics. It is possible to achieve the same kind of approach

by using Fourier principles.

For the two approaches mentioned above, the same problem as kinematic or procedural animation tech-

niques is encountered. Because these modi�cations do not handle dynamics e�ects, it is impossible to

ensure that resulting motions are realistic. Moreover, as for kinematic or procedural approaches, the

trajectories are decoupled so that the strong coupling of the articulation motion may be lost in many

cases. Even if all frequencies are changed in the same manner, no attention is paid to the shift that

naturally occurs between the articulations in a real locomotion cycle.

5.4 Discussion

Compared to procedural and kinematic techniques, motion modi�cation techniques o�er the advantage

of using intrinsically realistic motion (ie. captured motion) to animate human-like �gures. Moreover

this technique provides animators with tools that are compatible with their usual work on key-framed or

captured trajectories.

Table 1: Comparison between the models.

Model Cost Advantages Disadvantages

Procedural approaches O(n) low computation cost no automatic dynamics e�ects

Kinematic correction O(n3) ensure realistic poses
no automatic dynamics e�ects

coherence between modules

Dynamic constraints O(n) avoid unrealistic dynamics e�ects

Desired dynamics e�ects

implies ad'hoc constraints

coherence between modules

Space-time constraints O((nm)2) dynamically-sound interpolation Huge computation cost

Simulation O(n3)
accounts for dynamics e�ects

automatic simulation code gen.

Computation cost

calibration of parameters

physical realism vs. natural looking

Editing Motion Data O(n)
Computation cost

Realistic trajectories

hard interactive control

volume of the motion database

On the other hand, the intrinsic realism included in captured trajectories might be lost for extreme

modi�cations. Indeed, the modi�cations applied to these trajectories do not ensure the preservation of

intrinsic dynamics of human motion. Even though the quality of the animations produced by procedural

techniques depends on the model, the quality of the resulting sequences depends on the users skills. For

motion warping techniques, there is no control that ensures that the resulting sequence is the one desired.

Consequently, the user of such a system has to modify by trial and error parameters of trajectories, as

well as interpolation weights, in order to produce a speci�c desired motion.

Moreover, in several of such approaches, using �lters or blending motions makes it di�cult to ensure that

holonomic constraints are veri�ed. For example, a �ltered trajectory does not exactly go through the

constraints points that might be relevant in order to make the motion be realistic. In the same manner,

the result of two blended trajectories is really hard to control in order to maintain several simultaneous

point-to-point constraints.

15

6 Conclusion

This paper classi�es Computer Graphics techniques for the simulation of human locomotion into three

main categories : kinematic animation, dynamically-based animation and motion-data edition. These

categories are identi�ed by the type of knowledge that they use in order to compute realistic motions:

empirical/biomechanical knowledge, dynamics and captured trajectories. Table 1 summarizes the main

advantages and shortcomings of all these techniques. Their development over time shows the evolution

described above. For each kind of approach, table 2 recalls the main problems that the method deals

with and its best suitable type of application.

First, Researchers attempted to reproduce some speci�c behaviors by providing a way to describe these

e�ects. This kind of approach requires a low computational cost which depends on the selected interpo-

lation function. Degrees of freedom are computed separately, as if they were decoupled, which involves a

theoretical computation cost of O(n) if n is the number of degrees of freedom. When taking constraints

on foot/ground contact into account, an additional cost of O(n3) is generated by the required inverse

kinematic algorithm. Nevertheless, the quality of the motion mainly depends on the quality and the

quantity of knowledge necessary to reproduce the desired e�ect. For human locomotion, the way the

angular trajectories change depending on high level parameters (such as velocity, step length, frequency

and height) has to be described \a priori". Thus, the designer generally has to create a new model from

scratch to account for a new e�ect.

Then, several approaches attempted to improve these models under the hypothesis that dynamics laws

were responsible for much of these e�ects. Methods producing \dynamically-sound" motions were devel-

oped. Some of them just modify the results of kinematic models. Other methods go further by directly

embedding dynamics in the computation of angular trajectories. Thus, controllers applied to more or less

complex mechanical models have been presented. Nevertheless, for complex models such as the human

body, the computational cost increases in O(n3) due to the inversion of large matrices. Moreover, some

of the dynamically-sound motions do not look realistic.

Motion capture systems have been widely used during the last few years for creating new animations of

virtual humans. These approaches assume that realistic motions can be obtained by editing and tuning

a library of motion data. This data is based on captured motion, but may also include arti�cial motions

computed with previous approaches. The computational cost is low (O(n)) because each articulation is

computed separately. Although several convincing animations have been designed using these methods,

the parameter control is not simple: a number of trial and error iterations is often needed before obtaining

the desired result. Moreover, the modi�cations applied to prede�ned trajectories have to be small in order

to ensure that the resulting sequence remains realistic. Problems such as avoiding inter-penetration

of the feet into the ground for edited motions, and ensuring non-sliding contact for the support leg,

are not handled by most of these approaches. We believe that these techniques would lead to very

promising developments if they are coupled with knowledge on human motion and with dynamically-

based constraints.

Another important point is to be able to choose the method that suits the best a speci�c application. For

instance, kinematic models can be successfully applied to virtual reality applications where all possible

basic motions are designed in advance and no dynamics e�ect is required. These methods are suited to

real-time animation of several characters [38]. Dynamic models have to be used in other virtual reality

animations that deeply rely on physically-based interactions. However, precise simulation techniques that

have a heavy cost make the control of several characters di�cult in shared virtual reality applications such

as the vlnet system [12]. Dynamic techniques that require o�-line computations have rarely been used in

audiovisual applications (such as special e�ects in cinema) because of their lack of control. But improved

models could �nd a good �eld of applications there in the future. Finally, motion-data-based animation

techniques are suitable for video-games and applications in movie production. Reference motions are �rst

captured and then tuned either by the user or to solve the environment constraints (adapting a captured

motion to another synthetic world). These techniques o�er interesting capabilities. For instance, they

express emotions (which may be already contained in the captured data) more easily than physically-

based techniques. Future works enhance motion editing techniques by accounting for dynamics e�ects and

16

Table 2: Comparison of the methods according to the kind of application.

Model problems taken into account suitable for (applications)

Procedural approaches realistic motion of the articulations
virtual reality (without collision),

video games, behavioral simulation

Kinematic correction

realistic motion of the articulations

veri�es the contact with the ground

accommodate variable grounds

virtual reality, video games,

behavioral simulation, art

Dynamic constraints

realistic motion of the articulations

accounts for mechanical changes

reacts to external forces

computes the required torques

art, virtual reality

Space-time constraints

accounts for mechanical changes

reacts to external forces

computes the required torques

art, biomechanical simulation

Simulation

accommodates variable grounds

accounts for mechanical changes

reacts to external forces

computes the required torques

biomedical simulation

Editing motion data
realistic motion of the articulations

personi�cation of the gait

art, virtual reality, video games,

behavioral simulation

other global knowledge on motion. On the other hand, physically-based models may also be improved,

and coupled with kinematic techniques in order to be applied to interactive avatars or to behavioral

simulations.

In conclusion, we believe that the various methods we have presented should not be used alone, but

rather combined according to the speci�c application which is developed. An interesting way to do this is

to adapt the level of detail in motion generation when a character comes closer [14], which may be done

by switching from a model to another one. Several challenging problems such as the design of smooth

transitions are still to be solved in this area.

References

[1] David Bara�. Linear-time dynamics using lagrange multipliers. In SIGGRAPH 96 Conference

Proceedings, Computer Graphics Proceedings, Annual Conference Series, pages 137{146. ACM SIG-

GRAPH, Addison Wesley, August 1996. ISBN 0-201-94800-1.

[2] R. Barzel and A.H. Barr. A modeling system based on dynamics. In Proceedings of ACM SIG-

GRAPH, pages 179{188. Addison Wesley, July 1988.

[3] B. Bodenheimer, C. Rose, S. Rosenthal, and J. Pella. The process of motion capture: Dealing with

the data. In Eurographics Workshop on Computer Animation and Simulation, pages 3{18, September

1997.

[4] R. Boulic, N. Magnenat-Thalmann, and D. Thalmann. A global human walking model with real-time

kinematic personi�cation. Visual Computer, 6(6):344{358, December 1990.

[5] R. Boulic, R. Mas, and D. Thalmann. A robust approach for the center of mass position control

with inverse kinetics. Journal of Computers and Graphics, 20(5), 1996.

[6] R. Boulic and D. Thalmann. Combined direct and inverse kinematic control for articulated �gures

motion editing. Computer Graphics Forum, 11(4):189{202, 1992.

17

[7] A. Bruderlin. Hierarchical virtual characters. In Siggraph course note 17, Virtual Humans: Behaviors

and Physics, Acting and Reacting, May 1997.

[8] A. Bruderlin and T. Calvert. Goal-directed, dynamic animation of human walking. In Proceedings

of ACM SIGGRAPH, pages 233{242. Addison Wesley, July 1989.

[9] A. Bruderlin and T. Calvert. Interactive animation of personalized human locomotion. In Graphics

Interface, pages 17{23, 1993.

[10] A. Bruderlin and T. Calvert. Knowledge-driven, interactive animation of human running. In Graphics

Interface'96, pages 213{221, May 1996.

[11] A. Bruderlin and L. Williams. Motion signal processing. In Proceedings of ACM SIGGRAPH, pages

97{104, Los-Angeles, California, August 1995. Addison Wesley.

[12] TK. Capin, LS. Pandzic, H. Noser, N. Magnenat-Thalmann, and D. Thalmann. Virtual human

representation and communication in vlnet. IEEE Computer Graphics and Applications, 17(2):42{

53, 1997.

[13] Michel Carignan, Ying Yang, Nadia Magnenat-Thalmann, and Daniel Thalmann. Dressing animated

synthetic actors with complex deformable clothes. Computer Graphics, 26(2):99{104, July 1992.

Proceedings of SIGGRAPH'92 (Chicago, Illinois, July 1992).

[14] D.A. Carlson and JL. Hodgins. Simulation level of detail for real-time animation. In Proceedings of

Graphics Interface'97, pages 1{8, 1997.

[15] John E. Chadwick, David R. Haumann, and Richard E. Parent. Layered construction for deformable

animated characters. Computer Graphics, 23(3):243{252, July 1989.

[16] M.F. Cohen. Interactive spacetime control for animation. In Proceedings of ACM SIGGRAPH, pages

293{302. Addison Wesley, July 1992.

[17] R. M. Enoka. Neuromechanical Basis of Kinesiology (2nd Edition). Human Kinetics, 1994.

[18] F. Faure. An energy-based method for contact force computation. In Proceedings of Eurographics'96,

pages 357{366, August 1996. Computer Graphics Forum, Volume 15, Number 3.

[19] F. Faure, G. Debunne, M.P. Cani-Gascuel, and F. Multon. Dynamic analysis of human walking. In

Eurographics Workshop on Computer Animation and Simulation, pages 53{66, September 1997.

[20] Jean-Dominique Gascuel and Marie-Paule Gascuel. Displacement constraints for interactive model-

ing and animation of articulated structures. The Visual Computer, 10(4):191{204, March 1994.

[21] M. Girard. Interactive design of 3d computer-animated legged animal motion. IEEE Computer

Graphics and Applications, 7(6):39{51, June 1987.

[22] M. Girard and A.A. Maciejewski. Computational modeling for the computer animation of legged

�gures. In Proceedings of ACM SIGGRAPH, pages 263{270. Addison Wesley, July 1985.

[23] M. Gleisher. Motion editing with spacetime constraints. In Proc. of Symposium on Interactive 3D

Graphics, April 1997.

[24] M. Gleisher. Retargeting motion to new characters. In Proc. of ACM SIGGRAPH'98, Orlando, FL,

July 1998. Addison Wesley.

[25] S. Guo and J. Roberge. A high-level control mechanism for human locomotion based on parametric

frame space interpolation. In Eurographics Workshop on Computer Animation and Simulation, pages

95{107, Poitiers, France, September 1996. Springer Verlag.

[26] J. Hodgins. Three-dimensional human running. In Proceedings of the IEEE Conference on Robotics

and Automation, April 1996. Minneapolis, Minnesota.

18

[27] J.K. Hodgins, W.L. Wooten, D.C. Brogan, and J.F O'Brien. Animating human athletics. In Pro-

ceedings of ACM SIGGRAPH, pages 71{78, Los Angeles, California, August 1995. Addison Wesley.

[28] Donald House, David Breen, and Philipp Getto. On the dynamic simulation of physically-based

particle-system models. In Third Eurographics Workshop on Animation and Simulation, Cambridge,

England, September 1992.

[29] P.M. Isaacs and M.F. Cohen. Controlling dynamic simulation with kinematic constraints, behavior

functions and inverse dynamics. In Proceedings of ACM SIGGRAPH, pages 215{224. AddisonWesley,

July 1987.

[30] H. Ko. Kinematic and Dynamic techniques for Analyzing, Predicting, and Animating Human Loco-

motion. PhD thesis, University of Pennsylvania, 1994.

[31] H. Ko and N. I. Badler. Animating human locomotion in real-time using inverse dynamics. IEEE

Computer Graphics & Applications, 1996.

[32] H. Ko and N.I. Badler. Straight line walking animation based on kinematic generalization that

preserves the original characteristics. In Graphics Interface, pages 9{16, Toronto, Ontario, Canada,

May 1993.

[33] H. Ko and N.I. Badler. Animating human locomotion with inverse dynamics. IEEE Computer

Graphics and Applications, 16(2):50{59, March 1996.

[34] H. Ko and J. Cremer. Vrloco: real-time human locomotion from positional input streams. Presence,

5(4):367{380, 1996.

[35] J. Laszlo, M. van de Panne, and E. Fiume. Limit cycle control and its application to the animation of

balancing and walking. In Proceedings of ACM SIGGRAPH, pages 155{162, New Orleans, Louisiana,

August 1996. Addison Wesley.

[36] Z. Liu, S.J. Gortler, and M.F. Cohen. Hierarchical spacetime control. In Proceedings of ACM

SIGGRAPH, pages 35{42, Orlando, Florida, July 1994. Addison Wesley.

[37] T. Molet, R. Boulic, and D. Thalmann. A real time anatomical converter for human motion capture.

In Eurographics Workshop on Computer Animation and Simulation, pages 79{94, September 1996.

[38] S. R. Musse and D. Thalmann. A model for human crowd behavior: Group inter-relationship and

collision detection analysis. Eurographics Animation and Simulation Workshop, September 1997.

[39] J.T. Ngo and J. Marks. Spacetime constraints revisited. In Proceedings of ACM SIGGRAPH, pages

343{350, Anaheim, California, August 1993. Addison Wesley.

[40] J. Nilsson, A. Thorstensson, and J. Halbertsam. Changes in leg movements and muscle activity with

speed of locomotion and mode of progression in humans. Acta Physiol Scand, pages 457{475, 1985.

[41] J.K. Hodgins N.S. Pollard. Adapting simulated behaviors for new characters. In Proceedings of ACM

SIGGRAPH, Los Angeles, California, August 1997. Addison Wesley. Computer Graphics Forum,

Volume 15, Number 3.

[42] M.H. Raibert and J.K. Hodgins. Animation of dynamic legged locomotion. In Proceedings of ACM

SIGGRAPH, pages 349{358. Addison Wesley, July 1991.

[43] C. Rose, B. Guenter, B. Bodenheimer, and M.F. Cohen. E�cient generation of motion transitions

using spacetime constraints. In Proceedings of ACM SIGGRAPH, pages 147{154, New Orelans,

Louisiana, August 1996. Addison Wesley.

[44] Jianhua Shen and Daniel Thalmann. Interactive shape design using metaballs and splines. In Im-

plicit Surfaces'95|the First Eurographics Workshop on Implic it Surfaces, pages 187{195, Grenoble,

France, April 1995.

19

[45] K. Sims. Evolving virtual creatures. In Proceedings of ACM SIGGRAPH, pages 15{22, Orlando,

Florida, July 1994. Addison Wesley.

[46] D. Thalmann, J. Shen, and E. Chauvineau. Fast human body deformations for animation and vr

applications. In Proceedings of Computer Graphics International '96, pages 166{174. IEEE Computer

Society Press, June 1996.

[47] Russel Turner. Leman: A system for construsting and animating layered elastic chara cters. In

Computer Graphics- Developments in Virtual Environments, pages 185{203, Academic Press, San

Diego, CA, June 1995.

[48] M. Unuma, K. Anjyo, and R. Takeuchi. Fourier principles for emotion-based human �gure animation.

In Proceedings of ACM SIGGRAPH, pages 91{96, Los Angeles, California, August 1995. Addison

Wesley.

[49] M. van de Panne. From footprints to animation. Computer Graphics Forum, 16(4):211{223, October

1997.

[50] M. van de Panne and E. Fiume. Sensor-actuator networks. In Proceedings of ACM SIGGRAPH,

pages 335{342, Anaheim, California, August 1993. Addison Wesley.

[51] M. van de Panne, R. Kim, and E. Fiume. Virtual wind-up toys for animation. In Graphics Interface,

pages 208{215, Ban�, Alberta, Canada, May 1994.

[52] Volino, N. Magnenat-Thalmann, S. Jianhua, and D. Thalmann. Am evolving system for simulating

clothes on virtual actors. IEEE Computer Graphics and Applications, 16(5):42{51, 1996.

[53] Pascal Volino, Martin Courchesne, and Nadia Magnenat Thalmann. Versatile and e�cient techniques

for simulating cloth and other deformable objects. Computer Graphics, pages 137{144, August 1995.

[54] A. Watt and M. Watt. Advanced Animation and Rendering Techniques: Theory and Practice. ACM

Press, 1992.

[55] D.J. Wiley and J.K. Hahn. Interpolation synthesis of articulated �gure motion. IEEE Computer

Graphics and Application, 17(6), November 1997.

[56] A. Witkin and M. Kass. Spacetime constraints. In Proceedings of ACM SIGGRAPH, pages 159{168,

Atlanta, Georgia, August 1988. Addison Wesley.

[57] A. Witkin and Z. Popovic. Motion warping. In Proceedings of ACM SIGGRAPH, pages 105{108,

Los Angeles, California, August 1995. Addison Wesley.

[58] D. Zeltzer. Motor control techniques for �gure animation. IEEE Computer Graphics and Applica-

tions, 2(9):53{59, November 1982.

[59] D. Zeltzer. Knowledge-based animation. In ACM SIGGRAPH/SIGART, Workshop on Motion,

pages 187{192, April 1983.

20

