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Abstract

We present a texturing method that correctly maps homogeneous
non-periodic textures to arbitrary surfaces without any of the dif-
ficulties usually encountered using existing tools. Our technique
requires little redundant designer work, has low time and memory
costs during rendering and provides high texture resolution.

The idea is simple: a few triangular texture samples, which obey
specific boundary conditions, are chosen from the desired pattern
and mapped in a non-periodic fashion onto the surface. Our map-
ping algorithm enables us to freely tune the scale of the texture
with respect to the object’s geometry, while minimizing distortions.
Moreover, it yields singularity-free texturing whatever the topology
of the object. The sets of texture samples may be created interac-
tively from pictures or drawings. We also provide two alternative
methods for automatically generating them, defined as extensions
of Perlin’s and Worley’s procedural texture synthesis techniques.

As our results show, the method produces textured objects that
look reasonable from any viewpoint and can be used in real-time
applications.

Keywords: Texture Mapping, Patterns, Texture Synthesis, Non-
periodic Tiling

1 Introduction

Reproducing the visual complexity of the real world is a dream
for many Computer Graphics practitioners. Since every detail can-
not be modeled at the geometric level, textures are very useful for
adding visual complexity to a synthetic scene. They can for instance
be used for representing rocks or vegetation on a distant mountain,
for simulating animals’ fur or skin, human clothes, or the surface
aspect of a material. Most of the textures we need for modeling nat-
ural objects, either mineral, vegetable, or animal, have a common
feature: they may look homogeneous at a large scale (i.e., large
scale statistical properties do not depend on the location), but no
visible periodicity can be found anywhere.

Texturing arbitrary shapes with such textures is a challenge for
artists, since no CG tool is really adequate to fit real-world con-
straints: generating the texture directly on the surface is memory
and time consuming (either for the CPU or the artist), while using
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standard image mapping results in pattern distortions, discontinu-
ities, and obvious periodicity.

We present a practical solution to this problem, which involves
no increase in computational or memory cost at rendering time over
standard image mapping techniques using repetitive patterns. Our
method works for arbitrary surfaces. It yields little distortion of the
texture, no singularities whatever the topology of the surface, and
no periodicity.

1.1 Related work

Despite years of CG research and tool development, artists still
have difficult (and time consuming) work to do in order to achieve
the texturing of complex surfaces. This paper focuses on homo-
geneous non-periodic textures, such as those we need for natural
objects (textures may define any surface attribute, such as color,
transparency, normal perturbation or displacement). The two mains
problems to solve are texture generation and texture mapping. Let
us review the solutions offered by existing tools:

Standard 2D texture mapping: The first solution consists of
mapping a single image of the desired texture onto the synthetic
object. To do this, a global parameterization of the object surface
is required. As a consequence, there will necessarily be discon-
tinuities of the texture somewhere on the surface if the object is
closed or has a higher topologic order. Moreover, the texture may
be highly distorted if the object has an arbitrary geometry. Op-
timization techniques such as those in [1, 11] can be used to re-
duce distortions, either locally, or by allowing the introduction of
‘cracks’, i.e., discontinuities. Entirely suppressing distortions by
editing the mapping is impossible, except if the object’s surface can
be unfolded onto a plane (such as a cloth). This is not the case for
natural shapes. A solution for the user to eliminate apparent texture
distortions is to draw a pre-distorted texture that will compensate
for the distortions due to the mapping. However, this requires high
designer skills2, and the work needs to be re-done from scratch for
every new object.

An alternative is to use pattern-based texture mapping, which
consists of repetitively mapping a small rectangular texture patch
representing a sample of the desired texture pattern onto the sur-
face. The sample image has to obey specific boundary conditions
in order to join correctly with itself. More precisely, it needs to have
a toroidal topology: the texture on the left edge must fit the texture
on the right, and respectively the top edge has to fit with the bottom.
Such texture samples can be created by editing pictures or drawings
using interactive 2D painting systems. An advantage with respect
to the previous approach is that, being small, the texture sample
will be stored at a higher resolution, and will demand less redun-
dant work by the artist. Moreover, it can be re-used for texturing
other objects. Discontinuity and distortion problems, however, will
be exactly the same as for a single texture map as long as a global
parameterization is used to map the texture pattern. See Figure 1.

It should be be noted that these two techniques are the only meth-
ods available in current graphics hardware. Thus, other representa-
tions or design techniques have to be converted into this represen-
tation for rendering if real time constraints apply.

2This is actually done in practice in industry!



Figure 1: Standard pattern-based mapping used for applying a cellular pat-
tern onto the geometric model of a liver. Distortions are clearly noticeable.

Interactive techniques: The problem of finding good local pa-
rameterizations for the surfaces is solved in patch-based interactive
texturing systems by leaving the user to tile the surface [12, 14, 15].
In [14], the latter interactively subdivides an implicit surface into
square patches. Surface geodesics are used for fitting the bor-
ders of these patches to the surface. Optimization is then used for
deriving a minimally-distorted local parameterization inside each
patch. This approach, which can be extended to parametric sur-
faces as well, can be combined with pattern-based texturing in or-
der to cover an object with a given pattern. However, using a local
instead of a global parameterization is not sufficient for avoiding
texture discontinuities on closed surfaces (to be convinced, try to
map a texture sample with a toroidal topology onto a cube): tex-
ture discontinuities will appear across some of the edges, since the
neighboring borders of the sample image cannot be those expected
everywhere.

Entirely avoiding both distortions and discontinuities can be
achieved by using interactive texture painting software [8]. As in
the first method, a single texture map corresponding to a global pa-
rameterization of the surface is used. However the texture content
is directly designed on the object’s surface before being stored as a
map. The texture map may then appear distorted and discontinuous,
but it will be correct when it is rendered. Depending on the user’s
skills, an homogeneous non-periodic texture may be designed using
this method. However, this technique yields a high memory cost (as
in the first approach) and consumes lots of user’s time since texture
details must be drawn all over the surface. Moreover, the user work
is almost never re-usable on another shape.

Texture synthesis techniques: An alternative to painting the
texture onto the surface is to automatically generate it, which has
the advantage of saving user’s time by replacing the redundant de-
sign work by a high level control of the texture features. A wide
range of parametric texture synthesis techniques that are convenient
for generating natural textures have been proposed [16, 21, 19, 22].

One such method is solid texturing, which involves defining a
3D material field (e.g. marble, wood) which is intersected with
the object’s surface to create the texture [16, 22]. No distortion
nor discontinuity across the object’s edges will be produced, since
no surface mapping occurs. However the method is restricted to
texture patterns that intrinsically come from a 3D phenomenon: it
cannot capture surface properties such as the detailed appearance of
the skin (e.g. regular scales). Another drawback is that synthesizing
the texture during rendering will not allow real-time performance,
since it is a per-pixel based computation. An alternative would be
to store 3D texture tables at a high memory cost.

Other procedural techniques such as reaction diffusion [21, 19]
can be used to generate a pattern-based texture directly on an ob-
ject’s surface. These methods are computationally costly or have a
high memory cost, depending whether the texture is generated on
the fly or precomputed and stored. We can note that Perlin’s and
Worley’s techniques may also be used on surfaces (as opposed to
solid material). However Perlin’s noise requires a grid to be gener-
ated, so a global parameterization needs to be introduced.

Lastly, all the listed procedural techniques can easily be extended
to the automatic generation of square 2D texture samples that have
a toroidal topology. The latter can then be used in pattern-based

mapping techniques, with the distortion and discontinuity problems
discussed above. Moreover, this technique would produce patterns
with obvious periodicity, which would probably spoil the natural
appearance of the final object.

Towards non-periodic mapping: Artistic and mathematical
work on tilings such as those of Escher and Penrose (see for in-
stance [3, 5, 6]) can also be a source of inspiration. Escher’s draw-
ings include several tilings of the plane with complex shapes such
as birds, fishes or reptiles. Penrose studies aperiodic tilings of the
plane, and shows that some specific sets of tiles always form non-
periodic patterns.

A first attempt to build a practical application of these ideas to
texturing in Computer Graphics is Stam’s work on “aperiodic tex-
tures” [17]. His aim is to render water surfaces and caustics. Stam
tiles the plane with a standard grid of square patches, where he maps
16 different texture samples of an homogeneous texture. To do so in
a non-periodic fashion, he uses an algorithm for aperiodically tiling
the plane with convex polygons of different colors [7] (the colors
of the tiles in the mathematical theory correspond to the boundaries
of texture tiles). The boundary conditions between texture samples
are met by using the same input noise for generating the texture in
the rectangular regions that surrounds a shared edge. This method
is restricted to applying textures onto a plane, otherwise the usual
parameterization problems yielding distortions and discontinuities
would appear. Moreover, the problem of synthesizing the texture
samples is only addressed for a specific texture, and the algorithm
is not explicitly described.

1.2 Overview

As shown above, none of the existing tools provides an acceptable
solution to the problem of texturing arbitrary surfaces without dis-
tortions and discontinuities. With these constraints, previous meth-
ods demand too much designer intervention, are not compatible
with real-time display, occupy a large memory space, or a com-
bination of the above. This is a critical situation since most appli-
cations of Computer Graphics rely on photo-realistic texturing3. In
this paper, we introduce a full solution to this problem, designed in
the spirit of pattern-based texture mapping techniques. Our method
avoids discontinuities for all surface topologies, minimizes texture
distortions, and avoids the periodicity of the texture patterns.

Our solution is inspired from Escher’s work since the surface will
not be tiled with square patches as usual, but rather with triangles
on which equilateral triangular texture samples will be mapped. It
also has connections with Pedersen’s geodesics [14], but they are
used in our case in an automatic tiling framework, where the user
just has to choose the size of the texture triangles with respect to
the object’s geometry. Our solution to non-periodicity is similar
in spirit to the one used by Stam [17], however we have solved
the more intricate problem of assigning sets of triangular texture
samples onto a curved surface that may be closed, while meeting
boundary conditions everywhere. Lastly, our work generalizes Per-
lin’s and Worley’s texture synthesis techniques [16, 22] by allowing
the automatic generation of adequate sets of triangular texture sam-
ples. Solutions using real or hand-made images are also provided.

The remainder of this paper is developed as follows: Section 2
introduces the main features of our approach. Section 3 deals with
the mapping of texture samples onto an arbitrary object geometry.
Section 4 describes different methods for the generation of texture
sample sets, and shows a variety of results. We conclude in Sec-
tion 5.

3Moreover, tools have to cope with real-time constraints for video-games
or flight simulators, and artist-time constraints for special effects in movies
production, for which designing textures is a huge part.



2 Texturing with Triangular Patches

This paper focuses on applying textures that are homogeneous at a
large scale. Moreover, as for natural textures, they should be con-
tinuous, and no periodicity should be observed. The first feature is
obtained by using patterns that capture the short scale surface aspect
variations, and by mapping them on the surface with low distortion
(see subsection 2.1). The mapping deals with the boundary condi-
tions at the junction between patterns, discussed in subsection 2.2.
The final issue concerns the assignment method, explained in sub-
section 2.3.

The solution described here is designed for isotropic texture pat-
terns, which can be found in many natural objects (for instance
in most human and vegetable tissues, in rust, dust, and in numer-
ous bumpy surfaces such as rock, ground, and roughcast wall). A
possible extension enabling the introduction and control of some
anisotropy is discussed in future work.

2.1 Local parameterization with triangles

As we have seen in Section 1.1, the main source of problems in
usual mapping techniques is that they generally rely on global sur-
face parameterizations. In most cases, finding a correct global map-
ping is simply impossible. However, Nature does not need to intro-
duce global parameterizations to ‘build’ its textures; local param-
eterizations, together with continuity constraints, are sufficient. A
tiling into continuous regions that can be locally parameterized can
always be found for the continuous surfaces we wish to texture.
Optimization methods will work better when applied to these local
regions than to the whole surface.

Rather that defining a tiling with square patches, triangles can
be used to tile a surface into regions where a local parameteriza-
tion will be defined. However, to the authors knowledge, no pre-
vious work has used triangular texture patterns to design surface
aspect in Computer Graphics. To address the different problem
of mesh re-tiling [20], Turk produces a regular triangular surface
tiling with controlled size. His algorithm fits precisely our require-
ments. We claim that if a polygonal tiling adequately captures an
object’s topology, it can be used for mapping textures. This is the
case even if the tiling does not conveniently redefine the geome-
try, being either too coarse or too precise. Consequently, the first
step of our algorithm consists of building a triangular tiling of the
surface, computed at a user-defined scale. This tiling defines a set
of local parameterizations of the surfaces, which will be used for
texture mapping. More precisely, a given texture sample is going
to be mapped onto each triangular patch of the tiling, whose scale
thus controls the texture scale. In the remainder of the paper, we
call this tiling the texture mesh, as opposed to the geometric mesh
that is still used to define the shape during rendering.

2.2 Texture Samples and Boundary Conditions
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Figure 2: Each triangular patch of the texture mesh is mapped onto an
equilateral region in a given texture sample.

The idea is to map a triangular image onto each patch of the tex-
ture mesh (see Figure 2). As these images are equilateral triangles,
there will be no visible distortion if the patches of the texture mesh

are approximately equilateral triangles. In order to generate a con-
tinuous texture over the entire surface, specific boundary conditions
will have to be met between texture samples mapped onto adjacent
patches. Basically, the two patterns in the neighborhood of the bor-
der separating two patches have to fit, which means that at least
both texture values and derivatives are to be the same along a com-
mon edge. The methods presented in this paper solve for these local
continuity constraints under the hypothesis that the textured patches
are equilateral. If a texture sample happened to be mapped on a low
quality patch (e.g. with sharp corners), the texture would be dis-
torted and discontinuities of the texture gradient would appear on
the patch edges. We have found that our solution is still sufficient
in practice, since good quality meshes made of quasi-equilateral
triangles can be computed for almost any surface.

Achieving texture continuity constraints using triangular tiles is
more intricate than doing it with a square grid of tiles. As soon as a
mesh node on a curved surface can be shared by an arbitrary (small)
number of neighboring patches (either triangular or square), there is
no longer anything equivalent to the ‘toroidal topology’ that exists
when tiling the plane: no global orientation can be defined, so two
patches may be connected by any edges. Moreover, this increases
a priori the constraints on the texture content near the sample cor-
ners. More precisely, this enforces a zero texture gradient at those
points, otherwise one would have to manage a continuity constraint
between the edges of a triangle. The methods we provide for the
generation of texture samples, described in Section 4, will have to
cope with these boundary constraints. As our results will show, the
gradient constraint at corners does not create any noticeable visual
artifacts.

Since our method only relies on local parameterizations and on
local continuity constraints between texture patches, it yields sin-
gularity free texturing whatever the topology of the object is (see
Figure 3). However, the scale of the texture details drawn on the
samples must not be too large. Otherwise, unexpected path shapes
will appear at the object surface, such as those depicted in Figure 3.
A practical solution to this signal processing problem consists of
using patterns that are large enough to contain more than a single
feature of the texture.

Figure 3: Two cases where unexpected path shapes appear since the lowest
frequency of the texture (i.e. the grain size) is too close to the sample scale.
Left: A naive set of texture samples designed to figure cells onto a surface.
Right: A set of procedurally generated volumetric textures.

2.3 Assignment of Texture Samples

In order to create homogeneous textures that look like those of nat-
ural objects, several different texture samples have to be designed
and non-periodically mapped onto the surface. The problem is to
find how many samples are required in order to guarantee that the
continuity constraints at boundaries will be respected, and to allow
sufficient variations of the texture. We must also find an algorithm
for assigning texture samples to the patches of the texture mesh.

The mathematical expression of this problem is not as simple as
in Stam’s case [17], where the mathematical theory provided a sim-



ple algorithm for achieving aperiodic mapping onto a plane, and
linked the number of texture samples to the number of required
boundary conditions (e.g. 16). We still have to solve a graph color-
ing problem (where the triangular patches represent the graph nodes
and where the set of three boundaries conditions to assign them cor-
respond to the different colors), but the graph is now a highly non-
regular structure, with a varying number of neighbors per node.

A practical method for always providing a solution to continu-
ity constraints is to use texture sample sets that include at least one
texture triangle for each possible choice of three edge-constraints.
More variation, or more user-control on the large-scale aspect, can
be obtained by fixing a material value at each node of the texture
mesh. Thus, at least one edge-constraint should be provided for
each possible choice of pair of node values. A simple three step
stochastic algorithm can then be used to consistently assign the
triangular samples onto the surface, in a statistically non-periodic
way:

1. randomly4 choose which material value (among those used
at corners of texture triangles in the sample set) is associated
with each texture mesh node.

2. randomly choose which edge (among those used in the texture
sample set that are compatible with the values at nodes) is
associated with each geometrical edge of the texture mesh;

3. randomly assign a texture sample to each patch, among those
that obey the three required boundary conditions.

The question now is: how many different texture samples do we
need ? Since continuity conditions along an edge between two sam-
ples involve the gradient of the color map, the edges used in step 2
must be seen as oriented edges: they usually yield different bound-
ary conditions on their two sides (to be convinced, note that a tex-
tured triangle does not smoothly weld with its mirror image, except
in the special case where the gradient of the image is locally per-
pendicular to the common edge everywhere along it). Suppose now
that we have mapped a single oriented edge e all over the texture
mesh. Let us denote by E and Ē the different boundary conditions
that the texture samples should fit on both sides of e (see Figure 4).
Then, at least four texture triangles respectively obeying the condi-
tions (E E E), (E E Ē), (E Ē Ē), or (Ē Ē Ē) must be provided.
The other possible values for the boundaries conditions (such as
(E Ē E) for instance) will be met by a rotated instance of one of
these triangles.

E E
E

E E E

E E
E E

E

EE E

Figure 4: An oriented edge, and the set of four texture samples that need
to be created to fit the different boundary conditions it produces.

In the general case of n different boundary conditions (i.e. two
times the number of oriented edges), the number of texture triangles
needed will be n n(n 1) + n(n 1)(n 2) 3, in which the first
term corresponds to the condition where the same edge is used three
times, the second one to conditions with two different edge values,
and the third one to solutions with three different edge values. For
instance, 24 texture triangles will be needed if 2 oriented-edges are
used instead of 1 (i.e. 4 boundary conditions instead of E and Ē).
Since the number of triangles required increases as a power of 3,
our algorithm is not convenient for a larger number of edges. Note
that if several values at nodes are used in order to constrain possible

4This choice can be totally random to provide more variation, totally
user defined, or defined with probabilities.

edge values, the combination of possible triangles is far smaller
since edge choices have to be compatible.

In our examples, we use the minimum number of degrees of free-
dom, with correct results: A single kind of edge (thus two boundary
conditions) is used for Figures 10,12,14. We even used the special
case of symmetry mentioned above to avoid doubling the boundary
condition per edge type in Figures 3(left) and 9. Noticeable repet-
itivity may happen with some kinds of pattern when using a small
number of edge conditions. Our solution consists of providing sev-
eral completely different texture samples that fit the same boundary
conditions. For instance, in Figure 3 left, five texture samples fit-
ting a single symmetric edge constraint are used. The generation of
several samples fitting the same boundary conditions can be easily
done using the automatic texture synthesis techniques that will be
presented in Section 4. Figure 9 illustrates the use of 2 different
edge conditions (using symmetry, in order to get only 2 boundary
conditions, thus 4 possible triangles). An example where node val-
ues are used is presented in Figure 5, with 2 possible values (forest
and ground), and symmetric boundary conditions (thus still only 4
triangles to define).

Figure 5: Mountain covered by forest. The location of forest and ground
material is controlled by the values at the nodes of the texture mesh. These
values are ‘painted’ by the user with their probability attribute (intensity of
presence).

3 Mapping

In this section, we assume that we have a set of texture samples
obeying adequate boundary conditions, and we describe our method
for mapping them on a surface at a user controlled scale.

As suggested above, our solution for providing such control is
to map texture samples onto a specifically defined texture mesh
that tiles the surface, instead of mapping them onto the triangles
that describe the object’s geometry. This brings several advantages.
Firstly, the texture scale becomes completely independent from the
object’s geometry, which is a very useful property in practice. Sec-
ondly, we can compute a high quality mesh in terms of the angular
properties of the triangular patches. This will allow the mapping of
equilateral texture samples without generating too large texture dis-
tortions, whatever the quality of the geometric mesh. Lastly, using
a texture mesh that would be too coarse to adequately describe the
object geometry is not a problem; the initial geometric mesh will
still be rendered. The texture mesh just serves as a set of local pa-
rameterizations providing an image identifier and adequate texture
coordinates for the geometric mesh vertices.

3.1 Overview of the texture mapping algorithm

The user first chooses the set of texture samples he wants to use,
with the associated set of possible boundary conditions. He also
indicates at which scale texture should be mapped by specifying



the desired density of texture control points (i.e., points that will
be the vertices of the texture mesh) on the object’s surface. Then,
texture mapping is performed in the following four steps:

1. We randomly generate texture control points of the desired
density on the object’s surface, let them tune their relative po-
sition by simulating a repulsive force, and compute an associ-
ated high quality triangular mesh. The code we use for doing
this is courtesy of Greg Turk, who uses the same process in
his re-tiling algorithm [20].

2. We tile the surface with this mesh, i.e.:

we use surface geodesics to compute curved versions of
the texture mesh edges;

we compute the set of geometric triangles covered by
each of the resulting texture patches;

we compute the u v coordinates of each geometric ver-
tex with respect to the texture patch to which it belongs.

3. We use the algorithm described in Section 2.3 to consistently
assign a specific texture sample to each patch of the texture
mesh.

4. We render the object’s geometry using the local u v coordi-
nates of the mesh vertices to map the texture samples.

A possible solution for implementing step 2 would be to adapt the
set of methods introduced in [10]. In our current implementation,
we rather compute geodesic curves using a standard length mini-
mization process along a polygonal line, which is constrained to
move onto the geometric mesh (the line is made of segments whose
ends lie on the mesh edges). Then, we have developed a specific
method, described below, for assigning u v local coordinates to
mesh vertices that lie on a texture patch without producing exces-
sively large texture distortions. Alternative (and possibly better)
solutions for implementing this part of the process can be found
in [10, 4, 11].

3.2 Computing texture coordinates for mesh
points

The texture mesh may have been designed at either a smaller or
a larger resolution than the geometric mesh that describes the ob-
ject. In the latter case, the local part of the surface that falls into a
patch of the texture mesh (i.e., between three connected geodesics)
may be highly curved. Computing u v coordinates for mesh points
included in this region must be done while trying to avoid texture
distortions. Attention must also be paid to computing coordinates
that exactly map the edges of the texture sample onto the geodesic
edges of the patch, in order to avoid introducing discontinuities in
the large scale texture at the junction between patches. Our solution
is as follows:

To get rid of the border problem, we split the geometric triangles
that are crossed by a geodesic, in order to be able to specify the
exact texture coordinates along the texture patch edges5.

The problem of computing a good u v mapping inside each of
the texture patches still remains. Since the problem is local, we
have developed a simple solution that does not requires an opti-
mization step. The basic idea is to use the three geodesic distances
between a mesh vertex and the three edges of the texture patch to

5The alternative solution that consists of keeping the triangles unsplit,
computing a different texturing process (with half-transparent textures) for
each texture patch that the triangle intersects does not work well: it does not
provide enough control on the u v coordinates near the edges of a texture
patch, yielding texture discontinuities at this location.

estimate the ‘barycentric’ coordinates of this vertex within the tex-
ture patch. Then, conversion into texture coordinates is immediate
by analogy with the planar case. The algorithm develops as follows.

For each of the three edges of a texture patch:

1. Use a front propagation paradigm for computing the geodesic
distances to the mesh vertices (see Figure 6):

The front is implemented using a heap that stores the trian-
gles whose three vertices are already provided with a distance
value. The heap is initialized by the triangles that lie along
the texture patch edge. Each front propagation step consists
of taking the most reliable triangle within in the heap, i.e.,
the triangle which is closest6 to this curve. The gradient of
the distance within this triangle is computed. Then, for each
neighboring triangle for which a vertex distance is still miss-
ing, we fold the distance gradient onto the plane of this trian-
gle, and use the two already known values plus the gradient
for evaluating the missing distance. This neighboring triangle
is then inserted into the heap.

Figure 6: Front propagation process used for estimating the ‘barycentric’
coordinates of mesh vertices with respect to a texture patch. Distance values
at pink points are already computed. The three next points for which the
distance will be calculated are marked in white.

In practice, there may be different ways of propagating dis-
tance to a given triangle, coming from several of its already
computed neighbors. So we add a quality criterion to the dis-
tance value stored in the heap, and we modify a value each
time we are sure quality will improve. The best quality is ob-
tained when an vertex to be estimated falls between the two
‘gradient lines’ passing through the two known vertices. The
estimation is less sure when it falls outside this band. The es-
timation is worst when the gradient is back-propagated, i.e.,
when the computed distance is smaller than the two known
ones (then the result should only be used when no better eval-
uation is available).

2. Normalize all the distance values by dividing them by the
value at the patch vertex that is opposite that edge.

Each vertex of the geometric mesh now stores three numbers
a b c 0 1 . To convert them into barycentric coordinates with
respect to the three vertices of the texture patch, we divide them by
their sum, so that a b c 1. Lastly, we convert barycentric co-
ordinates into texture coordinates with respect to the texture patch
(the three corners of the image should map to 0 0 , 1

2
3

2 , 1 0 ).
The resulting mapping yields good results with only small texture
distortions, as shown in Figure 7. However we have to keep in
mind that avoiding excessive distortions is only possible ‘locally’:
the surface’s radius of curvature should not be too small relative to
the patch size.

Figure 8 illustrates the control provided by texture mapping us-
ing a texture mesh: the scale of the texture can be increased while
leaving the geometry of an object unchanged.

6considering the maximum of the three distance values at vertices.



Figure 7: A texture patch mapped onto a curved region of a geometric
model (views from three different viewpoints): texture distortions remain
reasonable.

Figure 8: From left to right: the geometric mesh, which is rendered; the
texture mesh, used for tuning the scale of the texture with respect to the
object’s geometry; the resulting textured sphere; the sphere with a finer scale
texture.

4 Texture Samples Generation

4.1 Editing pictures or drawings

A first method for generating adequate sets of texture samples is
direct editing, under a 2D paint system, of pictures or drawings.
An example of hand-drawn texturing of a surface is depicted in
Figure 9.

Figure 9: Texture samples drawn by hand, and the resulting image. Two
different edge conditions (red, blue), both symmetric, are used.

Although it takes a certain amount of user-time, it is possible to
edit real images in order to give them the required boundary condi-
tions. The technique, that consists of copying and smartly pasting
rectangular regions along edges and then eliminating texture dis-
continuities inside the sample, is almost the same as for square im-
ages. A single self-cyclical texture triangle, corresponding to a sin-
gle symmetric edge, can be used. A more complex example of pic-
ture editing, where four different texture samples have been created
for fitting the constraints associated with a single non-symmetric
oriented edge, is depicted on Figure 10. The reference rectangu-
lar region figuring the oriented edge has been rotated by 180 or
not when copied on the image borders, depending on which of the
boundary conditions (E E E), (E E Ē), (E Ē Ē), or (Ē Ē Ē) each
of the four samples corresponds to.

Figure 10: A set of texture samples designed by interactively editing an
image of a sponge (left), and the resulting textured surface on a terrain and
on a face.

We now describe two procedural synthesis techniques that can
be used for automatically generating parameterized sets of texture
samples thus saving user’s time.

4.2 Extending Worley’s algorithm

Worley’s method [22] is an efficient approach for creating textures
depicting small non-periodic cellular patterns such as rocks, scales,
or living tissues. When applied in 2D, Worley’s method basically
consists of computing Voronoı̈ diagrams of noise points randomly
distributed on a plane. A square grid is used to accelerate the com-
putation: a noise point is randomly chosen in each cell. Then, de-
termining in which of the Voronoı̈ region each pixel falls can be
done efficiently, by only checking the noise points in the 9 closest
cells. The portion of the plane covered by the noise points must
be slightly larger than the square region to texture, in order to have
nice Voronoı̈ regions cross the edges. Worley’s method combines
the distances from a pixel point to the N nearest noise points to
compute the texture value at the pixel (generally, N [1..4]). We
only describe here how to deal with the nearest noise point; the
other distance computations are adapted the same way.

Adapting Worley’s technique for generating the texture on an
equilateral triangle is easy: we just have to tile this triangle with
a slightly larger triangular grid as depicted in Figure 11. A noise
point is randomly chosen in each of the small triangles, and Voronoı̈
diagrams are computed as in the standard case.

Figure 11: Triangular grid used for extending Worley’s algorithm: Noise
values that represent a given boundary condition along an edge are sur-
rounded by a dashed line. Values which are the rotated copies of each other
in order to maintain continuity constraints at a texture sample corner are
indicated in pink.

For our pattern-based texturing application, we need to gener-
ate Worley triangles that obey specified boundary conditions along
edges. More precisely, we want to be able to control the texture
in the neighborhood of each triangle edge in order to ensure con-
tinuity between samples. Our solution is similar to the approach
suggested in [17], and also to what we have described above for
real image editing: we first generate the ‘rectangular regions’ repre-
senting each oriented edge. This rectangular region is implemented



here by a two row grid storing the noise points that can influence the
border neighborhood, on both parts of the boundary. Once again,
we derive the complementary condition by rotating the rectangle
that defines a boundary condition by 180 . Then, we duplicate the
noise values into the adequate part of the grid, for each texture tri-
angle that must obey this specific condition. Finally, the noise val-
ues of the inner unconstrained region of each triangle are chosen at
random.

Particular attention must be paid to the achievement of texture
continuity near texture sample corners. Two edges meet there, and
the noise values they give to the texture triangle should thus be the
same. As explained in Section 2.2, the solution is to define a texture
with a given value and a zero gradient at these vertices. In terms of
the algorithm above, this can be done by copying a rotated version
of a given noise value into all the grid cells that surround a given
vertex. In a naive implementation, this operation has to be done
within two ranks of cells surrounding the corner (figured in pink),
since the noise values in the second rank of cells may influence the
texture gradient there. A trick for eliminating some possible visual
artifacts due to symmetry is to restrict the range of possible noise
point values in cells A and B (see Figure 11) so that the Voronoı̈
region generated by the point in the blue cell between them will
not intersect the edge of the texture sample. Then, this noise point
value will have no influence on the texture at the vertex, enabling
a (constrained) random choice for this cell. In Figure 11, all the
noise points in the blue triangles can be chosen at random without
spoiling boundary conditions.

Two examples of texture sample sets, and the resulting images
they produce when mapped on a surface, are depicted in Figure 12.

Figure 12: Sets of texture samples generated by our extension of Worley’s
synthesis technique, and the images produced by non-periodically mapping
them onto a surface. Left: A human liver. Right: A china torus.

4.3 Extending Perlin’s synthesis technique

Fractal noise based on Perlin’s basis function [16] is a self-similar
stochastic noise that has become a standard for generating objects
that look like wood, marble, or the surface aspect of rock. One of
its main features is to ensure continuity of both noise values and
gradient at any point of an image (or of a volume, when the method
is used in 3D, e.g. to figure smoke).

To adapt it to our texturing methodology, we first have to be able
to generate the basis function on 2D equilateral triangles. Since Per-
lin’s standard model is defined on a quadrangular grid, we modify
the algorithm in the following way:

1. We first generate a pseudo-periodic noise function on a regu-
lar grid that tiles the equilateral triangle into sub-triangles (see
Figure 13). This requires two steps:

Figure 13: Triangular grids used for generating the noise function at dif-
ferent scales. The noise values that need to be fixed for ensuring boundary
conditions are shown in bold.

as for textures based on Perlin’s technique, we ran-
domly associate a plane to each grid node, defined by
its elevation above the node and by its normal vector;

we define the noise at any point inside the triangle as the
barycentric interpolation of the distances to the three
planes that are associated to the vertices of the small
triangular cell where the point lies.

2. We define the final noise value at a pixel as the sum of in-
stances of the pseudo-periodic noise function defined above,
applied at different scales thanks to recursive subdivision of
the triangular mesh, with a scaling factor that is the equal to
the scale. This gives the fractal aspect to the noise.

3. The value obtained is used as usual as a seed or a perturbation
to define the texture value at the pixel.

Modifying this algorithm to ensure a set of given boundary condi-
tions around each triangle is easy: we just have to model a boundary
condition as the set of noise values that control the texture values
and derivatives along an edge. These values are those indicated in
bold in Figure 13. We then duplicate these boundary values onto
the adequate side of the grid, for all the texture samples that have
to obey this specific boundary condition. Ensuring continuity at the
three corners of texture sample is done as usual by giving the same
mean value and zero gradient to the texture there, i.e., using spe-
cific noise values at each vertex. As in original Perlin’s algorithm,
all random values are precomputed in a (small) hash table, and no
copy is done: instead we compute at any location which index in
the random table should be accessed. To define the same control
value at the vertices of two edges, one just has to ensure that the
same index is produced, and rotate the built random normal vector
on the fly (because adjacent triangles do not use the same frame).

Three examples of texture sample sets and the resulting images
they produce are depicted in Figure 14. Note that computing pro-
cedural textures on triangular domains while ensuring continuity
constraints can also be used on the fly for other kinds of applica-
tions. For instance, we have used an algorithm close from above
for generating at rendering time a displacement texture modeling
the crust of an evolving lava-flow without having to parameterize
the flow surface [18].

5 Conclusions & Future Work

We have presented a general framework, based on triangular tex-
ture tiles, for texturing an arbitrary surface at low rendering time
and memory cost. Our method has been designed for covering the
surface with an homogeneous non-periodic texture such as those
that can be found on many natural objects. The main features of
our approach are the following: the texture can be applied at any
scale with respect to the object geometry, and whatever the quality
of the geometric mesh; no singularity is generated whatever the sur-
face topology, and distortions are minimized. Moreover, using the
method demands little user work, by avoiding redundancies. We
describe how to use hand-drawing and real images, and we pro-
vide two automatic texture synthesis methods that adapt Perlin’s
and Worley’s algorithms to a triangular domain. Adapting other



Figure 14: Three sets of texture samples generated by our extension of Perlin’s synthesis technique, and the images produced by mapping them onto a surface.
In the image on the right, Perlin’s texture is used as displacement map, encoded with an OpenGL implementation of volumetric textures [13].

texture synthesis techniques in the same way, such as those based
on a pyramidal analysis of real textures [9, 2] should be easy, as
filtering kernels and pyramidal constructions can directly be ‘trans-
lated’ to triangular grids. Lastly, our framework is compatible with
real-time applications, since the result of the texturing can be rep-
resented using classical geometric object formats.

Maintaining C1 continuity of the texture across the surface has
been achieved by building texture samples which obey specific
boundary conditions, and whose border is mapped exactly onto the
geodesic curves that tile the surface onto texture patches. In the
current implementation, we ensure the second constraint by split-
ting the geometric triangles that intersect a geodesic, in order to
have enough points for locally controlling the mapping. This is
not a problem when large scale texture triangles are used since this
splitting process will not greatly increase the number of triangles to
render. However, in the case of almost flat surfaces built with a few
large triangles, and that need being textured at a small scale, the
tiling of the geometry may yield a high increase of rendering time.
A solution would be to use a level of details approach for defin-
ing texture samples: large samples containing very small patterns
would be recursively created by assembling smaller ones. Then, the
former would be mapped onto a larger scale texture mesh defined on
the surface, which would not split the geometry excessively. Con-
versely, this would provide a solution to correctly map geometric
areas that are smaller than the initial sample size (such as handles
or legs), without having to decrease the sample size elsewhere on
the surface.

Our future work also includes the introduction of user-controlled
pattern anisotropy, which is an important feature of many natural
textures. Using anisotropic patterns directly in the scheme we have
presented would not be a good idea, since there is no way to ensure
continuity of characteristic directions between texture patches. Our
idea is rather to rely on the texture mesh itself, to model the kind of
anisotropy that corresponds to the stretching of an isotropic pattern:
A user-defined tensor field would be used for locally specifying
the amount and direction of desired anisotropy all over the surface.
This field would be used to influence the generation of texture mesh
control points and produce an anisotropic distribution (in the same
spirit, Turk suggests in [20] to use the surface curvature). Finally,
mapping the usual isotropic texture samples onto this texture mesh
would result into adequately deformed patterns, with continuous
directional features.
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