
Interactive Animation of Ocean Waves

Damien Hinsinger
Damien.Hinsinger@club-internet.fr

Fabrice Neyret
Fabrice.Neyret@imag.fr

Marie-Paule Cani
Marie-Paule.Cani@imag.fr

iMAGIS-GRAVIR, joint research project of CNRS,INPG,INRIA,UJF

Abstract

We present an adaptive scheme for the interactive animation and
display of ocean waves far from the coast. Relying on a procedural
wave model, the method restricts computations to the visible part
of the ocean surface, adapts the geometric resolution to the viewing
distance and only considers the visible waves wavelengths. This
yields real-time performances, even when the camera moves. The
method allows the user to interactively fly over an unbounded ani-
mated ocean, which was not possible using previous approaches.

Keywords: natural phenomena, procedural animation, adaptive
scheme, ocean, waves

1 Introduction

Developing interactive models for natural phenomena is even more
important now that it was in the past: People like to be immersed in
rich and open spaces. Games thus start providing more nature and
exterior scenes, following the special effect and CG film industries.
However, providing nice looking natural elements such as forests,
clouds or animated water at interactive rates is difficult. Two com-
mon problems of natural sceneries is that they are both very wide
and very detailed. This is especially true for the ocean surface, since
waves exist at several scales and extend up to the horizon. Most of
the recent ocean waves animations featured in movies were created

using a spectral approach [Areté Image Software n. d.]. The lat-
ter restrict computations to a rectangular area, which can be used
as a tile for animating a larger surface. The computation cost only
allows crude resolution when interactive rates are required. More-
over, enabling the user to interactively fly over the ocean is impos-
sible, since avoiding obvious repetitivity would require the use of
an extremely large simulated region.

This paper presents an adaptive scheme for the interactive anima-
tion and display of an unbounded ocean. It relies on a procedural
wave model which expresses surface point displacements as sums
of contributions from the active wave-trains, modeled as indepen-
dent animation primitives. This model allows to concentrate com-
putations on the part of the ocean surface and on the wavelengths
that are currently visible. Our main contribution is a scheme for
dynamically adapting both the geometric resolution and the set of
animation primitives: surface sampling is adapted to the current
viewpoint, while wave trains that do not correspond to visible fre-
quencies are filtered. This yields interactive rates, even when the
camera moves under the user control. In addition to enabling inter-
active fly-over, the method eases the addition of extra local anima-
tion primitives such as ship waves.

The remainder of this paper develops as follows: Section 2 re-
views the existing models for simulating ocean waves. Then we
present our procedural wave model in Section 3. The adaptive
scheme is detailed in Section 4. We show and discuss results in
Section 5, and conclude in Section 6.

2 Previous Work

2.1 Wave theory

Wave generation and frequency
Ordinary ocean waves are created by the wind in fetch ar-
eas, and can propagate far from these locations. Several mod-
els have been proposed to account for the amplitude, frequency
and direction spectrum according to the wind strength and dura-
tion [Kinsman 1984]. A classical one is the Pierson-Moskowitz
filter giving the amplitude FPM in function of the frequency f :

FPM(f) = ag2

(2π)4 f 5 e
5
4 (fm

f)4
, where g is the gravity acceleration, a is

the Phillips constant, and fm = 0.13g
U10

corresponds to the peak in
the spectrum (which has a Gaussian-like shape), depending on the
wind velocity at a 10m altitude. This 1D filter has been extended in
2D by Hasselmann et al. [Hasselmann et al. 1980] using the formu-
lation F(f ,α) = FPM(f)D(f ,α), where D(f ,α) weights the filter
according to the propagation direction α .

Velocity and wavelength
In contrast to sound waves in air, surface water waves are disper-
sive, i.e. their velocity depends on their wavelength. For a wave of
pulsation ω = 2π

T and wave number k = 2π
λ (where T is the period

and λ is the wavelength), the relation ω2 = (gk + γ
ρ k3) tanh(kH)

(where g is the gravity acceleration, ρ the water density, H the wa-
ter depth, and γ controls the surface tension) links the two variables
(see [Lighthill 1978; Crawford 1977]). The first term corresponds
to ordinary gravity waves, and the second term corresponds to capil-
lary waves. As the latter only gives wavelengths lower than 5.4 mm,
they are usually neglected for ocean simulation. The velocity is thus

c = ω
k =

√

g
k tanh(kH). The tanh(kH) factor can be neglected in

the case of deep water. Otherwise, the wavelength and the veloc-
ity of waves will change with water depth, both decreasing when
approaching the shore.

Waves shape
Several models characterize the shape of waves by studying eigen-
modes of the Navier-Stokes equation at the water-air interface
(see [Lighthill 1978; Kinsman 1984]). A convenient one is the
Gerstner swell model, which describes the trajectory of water par-
ticles as circles of radius equal to the wave amplitude A around
the location at rest. Two particles along the direction of wave
propagation having a distance at rest of l follow their circular
trajectories at angular velocity ω with a phase difference of kl:

{

x− x0 = Aekz0 sin(ωt − kx0)
z− z0 = Aekz0 cos(ωt − kx0)

where t is the time, z the vertical axis and (x0,z0) the particle lo-
cation at rest. This generates a trochoid wave shape, similar to a
sinusoid only for very small amplitudes. For high amplitudes the
waves get choppy, up to a value for which the curve crosses itself,
which is no longer physical since the wave should break.

Other models, like Stokes and Biesel’s ones, take into account
the shallow water case, for which the circles turn into ellipses, at
the price of more complicated formulas. Since the depth variation
changes the wave velocity, the phases are no longer linear with the
distance. Biesel’s model thus evaluates the phases as

∫ x0
0 k(x)dx.

This change is responsible for the refraction of wave trains1close to
the shore.

2.2 Computer Graphics models

We do not review here papers dedicated to running water or to rivers
such as [Kass and Miller 1990; Foster and Metaxas 1996; Foster
and Fedkiw 2001; Neyret and Praizelin 2001; Thon and Ghazanfar-
pour 2001], which focus on other kinds of water surfaces and are
not adapted to the simulation of ocean waves.

To date, several ocean wave models have been developed in CG,
which can be separated in two families:

1A wave train is a (potentially infinite) set of similar waves whose fronts
are nearly parallels and evenly spaced.

The first one starts with the work of Fournier and Reeves
[Fournier and Reeves 1986] that simulate a train of trochoids, re-
lying on a mix of Gerstner and Biesel swell models. Since they
solve the direction of propagation and the phases of the trains on
the surface, they have to regularly mesh the simulated region of
ocean surface. The same year, Peachey [Peachey 1986] proposed
a similar idea, with fewer refinements (e.g., no trochoids). More
recently, several models [Ts’o and Barsky 1987; Gonzato and Saëc
2000] have proposed more precise ways to solve the propagation
(wave tracing). Note that noise is generally used in all the models
above in order to avoid the visual regularity due to the fact that only
one or two wave trains are simulated.

The second family corresponds to spectral approaches, first in-
troduced in CG by Mastin et al. [Mastin et al. 1987]. The basic
idea is to produce an height field having the same spectrum as the
ocean surface. This can be done by filtering a white noise with
Pierson-Moskowitz’s or Hasselmann’s filter, and then calculating
its Fast Fourier Transform (FFT). The main benefits of this ap-
proach are that many different waves are simultaneously simulated,
with visually pleasing results. However, animating the resulting
ocean surface remains challenging. Moreover, the method gener-
ates sine waves, which only approximate trochoids in the calm sea
case. Tessendorf [Tessendorf 1999] shows that dispersive propaga-
tion can be managed in the frequency domain and that the resulting
field can be modified to yield trochoid waves. A positive property
of FFTs is the cyclicity: the solution can be used as a tile, which
allows to enlarge the usable surface region as long as the repetitive-
ness is not obvious. The corresponding negative aspect of FFTs is
homogeneity: no local property can exist, so no refraction can be
handled. It should be noted that this model is the one implemented
by Areté Image Software [Areté Image Software n. d.] and used for
the special effects of many movies such as Waterworld or Titanic.

Thon et al. [Thon et al. 2000] use an hybrid approach: the spec-
trum synthesized using a spectral approach is used to control the
trochoids generated by a Gerstner model. This is only applicable in
the calm sea case, where trochoids of small amplitude are very sim-
ilar to sines. Smaller scale waves are obtained by directly tuning
some extra Perlin noise [Perlin 1985].

For both families of approaches, a pre-defined region of the
ocean surface is simulated and regularly tessellated, whatever the
camera position. Since the visible surface area is large and a high
resolution is needed in regions close to the camera, this requires
very large meshes, yielding costly simulations. These methods can
only be adapted to real-time for very crude resolutions.

Recently, adaptive schemes have successfully been used for ef-
ficient modeling, rendering or animation of complex objects [Stoll-
nitz et al. n. d.; Pfister et al. 2000; Debunne et al. 2001]. The idea is
to minimize the sampling of the geometry according to criteria such
as the local variation amplitude of the parameters of interest, or dis-
tance from the viewpoint. In particular, surfels techniques [Pfis-
ter et al. 2000] directly use discs or ellipses to sample the geom-
etry. In [Stamminger and Drettakis 2001] the number of samples
is proportional to the size of the screen projection of the objects.
Since the adaptive sampling is done on the fly for each frame, this
fits well with procedural surface displacement, which can easily be
animated. In the same spirit, we rely on an adaptive sampling of
the ocean surface, dictated by the camera position. Moreover, our
animation model is also adaptive, since we filter the wave trains
that cannot be observed from the current viewpoint. These adaptive
schemes are made possible by the use of a procedural wave model,
described next.

3 Wave Model

We are looking for a wave model that does not constrain us to sim-
ulate a predetermined and regularly sampled surface region. More-
over, we are not willing to compute a hight field, which would not
cover the case of stormy seas. We keep using a mesh (since we
cannot afford pixel size elements), but its location in world space
will change dynamically and its density varies in space. This leads
us to the use of a procedural wave model, following the first family
of CG approaches mentioned above.

Our model is based on the Gerstner swell model and simulates
trochoids. However, we want to take into account the combination
of many different waves. To do so, we generate wave trains in a
way that approaches a known wave spectrum, in the same spirit as
Thon et al. [Thon et al. 2000]. Note that our model is dedicated to
deep waters, and thus does not cover waves refraction near shore
nor wave breaking.

3.1 Wave trains

Although our method can be applied to various kinds of waves (an
experiment with ship waves will be shown in the Section 5), this
paper only focuses on the main ones, i.e. gravity waves.

We simulate gravity waves using a series of wave trains that ho-
mogeneously cover the world. Their amplitude ai, frequency ωi

2π
and direction Ki

|Ki|
are chosen to reproduce a given reference spec-

trum2. They are chosen manually in our implementation, although
an automatic choice such as the one in [Thon et al. 2000] could be
used as well.

3.2 Animation of mesh points

Let us consider the mesh that represents the ocean surface at a given
animation step (the way this mesh is generated from the current
camera position will be explained in Section 4).

The mesh vertices are considered as particles, and thus follow
the circle trajectory corresponding to the Gerstner model:

{

X = X0 +∑i ai
Ki
|Ki|

sin(ωit −Ki.X0)

z = z0 +∑i ai cos(ωit −Ki.X0)
(1)

where X0 = (x0,y0) is the location of the particle at rest on the sur-
face and z0 its altitude at rest.

Note that the only information that needs to be stored in mem-
ory is the specification of the wave trains: particles are evaluated
on the fly, and can be at different locations from one frame to the
other. Surface displacement is thus evaluated much like a procedu-
ral function [Ebert et al. 1994].

4 Adaptive Scheme

Our main contribution is the adaptive scheme, which applies to both
the geometry and the procedural animation process: Instead of sim-
ulating a regularly sampled, predetermined region of the ocean sur-
face, we adapt the mesh sampling to the projected size of each sur-
face element, in the spirit of surfels [Pfister et al. 2000; Stamminger

2In this paper, we use capital letters to denote vectors and lower case
letters to denote scalar parameters.

and Drettakis 2001]. We also adapt the wave model in spectral
space by locally filtering the waves according to the local geomet-
ric sampling rate. In addition to saving computational time, this
reduces geometric aliasing.

4.1 An adaptive surface mesh

The idea is to generate the mesh representing the ocean surface
such that every element covers, at rest, the same area on the screen.
This is done by subdividing the screen into a grid of quads, which
are back-projected on the plane modeling the ocean surface at
rest. The resulting mesh points provides the particle locations at
which the procedural animation model of equation 1 is evaluated
(see Figure 1).

Using this method, a camera motion induces a continuous shift
of the mesh over the ocean surface, an adequate resolution being
maintained everywhere in the computed image. We can note that
this sampling strategy is made possible by the continuously moving
nature of the ocean surface: using a similar approach for rendering
a landscape, for example, would produce artifacts since the camera
motion induces a shift in the sampling locations. This sampling
artifact actually takes place, but is hidden by the waves animation.

image plane

surface at rest

camera

attention on foreground
default sampling

attention on background

Figure 1: Dynamically adapted surface mesh, whose elements approxi-
mately have the same projected area on screen.

The use of quads allows easy factorization such as stripping. It
can also help relying on hierarchical structures such as quad-tree.
Lastly, focusing on a given zone of interest would be done by lo-
cally refining a given region in screen space, such as adding more
bottom rows if the attention has to be focussed on the foreground
(respectively more top rows for focusing on the background). See
Figure 1 (top right).

The use of optimally large quads to approximate the ocean sur-
face prevents from relying on finite difference to estimate the sur-
face normals from vertex positions. We rather compute analytical
normals at mesh vertices, obtained from the spatial derivatives of
equation (1). See Figure 2.

sampled surface, numerical normals
continuous surface, analytical normals

Figure 2: Due to the optimized mesh, analytical normals give much better
results than normals computed using finite differences.

frequency window handled
by the mesh

attenuation filter

ocean waves spectrum

attenuation
range

frequency

Figure 3: Filtering wave trains. Left: adapting the set of computed wave trains to the local mesh resolution. Middle & right: when increasing the distance,
smaller wavelengths (in red) are no longer simulated.

4.2 Adapting the set of simulated wave trains

Since the grid defines the highest available resolution, we do not
display waves which appear smaller than the grid quads. In addition
to reducing aliasing, this saves much computational time, since we
don’t need to simulate the associated wave trains for this frame and
location. For instance, a wide surface is covered by the sight near
the horizon, but the resolution there is coarse. Most of the wave
trains are thus pruned in this region.

Simply considering or rejecting wave trains at a given location
according to their wavelength would produce popping artifacts: a
wave would suddenly appear or disappear when reaching a given
distance. We thus handle a transition range, where small wave-
lengths are filtered in order to appear or disappear progressively
with the distance (see Figure 3).

Since we use many (up to 60 in our examples) wave train prim-
itives, several of them, of different directions, use to have similar
wavelengths. In practice, these could be hierarchically grouped in
order to accelerate wavelength-based pruning, similarly to the hier-
archy of bounding boxes used for optimizing the rendering of com-
plex scenes.

Another useful extension would be to accelerate the evaluation of
wave trains of large large wavelengths by associating a quad-tree to
the screen grid, as suggested in the previous section: Gerstner for-
mula for a given wave could then be evaluated only at the adequate
level (corresponding to the scale of the wavelength), other values
being interpolated. In practice, only the sum of displacements due
to the larger waves would need to be stored for interpolation.

If the wave spectrum covered an infinite range, these optimiza-
tions, resulting in small wavelengths canceled on the background
and large wavelengths coarsely sampled on the foreground, would
result in a quasi-constant number of computed waves at any given
location. In practice very small3 and very large gravity waves do not
exist. Thus, a large portion of screen only requires a small number
of wave evaluations.

5 Results and Discussion

5.1 Rendering

A detailed discussion of rendering issues is out of the scope of this
paper. We apply an environment map on the ocean surface, thus
reflecting the sun and the sky. Moreover we modulate the amount of
reflection using an approximation of the Fresnel factor. Rendering
and display are thus performed using the graphics hardware.

3Ripples belong to a different physical phenomena, and cannot be mod-
eled using gravity waves.

5.2 Results and timing

We implemented the filtering of waves with distance, but not the
wavelengths factorization nor the quad-tree optimization suggested
in Section 4.2. The bottleneck is currently in the computation
of mesh-point positions and normals rather than in the mesh dis-
play, so these optimization would probably significantly increase
the frame rate.

We rendered several animations with different parameter values,
targeting either real-time or higher quality interactive images, as
illustrated in Figure 4: 20 to 30 fps are obtained with a 50× 50
screen-mesh resolution, with the horizon above the middle of the
image (our test machine is a 800 MHz Pentium III PC with a
GeForce2 graphics board). Good quality images can still be ob-
tained at interactive rate (4,middle). Although it was not designed
for this purpose, our model can also be used to compute high qual-
ity animations at a few seconds by frame (4,right). Other scenes are
presented on Figures 6 and 7.

Compromises have to be chosen between speed and quality: us-
ing smaller quads allows for figuring thinner details with a higher
cost. If the quads are large, the ocean surface might look too
smooth. As for the MIP-mapping technique, the filtering thresh-
olds can be tuned depending how much contrast – including a bit of
aliasing – is preferred to smoothness. The worst case occurs on the
horizon: Using large quads smoothes the waves at horizon, which
prevents aliasing. On the other hand a bit of aliasing can be pre-
ferred, since real ocean horizon is glittering. In the case of quality
rendering a solution based on analytical integration of sub-scales
(in the spirit of [Fournier 1992]) should probably be considered.

5.3 Comparison with other approaches

Our model is dedicated to the case of deep water. As compared
to the first family of models mentioned in Section 2.2, it does not
handle waves refraction occurring close to the shore (the models
of the second family have the same limitation). But it allows the
combination of a large number of different waves, so that we can
obtain a large range of surface aspects going from regular paral-
lel wave trains to random looking surfaces. Extension to shallow
water simulation could be done by replacing the circular motion
of mesh vertices by elliptic motion (following Stokes and Biesel’s
model) and combining our waves with a precomputed shore refrac-
tion, similarly to what is done in [Gamito and Musgrave 2000].

We consider the second family of approaches (i.e, the spectral
methods) as the reference for deep water waves generation, since
they have successfully been used in special-effects. Providing a pre-
cise comparison with them is thus essential for showing the benefits
of our approach.

Figure 4: Left: Mesh resolution 50× 50. 15 fps. Middle: Mesh resolution 100× 100; 30 primitives. 3 to 5 fps. Right: Mesh resolution 500× 500; 60
primitives. 10 seconds.

The cost of a spectral ocean simulation is mainly due to the FFT.
On a nx × ny grid (where nx and ny are powers of two), its com-
plexity is nxny log(nxny). The grid resolution should fit the desired
amount of details in the foreground. In addition, the simulated re-
gion should be large enough to avoid obvious cyclicity (note that
this region can never extend up to the horizon). Usually, the simu-
lated rectangle is chosen large enough so that the distant edge cov-
ers the entire screen size (see Figure 5). For the ease of compari-
son, let us assume that the horizon projects on the top of the screen
(supposedly square), and that the required mesh density on the fore-
ground yields to n samples in the first, closest row. A simulated
region of 3n×2n would then be reasonable, giving a complexity of
6n2 log(6n2).

screen

simulated grid

Figure 5: Simulated area for the spectral approach.

Figure 6: Stormy sea.

In the same case, our algorithm would consist in evaluating tro-
choids at each grid point4, for a grid only covering the visible por-
tion of the image. If a regular grid is used in screen space, this yields

4We do not explicitly mention the analytical normals evaluation, which
simply doubles the amount computation for both methods.

Figure 7: Calm sea. Left: real-time. Right: realistic.

n× 3
4 n×m trochoid evaluations, where m is the average number of

wave trains that our adaptive method evaluates by mesh vertex. The
algorithm is thus less complex than the reference one, i.e. O(n2) in-
stead of O(n2 logn2).

Let’s discuss the value of the constant m compared with the
maximum number m of simulated wave trains: Since the size of
grid quads, and thus the minimal considered wavelength, decreases
when the distance increases, m is roughly 1

2 m, assuming an infinite
range and a uniform repartition of the gravity waves spectrum. In
practice, gravity waves do not cover the entire frequency spectrum,
as explained in Section 4.2. There are thus less wave train to eval-
uate when approaching the horizon or the foreground, i.e. at the
top and the bottom of the image. Using the suggested quad-tree
optimization would, according to our estimations5, decrease m to
about 1

12 m in this example. Of course, this constant factor does not
change the theoretical complexity, but it illustrates that optimiza-
tions can save an order of magnitude.

In addition to increasing efficiency, our method provides more
flexibility than the spectral approach: The mesh density on the
screen can be tuned to increase resolution in regions of interest.
Tuning the number m of wave trains provides an almost continuous
control of the quality/cost ratio. Since our scheme is procedural,
we can evaluate the ocean surface at any desired location. This
can be useful for incorporating extra effects such as the interaction

5We estimate the proportion of non-filtered wave trains by integrating
over the image range.

with a floating object or to ray-trace images. Other wave models
can be easily incorporated into the model (e.g. ship waves, ripples,
obstacles; see Figure 8) as long as they can be expressed in a pro-
cedural manner, while the spectral approaches can only deal with
homogeneous phenomena on the surface. Moreover, we can simu-
late arbitrary ocean surfaces without showing cyclicity6: the ratios
between wavelengths just have to be irrational numbers. Lastly, our
method works at no extra cost whatever the camera motion, thus en-
abling the user to interactively fly over an unbounded ocean. This
is illustrated by one of the animation sequences submitted with the
paper.

Figure 8: Adding other kinds of wave is easy: here, ship waves.

6 Conclusion and Future Work
We have proposed an adaptive scheme for the interactive animation
and display of ocean surfaces: relying on a procedural approach,
it adapts both the geometric sampling of the surface and the set
of simulated wave trains according to the distance. All computa-
tions are exclusively concentrated onto the visible part of the ocean,
which yields real-time performance with a relatively good image
quality, even in our non-optimized implementation.

One of the benefits of our approach is its flexibility: the use of
trochoids enables to model a wide range of ocean surfaces, from
calm to stormy seas. Since the displacement of a sample point is
computed as a sum of wave contributions, adding extra effect such
as ship waves is easy. The camera position can be arbitrarily chosen
without changing the amount of computation nor the image quality
(no cyclicity will appear). As a consequence, the user can inter-
actively fly over an unbounded ocean surface, which makes the
method promising for video game applications. Lastly, the qual-
ity/cost ratio is tunable, so higher-quality images can be computed
using the same model.

Concerning future work, we plan to implement the optimizations
suggested in Section 4.2, to include other kinds of waves such as
ripples or ship waves, and to study how waves reflection and refrac-
tion could be introduced. We also plan to simulate the glittering of
the ocean waves near the horizon due to the multiplicity of normals.
This could be done by implementing a specific shader in the spirit
of [Fournier 1992].

Acknowledgments

We wish to thank George Drettakis for rereading an early version
of the paper.

6If necessary we could also achieve cyclicity by choosing rational ratios
between wavelengths, thus enabling the use of a simulated sea region as a
tile.

References

ARETÉ IMAGE SOFTWARE. http://www.areteis.com.

CRAWFORD, JR, F. 1977. Waves. McGraw-Hill.

DEBUNNE, G., DESBRUN, M., CANI, M.-P., AND BARR, A. 2001. Dynamic real-
time deformations unsing space and time adaptive sampling. In SIGGRAPH’01
Conference Proceedings, Addison Wesley, Annual Conference Series, ACM SIG-
GRAPH. Los Angeles, CA.

EBERT, D., MUSGRAVE, K., PEACHEY, D., PERLIN, K., AND WORLEY, S. 1994.
Texturing and Modeling: A Procedural Approach. Academic Press, Oct.

FOSTER, N., AND FEDKIW, R. 2001. Practical animation of liquids. Proceedings of
SIGGRAPH 2001 (August), 23–30.

FOSTER, N., AND METAXAS, D. 1996. Realistic animation of liquids. In Graphics
Interface ’96, W. A. Davis and R. Bartels, Eds., 204–212.

FOURNIER, A., AND REEVES, W. T. 1986. A simple model of ocean waves. In
Computer Graphics (SIGGRAPH ’86 Proceedings), D. C. Evans and R. J. Athay,
Eds., vol. 20, 75–84.

FOURNIER, A. 1992. Normal distribution functions and multiple surfaces. In Graphics
Interface ’92 Workshop on Local Illumination, 45–52.

GAMITO, M., AND MUSGRAVE, K. 2000. An accurate model of wave refraction over
shallow water. In Eurographics Workshop on Computer Animation and Simulation,
155–171.

GONZATO, J.-C., AND SAËC, B. L. 2000. On modelling and rendering ocean scenes.
The Journal of Visualization and Computer Animation 11, 1, 27–37.

HASSELMANN, D. E., M.DUNCKEL, AND EWING, J. A. 1980. Directional wave
spectra observed during jonswap 1973. J. Phys. Oceanogr. 10 (August), 1264–
1280.

KASS, M., AND MILLER, G. 1990. Rapid, stable fluid dynamics for computer graph-
ics. In Computer Graphics (SIGGRAPH ’90 Proceedings), F. Baskett, Ed., vol. 24,
49–57.

KINSMAN, B. 1984. Wind Waves, Their Generation and Propagation on the Ocean
Surface. Dover Publication.

LIGHTHILL, J. 1978. Waves in fluids. Cambridge University Press.

MASTIN, G. A., WATTERBERG, P. A., AND MAREDA, J. F. 1987. Fourier synthesis
of ocean scenes. IEEE Computer Graphics and Applications 7, 3 (Mar.), 16–23.

NEYRET, F., AND PRAIZELIN, N. 2001. Phenomenological simulation of brooks. In
Eurographics Workshop on Computer Animation and Simulation, Springer, Euro-
graphics, 53–64.

PEACHEY, D. R. 1986. Modeling waves and surf. In Computer Graphics (SIG-
GRAPH ’86 Proceedings), vol. 20, 65–74.

PERLIN, K. 1985. An image synthesizer. In Computer Graphics (SIGGRAPH ’85
Proceedings), B. A. Barsky, Ed., vol. 19(3), 287–296.

PFISTER, H., ZWICKER, M., VAN BAAR, J., AND GROSS, M. 2000. Surfels: Surface
elements as rendering primitives. Proceedings of SIGGRAPH 2000 (July), 335–
342.

STAMMINGER, M., AND DRETTAKIS, G. 2001. Interactive sampling and rendering
for complex and procedural geometry. In Rendering Techniques 2001 (Proceedings
of the Eurographics Workshop on Rendering 01), Springer Verlag, K. Myskowski
and S. Gortler, Eds., 12th Eurographics workshop on Rendering, Eurographics,
151–162.

STOLLNITZ, E., DEROSE, T., AND SALESIN, D. Wavelets for Computer Graphics.
Morgan Kaufmann, San Francisco, California.

TESSENDORF, J. 1999. Simulating ocean water. In Siggraph Course Notes, Addison-
Wesley.

THON, S., AND GHAZANFARPOUR, D. 2001. A semi-physical model of running
waters. In Eurographics UK.

THON, S., DISCHLER, J.-M., AND GHAZANFARPOUR, D. 2000. Ocean waves
synthesis using a spectrum-based turbulence function. In Computer Graphics In-
ternational Proceeding.

TS’O, P., AND BARSKY, B. 1987. Modeling and rendering waves: Wave-tracing using
beta-splines and reflective and refractive texture mapping. ACM Transactions on
Graphics 6, 3 (July), 191–214.

Interactive Animation of Ocean Waves: Damien Hinsinger, Fabrice Neyret, Marie-Paule Cani

Figure 4: Left: Mesh resolution 50×50. 15 fps. Middle: Mesh resolution 100×100; 30 primitives. 3 to 5 fps.
Right: Mesh resolution 500×500; 60 primitives. 10 seconds.

Figure 6 and 8: Left & middle: Stormy sea. Right: Adding other kinds of wave is easy: here, ship waves.

Figure 7: Calm sea. Left: real-time. Middle & right: realistic.

