
EUROGRAPHICS 2005 / J. Dingliana and F. Ganovelli Short Presentations

Efficient, physically plausible finite elements

Matthieu Nesme1,2, Yohan Payan2 and François Faure1

1GRAVIR/IMAG-INRIA, 2TIMC/IMAG - Grenoble, France

Abstract
This paper discusses FEM-based simulations of soft bodies in terms of speed and robustness. To be physically
plausible, three fundamental laws must be respected: rotational invariance, Newton’s law and Euler’s law. We
show that precomputed strain-displacement matrices generate nonphysical torques which can lead to visual arti-
facts. We then derive the fastest FEM-based method meeting our criteria of plausibility and robustness and discuss
their limitations.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer graphics]: Physically based modeling
I.3.7 [Computer graphics]: Animation

1. Introduction and related work

Since Terzopoulos simulated viscoelastic deformable bod-
ies [TPBF87], physically-based animation has its place in
the field of computer graphics. Making real-time simulators
with the objective of visual "realism" is now a central prob-
lem. Indeed, the graphics community now seeks to extend its
modeling tools towards mathematical methods closer to the
mechanics of continuous medium (from "realism" to "pre-
cision"). Because of the need for speed, the first interac-
tive methods were based on precomputed matrix inversion
[CDC∗96, JP99]. Unfortunately these models are only valid
for small displacements, this is why a non-linear computa-
tion of the deformations is used in [DDCB01, PDA03]. Re-
cently proposed methods favor a new approach based on the
decomposition of the displacement of each element into a
rigid motion and a pure deformation tractable linearly in the
local frame [MDM∗02, EKS03, HS04, MG04], an idea first
introduced in [TF88].
In this paper, we investigate how a FEM-based simulator can
fulfill three major plausibility criteria: invariance to rotation,
Newton’s law on linear acceleration and Euler’s law on an-
gular acceleration. We show that it is necessary to recompute
the strain-displacement matrix of each element at each time
step to avoid ghost torques. Based on this, we propose a new
implementation of tetrahedron-based FEM using an efficient
computation and storage of the stiffness matrices and com-
pare it with the current state-of-the-art methods.

2. Physically plausible linear FEM

We consider the standard finite element method (FEM) used
to simulate tetrahedrized viscoelastic solids. Background
can be found in standard texts [ZC67]. The force applied
by the deformed element to its sampling points is given by

f = BT σ = BT Dε = BT DBu = BT DB(x− x0) (1)
where σ is the stress, ε the strain, u the displacement, x
and x0 the current and the initial positions, B is the strain-
displacement matrix and D is the stress-strain matrix. This
article is limited to linear elastic material, but more complex
relations can be used between σ and ε.

2.1. Rotational invariance
The linear equation (1) is insensitive to translations but inac-
curate for large rotations of the elements. This results in so-
called “ghost forces” which make the element artificially in-
flate. A possible approach to solve this problem is to use non-
linear Green’s strain tensor which is rotationally invariant.
However this tensor is not able to linearly relate deformation
to displacement except asymptotically for small displace-
ments. An alternative approach was proposed by Müller et
al [MDM∗02] who decompose the displacement in a rigid
rotation combined with a deformation. The net force calcula-
tion becomes f = RT BT DB(Rx−x0), where matrix R, which
encodes the rotation of a local frame with respect to its ini-
tial orientation, is updated at each frame.
Three edges are used to compute the 3× 3 transformation

c© The Eurographics Association 2005.

Matthieu Nesme, Yohan Payan & François Faure / Efficient, physically plausible finite elements

matrix: J =
[

e0
1 e0

2 e0
3

]−1
[e1 e2 e3], with respect to the ini-

tial state, where the e0
i are the initial edge vectors and the ei

are the current ones. Matrix J is then decomposed in order
to extract separately a rigid rotation R applied to the element
and a deformation E as shown fig. 1. This decomposition is
not unique and several approaches can be considered.

in the initial local frame

at rest form

deformed and replaced

R

E

J=RE

deformed
and displaced

Figure 1: An initial tetrahedron is deformed by the transfor-
mation J composed both a rigid motion R and the deforma-
tions are contained in E.

Polar decomposition Etzmuß et al [EKS03], followed by
other authors [HS04, MG04], presented a method based
on the polar decomposition using eigenvalues and eigen-
vectors. The polar decomposition of a square matrix com-
putes the nearest orthogonal frame to the given column
axes [EKS03, MG04, HS04]. As such it provides the ideal
decomposition of the displacement matrix J, giving the
smallest deformations. The strain values can be derived as
shown in the following formula.

J = Rp.Es

Es = R−1
p J =

1+ εxx εxy εxz
εxy 1+ εyy εyz
εxz εyz 1+ εzz

A related SVD-based approach has been used to handle ele-
ment inversions [ITF04].

QR decomposition † The QR decomposition is an alterna-
tive to the polar approach. The first axis of the local frame is
constrained to be aligned with the first column of J. Then the
second axis is constrained to the plane spanned by the two
first columns, an so on. We can compute it by performing a
Gram-Schmidt orthogonalization, to guarantee that we ob-
tain a right-handed frame. The strain can then be computed
by projecting the columns of J to the axes of the local frame,
or equivalently by the following decomposition:

J = Rqr.Et

Et = R−1
qr J =

1+ εxx 2εxy 2εxz
0 1+ εyy 2εyz
0 0 1+ εzz

This decomposition is significantly faster than polar or SVD,
however it depends on vertex ordering because all edges do
not have the same influence, as illustrated in fig. 2. Conse-
quently some ordering-dependent anisotropy is introduced,
contrary to polar or SVD. Moreover, the evaluated strain is a
bit higher. However, its computational efficiency can allow
one to use more refined meshes.

† With our notations, Q corresponds to the rotation Rqr and R to Et

b

c

z
a

y

x
d

(1)
c

b

d z

x

y

a

(2)

Figure 2: the local frames. (1) Polar decomposition: single
frame reflecting best the matter, nearest to the edges. (2) QR
decomposition: the first axis is the first edge ab, the second
axis is orthogonal to the first on plane (ab,ac), and the last
axis is obtained by construction of an orthonormal frame.

2.2. Newton’s law
Newton’s law on linear acceleration relates the acceleration
of a system to the external forces applied to it: Σ jm j ü j =
Σ j f ext

j where f ext
j is the net external force, m j the masse, ü j

the acceleration applied to sampling point x j . This law is true
for a single particle, for an element as well as for the whole
object. The violation of this law would allow an isolated (not
submited to external forces) object to linearly accelerate.
We now show that Newton’s law is necessarily satisfied by
the construction of the strain-displacement matrix B, thanks
to its property Σ jBi j = 0, for a row i. Indeed, for any uni-
form translation ∆u = [k...k]T , k ∈ R this property implies
a null variation of the deformation ∆ε: ∆εi = Σ jBi j∆u j = 0.
Moreover, the net force generated by an arbitrary constraint
vector σ is Σ j f j = Σ jΣiBT

i jσi = ΣiσiΣ jBT
i j = 0. Note that the

property is true even if B is obsolete due to a change of the
shape of the element, even if it modifies the material, it does
not create ghost forces. On the other hand, this property is
not guaranted by [MDM∗02], because it evaluates different
local frame rotations for each node of a same element in pro-
cessing one node after the other. Hence, methods processing
one element after the other (presented in the previous sec-
tion) are now prefered among the community.

2.3. Euler’s law
Euler’s law relates the angular acceleration of a system to the
net torque applied to it: Σ ju j ×m j ü j = Σ ju j × f ext

j . The vio-
lation of this law would allow an isolated object to angularly
accelerate. We now show that if matrix B is not up-to-date
then Euler’s law is not necessarily satisfied.
To respect Euler’s law, let us show that the following prop-
erty, true by construction of B, must be verified: Σ jx j×BT

i j =
0. Indeed, a pure rotation ω generates a variation of the dis-
placements ∆u j = ω× x j but must not generate a variation
of the deformation. This implies that ∆εi = Σ jBi jω× x j = 0
for any ω, thus Σ jx j × BT

i j = 0. In the same way, let us
check that the net torque due to an arbitrary constraint σ
is null: Σ jx j × f j = Σ jx j × ΣiBT

i jσi = ΣiσiΣ jx j × BT
i j = 0.

The property is no more guaranted when B is obsolete
due to a change of shape because the original x j are re-
placed by new values. Computing forces with initial strain-
displacement matrices amounts at computing frest→de f ormed
whereas fde f ormed→rest is sought. Consequently, it is neces-
sary to recompute each matrix B element’s at each time step
to avoid artificial torques. An example of artificial torque is
given in fig. 3. Note, however, that multiplying matrix B with
a scalar uniformly scales the net torque, and thus modifies
the material, but does not induce artificial torques.

c© The Eurographics Association 2005.

Matthieu Nesme, Yohan Payan & François Faure / Efficient, physically plausible finite elements

3. Efficient implementation
Our method updates strain-displacement matrices at each
time step to avoid ghost torques. Deformations computation
is based on the QR decomposition, because this decomposi-
tion simplifies a lot the calculations of strain-displacement
matrices and becomes significantly faster. About the dy-
namic resolution, we show that the assembly is not in-
evitably the best approach in the case of interactive simu-
lations.

3.1. Strain-displacement matrix computation
The strain-displacement matrix B is a 6×12 matrix straight-
fowardly deduced from shape functions, factored by 1/6V
where V is the volume of the element. The classic computa-
tion of B takes 72 multiplications and 60 additions [BNC96],
and the computation of ∆ f = RT BT DB∆u using this ma-
trix takes 6660 multiplications and 2760 additions. Since
we are using QR decomposition, a lot of vertex coordinates
are null in the local frame. The calculation of the strain-
displacement matrix is thus greatly simplified. It is possible
to recompute it at each time step using only 14 multiplica-
tions and 5 additions, and perform an optimized computation
of ∆ f using 4554 multiplications and 1707 additions. For a
tetrahedron (a,b,c,d), the coefficients of the shape functions
Ni = αi +βix+ γiy+δiz are, in the local frame:

βa = −yczd
γa = (xczd)− (xbzd)

δa = ycxd − xcyd + xbyd − xbyc

βb = yczd βc = 0 βd = 0
γb = xczd γc = zdxb γd = 0

δb = ycxd − xcyd δc = −ydxb δd = −xbyc

It is shown in section 2.3 that it remains physically plausible
when multiplied by a scalar. We can exploit this opportunity
to use each element’s initial volume instead of recomputing
it. The advantages are a faster computation and robustness
when large deformations result in flat elements with null vol-
ume.

3.2. Time integration
To dynamically interact with a FEM-based system, we solve
a second order differential equation, globally, on all the ele-
ments vertices: Mü+Cu̇+Ku = f ‡, where matrix M mod-
els mass, C models damping (C = αK + βId is a popular
approximation) and K models stiffness for all the vertices.
The global matrices can be computed by summing up the
contributions of each element to its vertices. This operation
is called the assembly. Baraff [BW98] has shown how to
solve this differential equation efficiently even in the case
of stiff material. A modified conjugate gradient algorithm
is used to iteratively solve a sparse linear equation system

‡ Bold letters denote global matrices and vectors, as opposed to
single elements.

Figure 3: A set of forces with null net torque is applied to an
equilateral tetrahedron. If the strain-displacement matrix is
not updated, then the tetrahedron starts to rotate.

 0
 50

 100
 150
 200
 250
 300
 350
 400

 20 40 60 80 100 120 140co
m

pu
ta

tio
n

tim
e

pe
r s

te
p

(m
s)

number of iterations in conjugate gradient

with
without

Figure 4: Computation time with or without assembly, on
3430 tetrahedra and 512 particles.
modeling a constrained elastic system. The main computa-
tional task consists in evaluating ∆f = [∂F

∂u]∆u, where ma-
trix [∂F

∂u] is the stiffness matrix K = BT DB. When the stiff-
ness matrix is precomputed, the calculation of the net forces
("right part" of the integration) can be optimized by precom-
puting f 0 = RT Kx0, with f = RT K(Rx−x0) = RT KRx− f 0

as shown in [MG04]. In this case, the computation of f and
∆ f = RT KR∆u use the same product by the stiffness matrix
R−1KR, so it is interesting to assembly all the individual
stiffness matrices of all the elements, to limit the calcula-
tion by a single force computation by vertex. But we have
shown in the section 2.3 that updating the stiffness matrix is
mandatory. In this case, f 0 can’t be precomputed, so we need
two different products: one by RT KR for ∆ f and another by
RT K for f . In pratice, it is more efficient not to build an as-
sembled stiffness matrix ; its heavy construction could be
amortized by a lighter computation of the conjugate gradi-
ent iterations, but in the case of interactive animations, the
number of iterations is generally too small. It is preferable
to store separately R, B and D and to process each element
independently. For each element, we first compute R∆u, then
BR∆u until RT BT DR∆u.
Figure 4 shows that to amortize the cost of the assembly, 50
iterations minimum are necessary in this example, which is
really too big in the case of an interactive simulation.

4. Discussion and results
4.1. Robustness
Large displacements or user manipulations sometimes re-
sult in degenerate configurations such as flat or inverted ele-
ments. Such cases are not properly speaking physical, but it
is important to be able to face them to guarantee the stabil-
ity of the simulator. The polar decomposition applied to an
inverted element computes a left-handed local frame. The
element tends to recover its initial shape in this frame, con-
verging to a reversed shape. This can be solved by flipping
the sign of an axis, but this requires the computation of the
determinant to detect a change of sign resulting from the in-
version. Irving et al [ITF04] propose a very elegant, but more
expensive, solution to this problem, based on a SVD decom-
position. They always compute the smallest inversion among

c© The Eurographics Association 2005.

Matthieu Nesme, Yohan Payan & François Faure / Efficient, physically plausible finite elements

Figure 5: A rabbit with null Young’s modulus is crushed
onto the ground. By increasing its stiffness, it regains its ini-
tial shape.

Figure 6: A liver is fixed in four points (red balls). A user
imposes a violent displacement (blue ball) which reverses
elements. The system remains stable, and recovers its initial
shape when released.

all the possible combinations.
Using the QR decomposition method, the inversion of an el-
ement is freely detected and automatically modeled as the
crossing of the (a,b,c) plane by vertex d, the only one not
used in the construction of the local frame. If the inversion
actually occurs at this fourth vertex, then the reaction is plau-
sible, but in case of another vertex inversion, the element
regains its rest form by a large rotation. On a single tetrahe-
dron, this can lead to a non-intuitive behavior. In a complex
model, most elements are not inverted and behave correctly
and we have not detected visible artifacts. In all cases, the
tetrahedra do not break and they recover their initial shape,
as illustrated in fig. 5 and 6.

4.2. Efficiency
The results given fig. 7 use a time step of 0.4 ms and five iter-
ations of the conjugate gradient solution are performed in the
implicit integration. We can see the major interest of the QR
decomposition applied to tetrahedra concerning the compu-
tation time, which is about 30% faster than the method using
the polar decomposition when precomputation of B is dis-
abled to ensure correctness basic mechanic laws. By increas-
ing the number of iterations in the conjugate gradient, results
remain similar, because the computation of ∆ f at each itera-
tion is more efficient with QR decomposition than polar de-
composition. With the display, our method runs at 30 frames
per second for approximately 2000-3000 tetrahedra.

5. Conclusion
We have shown that physical plausibility requires the up-
date of the strain-displacement matrix. We have proposed an
efficient implementation for interactive applications. Rota-
tional invariance and robustness of tetrahedra are more effi-
ciently handled using the QR decomposition, while the polar
decomposition is preferable to enforce isotropy. Finally, we
have seen that the cost of stiffness assembly is difficult to
amortize in case of interactive simulations using few itera-
tions in implicit integration. In the near future, we would like
to extend our model to hexahedral elements and compare the
accuracy of such interactives methods.

 0
 20
 40
 60
 80

 100
 120
 140
 160

 2000 3000 4000 5000 6000 7000 8000 9000 10000co
m

pu
ta

tio
n

tim
e

pe
r s

te
p

(m
s)

number of tetrahedra

30Hz

(performed on pentium 4 2.4 GHz, 512 Mo)

Linear (without stiffness update)
Polar decomposition
QR decomposition

Figure 7: Computation time per time step against number of
tetrahedra (with stiffness update, without assembly).

References

[BNC96] BRO-NIELSEN M., COTIN S.: Real-time volumet-
ric deformable models for surgery simulation using fi-
nite elements and condensation. In Proc Eurographics
(1996). 3

[BW98] BARAFF D., WITKIN A.: Large steps in cloth simula-
tion. In Proc SIGGRAPH (1998). 3

[CDC∗96] COTIN S., DELINGETTE H., CLEMENT J.-M., TAS-
SETTI V., MARESCAUX J., AYACHE N.: Volumet-
ric deformable models for simulation of laparoscopic
surgery. In Computer Assisted Radiology (1996). 1

[DDCB01] DEBUNNE G., DESBRUN M., CANI M.-P., BARR

A. H.: Dynamic real-time deformations using space
and time adaptive sampling. In Computer Graphics
Proceedings (2001). 1

[EKS03] ETZMUSS O., KECKEISEN M., STRASSER W.: A Fast
Finite Element Solution for Cloth Modelling. Proc Pa-
cific Graphics (2003). 1, 2

[HS04] HAUTH M., STRASSER W.: Corotational simulation
of deformable solids. In Proc WSCG (2004). 1, 2

[ITF04] IRVING G., TERAN J., FEDKIW R.: Invertible finite
elements for robust simulation of large deformation. In
Proc SCA (2004). 2, 3

[JP99] JAMES D., PAI D.: Accurate real time deformable ob-
jects. In Proc SIGGRAPH (1999). 1

[MDM∗02] MÜLLER M., DORSEY J., MCMILLAN L., JAGNOW

R., CUTLER B.: Stable real-time deformations. In
Proc SCA (2002). 1, 2

[MG04] MÜLLER M., GROSS M.: Interactive virtual materials.
In Proc Graphics Interface (2004). 1, 2, 3

[PDA03] PICINBONO G., DELINGETTE H., AYACHE N.: Non-
linear anisotropic elasticity for real-time surgery sim-
ulation. Graph. Models (2003). 1

[TF88] TERZOPOULOS D., FLEISCHER K.: Modeling inelas-
tic deformation : viscoelasticity, plasticity, fracture. In
Proc SIGGRAPH (1988). 1

[TPBF87] TERZOPOULOS D., PLATT J., BARR A., FLEISCHER

K.: Elastically deformable models. In Proc SIG-
GRAPH (1987). 1

[ZC67] ZIENKIEWICZ O. C., CHEUNG Y. K.: The Finite Ele-
ment Method in Structural and Continuum Mechanics.
McGraw-Hill Publ, 1967. 1

c© The Eurographics Association 2005.

