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Abstract

We present a method for deforming piecewise linear 3D
curves with constant length constraint. We show how this
constraint can be integrated into a multiresolution editing
tool allowing an intuitive control of the deformation’s extent
and aspect. The constraint is enforced following two steps.
A first step consists in approximating the initial length by
modifying the multiresolution decomposition at some spe-
cified scale. In a second step the constraint is exactly en-
forced by constrained minimization of a smoothness crite-
rion. This process then provides the core of an integrated
wrinkling tool for soft tissues modelling. A curve on the
mesh is deformed, providing a deformation profile which is
propagated in a user-defined neighbourhood on the surface.

1. Introduction

Multiresolution (MR) analysis has received consi-
derable attention in recent years in many fields of geo-
metric modeling, computer graphics and visualization.
It provides an efficient representation of complex func-
tions at multiple levels of detail. Thus convenient handling
of geometrical objects is possible. General multireso-
lution editing or deformation techniques for paramet-
ric curves have been explored in detail by Finkelstein and
Salesin [13], Gortler and Cohen [15], Elber and Gots-
man [11] using B-splines. In contrast, constrained mul-
tiresolution editing techniques have not been explored
so much in the past. However, there are many appli-
cation areas, including CAD/CAM, computer graphics
and computer animation, where deformations under con-
straints are needed. Constraint enforcement offers addi-
tional control of a shape during the modeling process.
Constraining linear geometric properties, like posi-
tion, normal and point tangent combined with minimiz-
ing curve or surface energy [14, 6, 34] proves to be an
effective tool both for sculpting models and for animat-
ing real behaviours of objects. Some other works deal

with non-linear constraints, e.g. length preserving defor-
mation of Bézier curves [27], prescribing the length of
rational Bézier curves [29], and volume preserving defor-
mation of solids [28] and implicit surfaces [8]. None of
these works integrate constraints into multiresolution edit-
ing. Only recently, MR editing of closed planar curves,
coupled with the constraint of enclosed area preserva-
tion has been developed [10, 19]. In [5] a specific MR rep-
resentation is proposed for volume preserving surfaces. It is
based on the encoding volume elements between levels in-
stead of basis function coefficients. While area and volume
are bi-linear and tri-linear functionals, the length con-
straint in contrary is non-linear. This is the reason why
for example the MR area preserving methods [10, 19]
can’t be directly adapted to the length. One of the pur-
poses of the present paper is therefore to show how the
non-linear constraint of length preservation can be incorpo-
rated into an MR editing tool.

Furthermore, the length constraint as well as constant
area or constant volume belongs to the traditional princi-
ples of animation [22]. For example in computer anima-
tion of soft objects, where realistic deformations are re-
quired, realism can be achieved thanks to physical-based
models [33, 7]. However, when low computation time has
priority, typically for real-time animations, it is quite ad-
vantageous to mimic physical laws by some appropriated
geometric properties. Area or volume preserving deforma-
tions can simulate inelastic material [28]. Length preserving
deformation can mimic nearly non-compressible or non-
stretch material like cloth [1, 9] or soft tissues. A charac-
teristic behaviour of soft tissues is to form wrinkles. Wrin-
kles appear and disappear in order to compensate length
changes. Therefore the second goal of the present paper is
to handle length preserving curves specifically in order to
control the generation of wrinkles through the MR repre-
sentation when two curve points get closer.

Several models dedicated to wrinkle generation have
been developped in the domain of computer graphics and
computer animation. The first work [2] introduced bump



mapping, that have often been used later on. The main draw-
back of bump mapping is that it doesn’t modify the geome-
try of the object. Later works [37, 3] deal with static wrin-
kles for skin modelling which is significantly different from
the the problem of dynamic wrinkles this paper focuses on.
Modelling dynamic wrinkles with geometric deformations
has been handled in [35, 37, 38] but all these methods re-
quire the ridges to be drawn by the user.

In [17] Hadap et al developped a method for simulat-
ing dynamic wrinkles on meshes. A displacement map is
built in order to preserve the surface area: the underlying
deformation of a coarse mesh is used for modulating pre-
defined wrinkle patterns. Though it is convincing for cloth
rendering it suffers drawbacks for a general use: the patterns
have to be drawn by the user, and the geometry is modified
through the displacement mapping extra layer.

Jing et al [20] presented a wrinkling tool for footwear
design. It is based on the propagation of a wrinkling pro-
file defined on the border of nurbs patches. The main draw-
back, relatively to our aims, is a tesselation step that pre-
vents this method from being used for dynamic wrinkles.
Moreover, only one single deformation is possible because
the initial geometry is lost.

Larboulette and Cani [21] based their method on the
propagation of a 2-dimensional profile curve, allow-
ing wrinkles at different scales. But the profile is indepen-
dant of the mesh’s geometry, leading to very regular de-
formations. Moreover the propagation needs to project the
mesh on a plane, hindering the use on high-curvature re-
gions.

The contribution of this paper is to provide a multireso-
lution editing tool for 3D piecewise linear curves which al-
lows to satisfy the non-linear constraint of length preserva-
tion. Beside general deformations through select-and-drag
control points, the present paper focuses on a particular type
of deformation: the generation of wrinkles in case of com-
pressing the curve or part of it. The approach is purely geo-
metric in the sense that the scale and frequency of the gen-
erated wrinkles are not controlled by some physical law, but
by modifying curve coefficients at different multiresolution
levels. Then we show how it can be used for general surface
deformation through the extraction of a profile curve on the
surface. Our algorithm is then applied to this curve. Eventu-
ally surface wrinkles are created by propagating and by at-
tenuating smoothly the curve wrinkles on both sides of the
curve.

The paper is organized as follows. Section 2 sets the ba-
sic tools and details the length preserving deformation
method for 3D curves. In Section 3 the application to sur-
face wrinkling is presented. Eventually, Section 4 con-
cludes and gives possible future works.

2. 3D curves

In a classical MR editing environment the user chooses
a resolution level at which the curve is modified by displac-
ing one coarse control point. The shape of the curve changes
more or less locally depending on whether a low or a high
resolution level has been chosen.

The same procedure can be applied when integrating the
additional constraint of keeping the curve length constant
during deformation. The contribution of the present section
is a method for solving the length constraint in a MR edit-
ing environment. It is in particular used for creating wrin-
kles whose frequency can be controlled by the user through
the MR representation of the curve. This method is a gener-
alization of the 2D method presented in [30], with a specific
solution of the 3D orientation problems.

In a first time we present the length measure and con-
straints in Section 2.1. It is followed in Section 2.2 by an
overview of the method whose two main steps are detailed
in Sections 2.3 and 2.4.

2.1. Curve length

Let c(t) = (x(t), y(t), z(t)) be a parametric curve ly-
ing in a space having a multiresolution analysis (see An-
nexe A for details). The length of c(t) is given by L =∫ √

x′(t)2 + y′(t)2 + z′(t)2dt. The curves the present pa-
per is dealing with are continuous and piecewise linear. In
that case the length simplifies to

L =
N−2∑

i=0

||cn
i+1 − cn

i ||2 ,

where (cn
i )i=0···N−1 = (xn

i , yn
i , zn

i )i denote the con-
trol points at the finest level n following the notations of A.

For the multiresolution representation of piecewise lin-
ear curves the scheme based on the Lazy wavelets [32] (see
Fig. 2) is used:

{
cj

i = cj+1
2i

dj
i = cj+1

2i+1 − 1
2 (cj+1

2i + cj+1
2i+2) .

(1)

where cj
i and dj

i are the coefficient of the MR curve at level
j (see Eq. 8).
The reasons for the particular choice of working only with
piecewise linear curves are threefold. First, the length pre-
serving deformation method presented here is intended to
work dynamically. Linear curves in contrast to higher or-
der polynomial curves simplify and accelerate the length
computations. Second, the particular effect of wrinkle cre-
ation in response to the motion of control points is a purely
visual effect. Therefore, on a computer screen no visual dif-
ference can be observed between displaying a dense polyg-
onal curve or a rasterized polynomial curve. Third, the



algorithm will be used in Section 3 to create dynamic sur-
face wrinkles, the surface being represented as a fine
triangular mesh. Thus all curves on the surface are piece-
wise linear.

In the case of piecewise linear curves one can choose
either to keep the total length constant or to preserve the
length of each segment. We choose the second way because
of two main reasons:

• It ensures the balance between segment’s length that is
to say the control points don’t gather in a small part of
the curve.

• It allows the length constraints to be expressed in such
a way that computationally inefficient square roots
evaluations can be avoided.

The length constraints on a deformed curve defined by
Cn = (cn

i )T
i can now be reformulated as follows:

fi(Cn) = ∆x2
i +∆y2

i +∆z2
i −l2i = 0; i = 0, . . . , N−2 ,

(2)
where li is the reference length of segment [ci; ci+1] be-
fore deformation, ∆xi = xi+1 − xi, ∆yi = yi+1 − yi and
∆zi = zi+1 − zi.

2.2. Overview of the deformation method

We present here how to deform a 3D curve while en-
forcing the previous length constraints. The multiresolution
representation of the curve is at the center of this process.
It provides a friendly manipulating tool for the user: the
curve can be deformed globally through a few coarse con-
trol points while preserving the details. Moreover the use of
several decomposition levels allows to precisely control the
deformation scale at each step of the process.

Three levels of decomposition (corresponding to the
three columns in figure 1) are involved: the finest level n,
the editing level e and an intermediate level w correspond-
ing to the wrinkling scale if required by the length con-
straint. Hence Cj denote the gathering of the MR coeffi-
cients cj ,dj ,dj+1, · · · ,dn−1 (see Annexe A). The defor-
mation process follows the loop of figure 1. It can be iter-
ated several times, basically at each time step in a select-
and-drag editing process. During the deformation process
the curve undergoes several transitions and thus admits dif-
ferent geometric stages i.e. different values of the MR co-
efficients. Four different stages of C are involved, labelized
by a different index:

• CR is the initial curve and also the reference curve for
the length;

• CD is the deformed curve, i.e. after it has been edited
and before any length preservation action;

• CA is the attracting curve that originates from the ex-
plicit length preservation step;

• CF is the final curve. It will replace CR for the next
deformation.

C

C

C

C

C

C

C
decomposition

reconstruction

Step 1
explicit method

edition

reconstruction

Step 2
optimization

n
R

n
F

n
A

D

w
A

e
D

e
R

w

Figure 1. Editing loop: each box is a state
of the curve; each horizontal transition is a
change in the decomposition level; each ver-
tical transition is a modification of the curve.

Let us describe the role of each transition in figure 1:

• Decomposition: The curve is decomposed into Ce
R at

the level e, chosen by the user, following equation (1).

• Edition: The coarse control polygon Ce
R a level e

is modified by the user. The corresponding deformed
curve CD has not the same length as the reference
curve CR. Notice that the choice of level e determines
the extent of the deformation.

• Reconstruction: The deformed curve is then partially
reconstructed at level w (e ≤ w < n), chosen by the
user to be the wrinkling scale.

• Explicit length preserving: An attracting curve CA is
constructed. This curve is obtained by modifying Cw

D

at level w using the details in order to obtain a con-
trol polygon Cw+1

A whose edges have the same length
as the control polygon segments of CR at level w + 1.
This step is detailed in Section 2.4. Modifying details
at level w is equivalent to modifying corresponding
control points at level w+1. The choice of an interme-
diate level w different from e for length approximation
increases the number of coarse control points defin-
ing the same portion of the curve. The closer to the
highest level n is w, the higher is the number of con-
trol points for length approximation, and the higher is
the frequency of the wrinkles in case of need. If the
curve is stretched w acts as a kind of stiffness parame-
ter.

• Reconstruction: The attractive curve is then com-
pletely reconstructed by re-inserting the details of CR



at the levels w + 1, . . . , n. After reconstruction, the
length of CA is close to satisfy the length constraint.
Note that the use of a lazy wavelet scheme may lead to
some sharp features in the reconstructed curve. Hence
a smoothing is useful.

• Length preserving by smoothing: An optimization
method applied to CA leads to the final curve CF . It
precisely satisfies the length constraints, has a smooth
shape, and it is close to the attracting curve CA. This
step is described in Section 2.3.

2.3. Optimization step

We detail here the step of exact length enforcing via op-
timization. After presenting the basic ideas and the calcu-
lus we explain why it is useful to combine it with the ex-
plicit length preserving step.

Starting from CA, the problem to solve consists in length
enforcing, i.e. finding a final curve CF :

1. whose length is LR;

2. that is close to CA;

3. that is smoother than CA.

The length is a strong constraint while the closeness and the
smoothness are soft constraints. Hence let us choose a min-
imization method constrained by the length. The objec-
tive function contains a smoothness term preventing the
curve to have unwanted wriggles and a distance term mini-
mizing the distance to the attracting curve CA.

In variational design a physical model is used for the de-
scription of a ”smooth” or a ”fair” curve or surface [25, 36].
The most widely used fairness criteria originate from the
observation that the shape of a thin elastic beam or a thin
plate under deformation which minimizes the bending en-
ergy is always smooth, i.e. has a visual pleasing shape.

Since the bending energy for a parametric curve, EB =∫
κ2(t)dt, is a non-linear functional, it is common to use in-

stead the linearized version [12, 4]:

EB =
∫
|c”(t)|2dt =

∫
x”(t)2 + y”(t)2 + z”(t)2dt .

Both expressions are identical if |c′(t)| ≡ 1.
In the case of a piecewise linear curve, a discrete ver-

sion is derived from a finite difference approximation of the
derivatives:

E(X, Y, Z) =
∑N−2

i=1 ‖1
4 (ci−1 − 2ci + ci+1)‖2

= 1
2 (XT HX + Y T HY + ZT HZ),

where H is a banded matrix and X,Y, Z are the coordi-
nate vectors of C.

Besides we want the distance to CA to be minimal.
Hence we introduce a second term in the objective func-
tion, defined as the quadratic distance between C and CA:

D(X, Y, Z) = ‖X −XA‖2 + ‖Y − YA‖2 + ‖Z − ZA‖2 .

The problem we aim to solve is now the following optimiza-
tion problem:

(XF , YF , ZF ) = arg min { (1− β)E(X, Y, Z) + βD(X, Y, Z) }

subject to fi(X,Y, Z) = 0 , i = 0, . . . , N − 2 ,
(3)

where the constraints fi are defined in 2 (see Section 2.1).
0 ≤ β ≤ 1 is a scalar value which balances between a
smoother curve and a curve closer to CA. Similar energy
functional have been used in [18].

With the technique of Lagrange multipliers [16], the
minimization problem is restated to finding a stationary
point of the following function:

g(X,Y, Z, Λ) = (1− β)E + βD +
N−2∑

i=0

λifi

where Λ = (λ0, . . . , λN−2)T is the vector of Lagrange mul-
tipliers.

The length constraints are quadratic expressions. Since
minimizing a quadratic cost function subject to quadratic
constraints is costly and since one of our objectives is to
provide a fast algorithm, let us approach the length con-
straints fi by using linearized constraints f̃i instead. f̃i is
the Taylor expansion of fi with respect to ∆xi, ∆yi and
∆zi in the neighbourhood of ∆xA

i , ∆yA
i and ∆zA

i . Hence
one gets

f̃i = 2∆xA
i ∆xi − (∆xA

i )2 + 2∆yA
i ∆yi − (∆yA

i )2

+2∆zA
i ∆zi − (∆zA

i )2 − l2i .

Assuming that the approximation of fi by f̃i holds, the
problem can be restated as solving:
−→∇ g̃ = 0 where g̃(X, Y, Z, Λ) = (1−β)E+βD+

∑
λif̃i .

(4)
A symmetric square sparse system of linear equations has
to be solved:





(1− β)HX + 2βX + 2∆XΛ = 2βXA

(1− β)HY + 2βY + 2∆Y Λ = 2βYA

(1− β)HZ + 2βZ + 2∆ZΛ = 2βZA

2∆T
XX + 2∆T

Y Y + 2∆T
ZZ = b

(5)

where bi = l2i + (∆xA
i )2 + (∆yA

i )2 + (∆zA
i )2 for i =

0 . . . N − 2,
and where ∆X , ∆Y and ∆Z are 2-banded matrices of size
N × (N − 1) containing ∆xA

i , ∆yA
i and ∆zA

i (see [30] for
details).



Let us note that the result is not exact for the length con-
straints due to the linearization of the length constraints.
In order to increase the precision, the solving is encapsu-
lated in a loop which iterates the system solving and re-
places (XA, YA, ZA) by (X, Y, Z) at each loop. Since
the system is very sparse iterative methods are effi-
cient.

In order to validate the approximation of fi by the lin-
earized expression f̃i we have to ensure that ∆xi, ∆yi, ∆zi

are close to ∆xA
i , ∆yA

i , ∆zA
i . In other words the curve CA

must nearly satisfy the length constraints. Hence the choice
of CA is crucial. We explain in the next section how to find
a curve satisfying these conditions.

2.4. Expicit length preservation step for 3D curves

In this section we present a method computing in linear
time an attracting curve suitable for the optimization step
since it sufficiently approximates the length constraints.
Though based on the same idea as the 2D curve [30] we
will see that the 3D solution is more complex, involving the
intersection of two spheres and a plane instead of two cir-
cles.

There are three different curves involved in this section:
CR, the reference curve, CD, the curve deformed by the
user, and CA, the resulting curve that nearly satisfies the
length constraint and that therefore is a good starting curve
for the optimization of Section 2.3.

Suppose the user has modified the initial multiresolution
curve CR by displacing one control point at resolution level
e, 0 ≤ e < n, leading to CD which differs from CR only
in a localized portion. This classical multiresolution editing
operation generally doesn’t preserve the length of CR. But
in case of keeping the curve length constant one desired ef-
fect would be the generation of wrinkles at some scale w
depending on the object. In order to approximate the refer-
ence length, the idea is to compute CA from CD by com-
puting new detail coefficients of level w. All other detail co-
efficients of level w + 1 up to n and all coarse coefficients
(if possible) of level w are kept fixed.

Let us explain this particular choice. The detail coeffi-
cients at level w are used because they encode the geomet-
ric information at that scale. Assume cw

i and cw
i+1 (see Fig.

2) have been moved closer by the user. A new detail dw
i is

computed such as the lengths l̃2i and l̃2i+1 equal the refer-
ence lengths. Hence the norm of dw

i increases, creating a
wrinkle at scale w. Through the choice of w the user con-
trols explicitly the wrinkling scale.

Fixing all other detail coefficients ensures that fine de-
tails of the initial curve are preserved. To not modify the
coarse coefficients of CD at level w ensures that the global
shape of the resulting curve CA differs as less as possi-

ble from CD, i.e. it respects as much as possible the user’s
original deformation.

w+1c2i=i
wc

w
id

cw+1
2i+1

cw
i+1=cw+1

2i+2
cw

i+2

d
w
i+1

cw+1
2i+3

2i+1l
~

2il
~

Figure 2. Interpolating scheme.

Let us now describe how in practice this idea has been
implemented. Let l̃i be the length of the control polygon
edges of the initial curve CR at level w +1. Then starting at
index i (corresponding to the coarse control point of CR that
has been modified by the user) the algorithm traverses all in-
dices in increasing order, computes for each coarse polygon
edge [cw

i , cw
i+1] a new value of the corresponding detail co-

efficient dw
i and possibly modifies the coarse coefficients

cw
i of CA such that at level w +1, the length of the edges of

CR’s and CA’s control polygons match. In other words we
have to find the head of the vector dw

i : it lies in the intersec-
tion circle of the two spheres with centers cw

i and cw
i+1, and

with radii l̃2i and l̃2i+1. Moreover we want the new detail
to have the same orientation as the reference one relatively
to the coarse edge [cw

i , cw
i+1]. Hence the problem turns out

to intersect two spheres and a half-plane going through the
centers. The solution is detailed and illustrated in Annexe
B. It may occur that the spheres do not intersect:

• if one sphere is included in the other: we equalize the
radii while keeping the total length l̃2i + l̃2i+1 con-
stant;

• if the two spheres are distinct: we move cw
i+1 along the

edge until the spheres are tangent to each other.

The same procedure as above is applied symmetrically
to the other half of the curve, starting at index i and travers-
ing all indices in decreasing order.

Discussion:

• An important advantage of this method is that the re-
sulting curve CA is close to CD because their MR co-
efficients match whenever possible, except the details
at level w (level of expected wrinkles). That is to say
the curve CA follows as much as possible the modifi-
cation applied by the user.

• Let us recall the main condition for using the optimiza-
tion method efficiently: a starting curve nearly satisfy-



ing the length constraints. Thanks to the length preser-
vation at the scale w + 1, the reconstructed curve CA

(i.e. after adding back the fine details) has almost the
same length as the initial curve. Hence it can be used
as a good starting point for the second step (see Sec-
tion 2.3) in order to precisely approach the length con-
straint.

• Following this method, a main role of the previous op-
timization method, whose cost dramatically drops, is
to smooth the curve. It is useful since CA generally
may have sharp features.

3. Surfaces

Modelling inelastic soft tissues is a hard task because
it involves area preserving, length preserving and minimiz-
ing some energies on the surface. In this section we show
how the length preserving curve deformations presented in
the previous section can be used to mimic the dynamic be-
haviour of materials like skin or cloths. We take advantage
of the computational efficiency of the curve model in or-
der to generate wrinkles dynamically with an easy control
on the frequency and the extent.

The main idea of our proposal is to extract a curve on
the surface that will be deformed following the algorithm
of Section 2 and to re-inject it into the surface. The wrin-
kles are then propagated in a pre-defined neighbourhood
of this curve. The wrinkles are smoothly attenuated inside
the neighbourhood. The propagation is obtained by displac-
ing each vertex of the neighbourhood, depending on its dis-
tance to the curve and on the curve’s nearest points. Though
all examples are given with manifold triangular meshes it
can be applied to quadrilateral meshes and non-manifold
meshes as well.

3.1. Curve extracting

The first step consists in extracting a curve defined as a
sequence of edges of the mesh. Hence we get a piecewise
linear 3D curve whose control points correspond to the ver-
tices of the mesh. Depending on the application several ex-
tracting methods are possible, including user defined curve,
shortest path between specified ends [24], intersection with
other objects, extracting ridges [26], etc.

Then the curve is deformed at constant length using the
MR method presented in Section 2. The deformed curve
thus defines a dispacement of the corresponding mesh ver-
tices. In order to create a surfacic deformation we have to
propagate these displacements on the mesh in a predefined
neighbourhood.

3.2. Propagation on the surface

Firstly we specify an area of influence defining the part
of the mesh that will be modified. In the literature, differ-
ent appraoches to solve this problem have been used. In
[20]...bref description de leur methodes de propagation ...??
Another possibility is to ????. Thee geometry-based ap-
proaches are probably the most accurate but it is much time
consuming. This is the reason why we choose the follow-
ing topology-based approach. Herein, we choose the region
of extend for the wrinkle propagation by selecting the ver-
tices at a uniformly bounded topological distance of the ex-
tracted curve (Fig. 3). The topological distance between two
vertices is the minimal number of edges for all paths con-
necting this two vertices. We define the area of influence
as the set of mesh triangles whose vertices have a topologi-
cal distance to a curve’s vertex less or equal than a specified
number. The choice of using topological distance is made
for efficiency reasons. Highly non-uniform meshes would
however require using geometric distance instead of a topo-
logical distance. But these meshes don’t occur so much in
practice.
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Figure 3. Propagation of the deformation.

Let us now explain how to compute the new position of
all vertices belonging to the area of influence so that the new
shape of the extracted 3D curve is propagated smoothly in-
side that area. Let v be a vertex (see Fig. 3) inside the area.
The corresponding vertex ṽ on the deformed surface is ob-
tained by ṽ = v + ~δv. The displacement ~δv has to be de-
fined. This vertex may have several closest points on the
curve (named v1, · · · ,vk) with respect to the topological
distance. It means that there is a path from v to each of
them with topological length equal to the minimal topo-
logical distance lv from v to the curve. Remember we
know the displacement vector of each curve point. The dis-
placement ~δv is defined as an average of ~δv1 , · · · , ~δvk

. But
the edges of the mesh may have different lengths involv-
ing important differences between the geometric distances
‖v − v1‖, · · · , ‖v − vk‖. In order to overcome that prob-
lem the average is weighted by the inverse of the geometric



Figure 4. Selected area and profile curve on the initial mesh (left); resulting small (middle) and large
(right) wrinkles on the back of the hand.

distance between the points and v:

~δv = a(lv)
( k∑

i=1

1
‖v − vi‖

)−1 k∑

i=1

1
‖v − vi‖

~δvi
, (6)

where a(l) is a transverse attenuation function making the
deformation more realistic. It must decrease from 1 for
lv = 0 (i.e. v belongs to the curve) to 0 for lv maximum
(i.e. when v is on the boundary of the selected area). In our
examples a is made up of a step a(l) = 1 for l small, fol-
lowed by a smooth cubic polynomial join.

3.3. Results

We present here examples of mesh editing that illustrates
the process previously presented. Once the mesh is loaded
and the deformation area is defined, the deformation pro-
cess works dynamically.

Figure 4 shows the wrinkling of a mesh. The initial mesh
(left) has 50 000 triangles and the selected area (blue area)
has 1 400 triangles. The extracted curve (red) is pinched by
the user and the length is enforced following the process of
Sections 2 and 3. Two different values for w (see Section
2.2) are used: w = 4 (middle) and w = 3 (right), provid-
ing small and large wrinkles on the back of the hand. It il-
lustrates the control of the wrinkling scale thanks to the MR
representation. The propagation process automatically cre-
ates realistic surface wrinkles.

Figure 5 shows the superposition of three deformations
(lower row). The initial surface (upper left) has 93 000 tri-
angles but only 13 000 triangles have been modified, cre-
ating several wrinkles around the cow’s neck (upper right).
This example illustrates the ability of our model to be inte-
grated into a surface designing tool.

4. Conclusion

We have first presented a method for length preserving
deformation of multiresolution 3D curves. It combines a
step of length approximating and a smoothing step via con-
strained optimization. The MR representation allows easy
editing and control of the deformation scale. This method
is then used for mesh wrinkling by extracting a deforma-
tion profile which is propagated on the surface. The whole
process works dynamically. It is illustrated on triangular
meshes.

Future works concern the adaptation of the method to
adaptative meshes. Refining the mesh on the wrinkling area
while keeping a coarse sampling on flat areas could improve
the results with minor computation overloading.
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A. Multiresolution curves

Let us briefly sketch the notation of the wavelet
based multiresolution analysis used here. For more de-
tails see [23], [13], and [31]. Suppose we have a certain
functional space E and some nested linear approxima-
tion spaces V j ⊂ E with V 0 ⊂ V 1 ⊂ · · · ⊂ V n. Let
V n be of dimension N . Since we are dealing with fi-
nite curves, these spaces have finite dimension. Let V j be
spanned by a set of basis functions ϕj = [ϕj

1, . . . , ϕ
j
m]T ,

called scaling functions. A space W j being the com-
plement of V j in V j+1 is called the detail space. Its
basis functions ψj = [ψj

1, . . . , ψ
j
N−m]T are such that to-

gether with ϕj they form a basis of V j+1. The functions ψj
i

are called wavelets. The space V n can therefore be decom-
posed as follows:

V n = V n−1 ⊕Wn−1 = V n−2
⊕n−1

j=n−2 W j

= · · · = V 0
⊕n−1

j=0 W j . (7)

A multiresolution curve is then defined as a parametric
curve c(t) = (cn)T (ϕn), element of V n, where cn is a
column of its N control points in R3. Due to property 7
the same curve can be expressed in terms of the basis func-
tions of the different decompositions of V n, each of it cor-
responding to a certain resolution of the curve. The mul-
tiresolution curve at any level of resolution e ∈ [0, n], i.e.
element of Ve

⊕n−1
j=e Wj is then given by some coarse con-

trol points ce that form approximations of the initial control
polyline and by the detail coefficients de, . . . ,dn−1 as fol-
lows:

c(t) = (ce)T (ϕe) + (de)T (ψe) + · · ·+ (dn−1)T (ψn−1),
e = 0, . . . , n.

(8)
The filter bank algorithm [23, 13] is used to compute the co-
efficients of all levels of resolutions from the initial coeffi-
cients cn and vice versa.

The function so represented can be edited in an intu-
itive way: editing the coarse coefficients modifies the global
shape without affecting the details; in contrast editing the



details modifies the character of the object without chang-
ing its overall shape.

B. Intersecting 2 spheres and a half-plane

Figure 6. Intersecting two spheres.

The problem of section 2.4 can be stated as finding the in-
tersections of (see Fig. 6):

1. the sphere S1(O1, r1),

2. the sphere S2(O2, r2),

3. the plane P : (O1, O2, ~δ),

instantiated with O1 = cw
i , O2 = cw

i+1, r1 = l̃2i, r2 =
l̃2i+1 and ~δ = dw

i (detail of the reference curve CR).
Let us define d = dist(O1, O2) = ‖−−−→O1O2‖.
Assuming S1∩S2 6= ∅ (i.e. r1 + r2 ≤ d and |r1− r2| ≤ d),
the intersection is a circle C(O, r):

1. lying in a plane orthogonal to
−−−→
O1O2 (then also to P),

2. with center O ∈ (O1O2),

3. with radius r ≤ min (r1, r2).

Let (1 − α, α) be the homogenous barycentric coordi-
nates of O with respect to {O1, O2} i.e.

−−→
O1O = α

−−−→
O1O2

(see Fig. 7).
Applying Pythagorean theorem in the triangles (O1, O, F )
and (O2, O, F ) with F belonging to the circle, we deduce
O and r:
{

r2 + (1− α)2d2 = r2
2

r2 + α2d2 = r2
1

⇔
{

α = (d2 + r2
1 − r2

2) / 2d2

r2 = r2
1 − α2d2

Hence S1 ∩ S2 ∩ P = C(O, r) ∩ P is the set of 2 points
{F, F ′} such as:

(a) α > 0

(b) α < 0

Figure 7. The intersection circle.

1.
−−→
OF and

−−→
OF ′ ⊥ −−−→

O1O2,

2. F and F ′ ∈ P , i.e.
−−→
OF and

−−→
OF ′ ⊥ ~δ ×−−−→O1O2,

3. ‖−−→OF‖ = ‖−−→OF ′‖ = r,

4.
−−→
OF = −−−→OF ′.

Then
−−→
OF and

−−→
OF ′ are the only 2 vectors colinear with−−−→

O1O2 × (~δ × −−−→
O1O2) whose norm equals r. The one ly-

ing in the same half-plane as ~δ has the same direction as−−−→
O1O2 × (~δ ×−−−→O1O2).


