
Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2007)
D. Metaxas and J. Popovic (Editors)

Harmonic Skeleton for Realistic Character Animation

Grégoire Aujay1 Franck Hétroy1 Francis Lazarus2 Christine Depraz1

1EVASION - LJK (CNRS, INRIA and Univ. Grenoble)
2GIPSA-Lab (CNRS and Univ. Grenoble)

Abstract
Current approaches to skeleton generation are based on topological and geometrical information only; this can
be insufficient for realistic character animation, since the location of the joints does not usually match the real
bone structure of the model. This paper proposes the use of anatomical information to enhance the skeleton. Using
a harmonic function, this information can be recovered from the skeleton itself, which is guaranteed not to have
undesired endpoints. The skeleton is computed as a Reeb graph of such a function over the surface of the model.
Starting from one point selected on the head of the character, the entire process is fast, automatic and robust; it
generates skeletons whose joints can be associated with the character’s anatomy. Results are provided, including
a quantitative validation of the generated skeletons.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism: Animation

1. Introduction

A common technique for animating a 3D model consists of
creating a hierarchical articulated structure, named skeleton
(or IK skeleton), whose deformation drives the deformation
of the associated model. The location and displacement of
the skeleton’s joints dictate how the model moves (see Fig-
ure 1 for an example). A skeleton attached to a 3D model
(usually represented as a mesh) can be either created by hand
or computed. In the case of the realistic animation of a char-
acter (be it a human, an animal or a made-up monster), the
first option is most often chosen by artists, although it is
a time-consuming task which needs a skilled user. Indeed,
professional artists may create an initial skeleton relatively
quickly, but often need to make many adjustments during
the rigging process because the skin is very sensitive to the
exact location of the skeleton’s joints: they often have to go
back and forth several times between skeleton skinning and
testing animation before getting it right. Automatic or semi-
automatic methods have several drawbacks: they often allow
little control over the result, they can produce noisy skele-
tons with unwanted joints, and most importantly they rely
on the topology and the geometry of the model only, which
is not sufficient for realistic animation where the anatomy of
the model does not completely match its geometry. For in-
stance, in most cases the spine of a character is close to its

back, while the corresponding axis in computer-generated
skeletons is usually centered within the body (see Figure 12).
Moreover, animation skeletons may have some joints which
do not match any anatomical part of the model but are useful
for animation purpose (e.g., on the head, see Figure 2).

Figure 1: Walking cat. These images are taken from an ani-
mation created using our harmonic skeleton (see the video):
joints deformation drives the mesh deformation.

This paper explains how to automatically, robustly and ef-
ficiently compute skeletons adapted to realistic character an-

Copyright c© 2007 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for com-
mercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a fee. Request per-
missions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail permis-
sions@acm.org.
SCA 2007, San Diego, California, August 04 - 05, 2007
c© 2007 ACM 978-1-59593-624-4/07/0008 $ 5.00

mailto:permissions@acm.org
mailto:permissions@acm.org

G. Aujay, F. Hétroy, F. Lazarus & C. Depraz / Harmonic Skeleton for Realistic Character Animation

Figure 2: From left to right: a cat model, the computed harmonic graph with its symmetry axis, the computed harmonic skeleton
compared to a previously handmade animation skeleton.

imation, starting from a single point selected by the user on
the model. Generated skeletons match the ones that are cre-
ated by hand by professionals in most biped and quadruped
cases. Moreover, they carry anatomical information (that is
to say, we know which joint corresponds to which part of
the model), allowing a semantic decomposition of the input
meshes.

1.1. Related work

Numerous algorithms have been proposed to compute skele-
tons of 3D shapes from their geometry. Bloomenthal and
Lim [BL99] were among the first ones to point out that these
geometric skeletons can be converted to IK skeletons and
then used for animation purposes. However, to be useful for
animation, skeletons should be structured as graphs, whose
nodes correspond to the joints and whose edges correspond
to their hierarchy. This discards two-dimensional skeletons
such as the Medial Axis [Blu67].

Graph-like skeleton generation algorithms start either
from the boundary surface [KT03,LWM∗03,DS06,LKA06,
TVD06] of the input model, or from its inner volume [GS01,
WP02, CSYB05]. Methods working on a volumetric repre-
sentation of a model have a major drawback: only features
with a size greater than the voxel size can be taken into ac-
count. This often leads to computationally expensive algo-
rithms.

Katz and Tal [KT03] extract a skeleton from a meshed
model using a hierarchical decomposition of this mesh into
meaningful parts. Generated skeletons are star-shaped (they
contain a root joint, located in the center of mass of the
model, from which all other joints derive) and thus are not
suited for realistic animation. Lien et al. [LKA06] gener-
ate shape decomposition and skeleton simultaneously; the
skeleton is computed using centroids and principal axes of
the shape’s components, which gives a skeleton with geo-
metrically but not necessarily anatomically meaningful po-
sitions. The same problem appears with Dey and Sun’s ro-
bust skeleton computation from the Medial Axis [DS06]. Liu
et al. [LWM∗03] propose to use a repulsive force field to
position the joints. This method is quite slow (as reported
in the paper, it takes several minutes to compute the skele-
ton for a model containing about 10,000 triangles), and does
not guarantee that the result will capture all desired features.

Following Shinagawa et al. [SKK91], several authors have
proposed to use a mathematical tool called the Reeb graph
to capture the model’s topology, before possible refinements
to capture its geometry. A Reeb graph is defined with respect
to a mathematical function, and the result highly depends on
the choice of this function. In the next section, we precisely
define the Reeb graph and then list some existing methods
using this mathematical notion.

The algorithm we propose takes as input a triangle mesh.
It first computes a Reeb graph of this mesh, in a fast and
robust way (that is to say, the graph’s leaves are only the de-
sired ones). This abstract graph is then refined and embed-
ded in the 3D space in order to be useful for realistic char-
acter animation; this is made possible thanks to a semantic
decomposition of the model, given by the graph. Our algo-
rithm computes the skeleton of a model with several hundred
of thousand faces in no longer than a few seconds on a low-
end computer.

1.2. Mathematical background

Let f : M → R be a function defined over a 2-manifold M
with or without boundary (that is to say, a surface for which
each point has a neighboorhood homeomorphic to a disk
or half-disk). Level sets of f are the sets f−1(u) = {x ∈
M, f (x) = u}. Each of these sets, if it exists, can be con-
nected or not. For instance, on Figure 3, where f is a height
function, f−1(u) is connected for low and high values of
u, but is made of several connected components for values
around−0.7, 0 and 0.7. For some special values, the number
of connected components of the level set changes: these val-
ues are called critical values, and the corresponding points
x on the surface are called critical points. The Reeb graph
of f [Ree46] is a graph whose nodes correspond to these
critical points, and which encodes the connectivity between
them (see Figure 3). In particular, notice that the leaves of
the Reeb graph exactly match the local maxima and min-
ima of f . Mathematically speaking, the Reeb graph of f is
defined as the quotient space M/ ∼, with ∼ the following
equivalence relation on M:

x1 ∼ x2 ⇐⇒

f (x1) = f (x2)
and x1 and x2 belong to the same
connected component of f−1(f (x1))

More details about these notions can be found in e.g. [FK97].

c© Association for Computing Machinery, Inc. 2007.

G. Aujay, F. Hétroy, F. Lazarus & C. Depraz / Harmonic Skeleton for Realistic Character Animation

f

Figure 3: From left to right: a surface, some level sets of f ,
the Reeb graph of f .

A Reeb graph w.r.t. a triangulated surface with n edges
can be computed in O(n logn) time [CMEH∗03]. However,
the choice of the function f is a key issue in revealing infor-
mation about the surface, and several proposals have been
made in order to obtain a relevant graph: the distance on the
mesh to a source point [LV99], the integral over the mesh to
such a distance (in order to avoid the choice of the source
point) [HSKK01], a mapping function that highlights the
relevant features [TVD06], etc. Following an idea proposed
by Ni et al. [NGH04], we choose to find a “fair” function
f , whose extrema will be anatomically significant, by solv-
ing Laplace’s equation 4 f = 0. Steiner and Fischer did the
same [SF01], but their Reeb graph captured neither geomet-
rical nor anatomical features, only the topology of the model.

The main property of such functions f , called har-
monic functions, is their lack of extrema except at boundary
points [NGH04]. They also have the following property:
let M be a compact surface, BM its boundary and g : M→ R
a function; there exists a unique solution f : M → R to
the following system, called Laplace’s equation with non-
homogeneous Dirichlet boundary conditions:{

4 f (x) = 0 ∀x ∈M
f (x) = g(x) ∀x ∈ BM

(1)

In our case, BM will be a (disjoint) set of vertices of the
mesh, corresponding to anatomically significant parts of the
model. We will compute the Reeb graph of the solution fBM ,g
to the previous system (1), for some function g which will
be described in section 2.1.1; thanks to the property of har-
monic functions, the leaves of this graph will exactly match
the chosen vertices: in other words, the graph is guaranteed
not to be noisy.

1.3. Algorithm overview

The Reeb graph of a function w.r.t. a surface is a pair (V,E)
with V a set of nodes and E ⊂V ×V a set of edges between
these nodes. It is minimal in the sense that there is no regular
node: each node has either one or at least 3 incident edges.
Moreover, nodes do not have 3D coordinates. Thus, in order
to construct a skeleton which is suitable for animation from
such a graph, we must embed it in R3, that is to say link each
node with 3D coordinates. Thus, our method first computes
a Reeb graph, then embeds it in R3. In the following, node

will refer to the graph while joint will refer to the skeleton
and vertex to the mesh.

Our algorithm runs in seven successive stages:

1. the endpoints of the desired skeleton are chosen by the
user or computed (however at least one of them, called
the source node/joint, must be manually chosen on the
head of the character);

2. the harmonic function f solving Laplace’s equation with
non-homogeneous Dirichlet boundary conditions is com-
puted;

3. the Reeb graph of f is computed with the algorithm de-
scribed in [CMEH∗03];

4. this graph, which we call a harmonic graph since f is
a harmonic function, is subsequently filtered to recover
the symmetry of the character’s morphology (i.e., overall
structure);

5. starting from the source node, the symmetry axis of the
graph is detected;

6. the harmonic graph is refined by inserting regular nodes
and embedded in R3: this gives us the harmonic skele-
ton, which carries anatomical information about the input
model (such as “this joint corresponds to the tail”);

7. additional heuristics are used in case the model is de-
tected to be a biped or quadruped with sagittally oriented
legs (this excludes amphibians, but includes most mam-
mals), in order to fit the IK skeleton that would be manu-
ally created by an expert. Although not presented in this
paper, equivalent heuristics can be defined for other kinds
of characters, such as birds or insects.

The contributions of this paper are the following:

• the computed skeleton is robust: endpoints are exactly the
ones that have been chosen, and two meshes represent-
ing the same model under two different postures generate
equivalent skeletons;
• our algorithm is fast and does not need user intervention,

except for the selection of the source joint at the very be-
ginning. However, controlling the skeleton generation is
possible, by manually choosing its endpoints or tuning
some parameters;
• our method gives a semantic decomposition of the shape

(which is used for the embedding process): we know
which part of the mesh corresponds to the head, the legs,
the trunk and the tail of the character;
• we propose standard skeletons (graphs and their embed-

dings) for bipeds and quadrupeds with sagittally oriented
limbs.

Moreover, in the case of quadrupeds, we have validated our
results not only visually but also by comparing parameters
with handmade animation skeletons. To our knowledge, this
is the first time a quantitative validation is proposed.

The organization of this paper is as follows: section 2 de-
scribes stages 1 to 4 of our algorithm, that is to say the com-
putation of the harmonic graph; section 3 explains the con-
struction of the harmonic skeleton from the harmonic graph,

c© Association for Computing Machinery, Inc. 2007.

G. Aujay, F. Hétroy, F. Lazarus & C. Depraz / Harmonic Skeleton for Realistic Character Animation

that is to say stages 5 and 6; in section 4, we detail the pro-
posed skeletons for bipeds and quadrupeds; we give results
and discuss them in section 5; finally, we conclude in sec-
tion 6.

2. Harmonic graph

2.1. Graph computation

2.1.1. Finding extrema

The first stage of our algorithm is to choose the endpoints of
the skeleton; they will correspond to extremal joints. The
user must select one source vertex xsource on the head of
the character, which will give the source node of the graph.
We set f (xsource) = 0. Other endpoints should match rele-
vant anatomical features of the character that the user wants
to animate: hands, feet and possibly tail, ears, etc. These
endpoints can be either selected manually, or computed. In
the latter case, we try to find vertices x such that the dis-
tance d(xsource,x) on the mesh is locally maximum. Several
methods have been proposed to solve this problem: for in-
stance, Dong et al. [DKG05] choose to solve the Poisson
equation 4 f = −‖4x‖; the algorithm proposed by Tierny
et al. [TVD06] can also be applied, but it does not use the
source vertex, which should be selected afterwards among
the detected feature vertices, hence it does not ensure this
vertex will be on the head of the character. The same prob-
lem arises when computing the average geodesic distance
function over the mesh, as did Zhang et al. [ZMT05]. In our
implementation, we use a fast and more straightforward so-
lution: g is defined as a geodesic distance to xsource; we use
Dijkstra’s algorithm to compute shortest paths on the mesh
from the source vertex to all other vertices, as proposed by
Lazarus and Verroust [LV99]. This method, as Dong’s, has
one drawback: multiple neighboring local extrema can be
found in almost flat regions. We propose a solution to clus-
ter these extrema, which will be discussed in section 2.2.
For each extremum vertex x (be it manually or automatically
chosen), the value f (x) is set to the length of the shortest
path from the source vertex, as computed by Dijkstra’s al-
gorithm (it could also be set to the value given by Dong’s
method when using this algorithm). Doing so, the harmonic
function f can be seen as a smooth approximated distance to
the source vertex over the mesh.

2.1.2. Solving Laplace’s equation

Once the boundary conditions to Laplace’s equation are set,
the system (1) is solved using a classical finite elements
method of P1 type (the function f , defined for each vertex, is
linearly interpolated inside each triangle). Since the assem-
bled matrix is very sparse, computation can be done very
efficiently (e.g. using the SuperLU solver [DEG∗99]).

2.1.3. Generating the graph

The Reeb graph of f is then computed using Cole-
McLaughlin’s algorithm [CMEH∗03]. This algorithm re-
quires f to be a Morse function: this basically means that two

neighboring critical points should have two different values
for f . To ensure this property, we check if all vertices on
the mesh have different values. If several vertices x1, . . . ,xk
have the same value f (x1) = . . . = f (xk), we order them and
change their values slightly.

2.2. Graph filtering

2.2.1. Recovering the shape’s symmetries

Even if the model is symmetric, Cole-McLaughlin’s algo-
rithm may generate a non-symmetric graph, because the
source vertex may not be located exactly on the symmetry
plane or axis. We propose here a simple way to recover these
symmetries.

Each node n of the graph G is assigned with the value
f (x), where x is the critical vertex on the surface correspond-
ing to n. Now, let us give weights to the edges of G. Let
(n1,n2) be an edge of G. (n1,n2) is balanced by the follow-
ing weight:

w(n1,n2) =
| f (n1)− f (n2)|

|max
n∈G

f (n)−min
n∈G

f (n)| (2)

Considering f as an approximated distance to the source ver-
tex over the mesh (see section 2.1.1), w(n1,n2) represents
the normalized difference between the distance to the source
vertex of two “topologically close” vertices. If w(n1,n2) is
small, this means that the corresponding vertices x1 and x2
are approximately at the same distance to the source vertex,
and are also located in the same topological area (they are
not necessarily geometrically close to each other). Thus, in
order to recover the shape’s symmetries, we propose to filter
the graph by collapsing every internal edge with a weight
lower than a given threshold t1. We do not collapse edges
containing a leaf node, since this could remove small fea-
tures.

Notice that we can recover not only geometrical symme-
tries of the model, but also morphological ones: for instance,
the octopus model of Figure 4 is not symmetric, geometri-
cally speaking, because its tentacles are not in the same po-
sition; it can however be regarded as morphologically sym-
metric, because these tentacles have the same size and are
regularly placed around a symmetry axis. As shown on the
same model, we can recover not only symmetries w.r.t. a
plane but also symmetries w.r.t. an axis.

2.2.2. Removing irrelevant extrema

As explained in section 2.1.1, it may happen that too many
extremum vertices are computed. In order to remove irrel-
evant extrema, since extrema correspond exactly to the leaf
nodes of the graph, we propose to remove the external edges
(that is to say edges containing a leaf node) with a weight
lower than a given threshold t2, together with their nodes.
However, these edges should be removed carefully (see Fig-
ure 5): in order to avoid extra deletion of edges, they should
first be ordered by increasing weight.

c© Association for Computing Machinery, Inc. 2007.

G. Aujay, F. Hétroy, F. Lazarus & C. Depraz / Harmonic Skeleton for Realistic Character Animation

Figure 4: Left: non-symmetric graph obtained from a model
containing a symmetry. Middle: the same graph after filter-
ing (t1 = 0.007). Right: refined harmonic skeleton.

Figure 5: Deletion of edges whose weight is lower than or
equal to t2 = 0.15. Top: without weight ordering. Bottom:
with weight ordering.

Both thresholds t1 and t2 can be set by the user, but they
can also be computed. Indeed, unwanted edges usually have
very small weights compared to the others’, since they can
be seen as noise while the others are associated with feature
sizes. Thus, a statistical analysis upon all the edge’s weights
can help to set these parameters.

3. Harmonic skeleton

The harmonic graph gives the topological structure of the
model. This is not enough to get an animation skeleton: we
need to add 3D coordinates to its nodes, which will repre-
sent the joints of the skeleton; we may also need to refine
the graph. Previous methods constructed the skeleton from
a Reeb graph using only topological and geometrical infor-
mation from the model, which is often not sufficient for real-
istic animation. We propose to take benefit from anatomical
information to design the skeleton; this information will be
recovered from the harmonic graph, knowing that the source
vertex was chosen on the head of the character. In this sec-
tion, we explain how to detect symmetries of the model’s
morphology on the graph and propose a skeleton in general
case. In the next section, we show how to improve this gen-
eral skeleton in the case of biped and quadruped characters.

3.1. Symmetry axis detection

We suppose here that the character’s morphology is symmet-
ric. This is often the case: typically, the model has two or
four legs, two ears, and the head and the tail (if it exists) are
centered with respect to the legs. Thus, the harmonic graph
should also be symmetric with respect to an axis (or a node,
but a node can be considered as a degenerate case of an axis).

We propose here a heuristic to recover this symmetry axis
starting from the source node, which is located on this axis
since its corresponding vertex is supposed to be on the head
of the character.

Finding symmetries on a graph is a NP-complete prob-
lem; that is why we must make some hypotheses about the
graph to get an efficient algorithm. Several restrictions have
been proposed in the graph theory community [DeF99]; we
describe here a simple iterative algorithm based on the 3 fol-
lowing assumptions:

1. the source node is located on the symmetry axis;
2. the harmonic graph is actually a tree, i.e. it does not con-

tain any cycle;
3. two subtrees are isomorphic if they have the same depth

and if their root nodes have the same degree (that is to
say, the same number of child nodes).

The two last hypotheses are relevant for our application,
since harmonic graphs are usually simple: they are made of
one node for the head, one node for each leg, possibly one
extremal node for the tail, for each ear and/or each wing
and/or each finger, and that is usually all.

We use n0 to denote the source node of the harmonic
graph, and (n0,n1) = e0 as its incident edge: e0 is on the
symmetry axis. n and n′ denote nodes of the harmonic graph,
whereas e denotes an edge. Our algorithm proceeds as fol-
lows:

• e = (n,n′)← e0 = (n0,n1)
• while e 6= NULL loop

– add e to the symmetry axis;
– let e1 = (n′,n′1),e2 = (n′,n′2), . . . ,ek = (n′,n′k) be the

incident edges to n′, excepting e;
– for each node n′j, let Tj be the subtree of G whose root

node is n′j and which does not contain n′;
– store the Tj into sets S1, . . . ,Sl of isomorphic trees,

according to assumption number 3;
– if ∃!Si which contains only one tree Ti then e← ei =

(n′,n′i)
– else e← NULL
– end if

• end loop

Figure 6 shows the successive steps of the algorithm on
an example. It adds edges to the symmetry axis iteratively,
discarding subtrees of the harmonic graph that are symmet-
ric w.r.t. the computed part of the axis. Note that if several
sets Si containing one tree exist at the same time the algo-
rithm stops, because it cannot tell which tree has its root on
the axis. This algorithm can be applied not only to the har-
monic graph G, but also to subtrees of G, in order to find
non-principal symmetries. We can thereby obtain a hierar-
chy of symmetries, like [SKS06].

c© Association for Computing Machinery, Inc. 2007.

G. Aujay, F. Hétroy, F. Lazarus & C. Depraz / Harmonic Skeleton for Realistic Character Animation

(a) (b) (c) (d)

Figure 6: Symmetry axis detection. (a) Initialization
(b) First step: T1 and T3 are isomorphic trees, and T2 is not
isomorphic to any other known tree: e2 = (n1,n

′
2) is on the

symmetry axis. (c) Second step: T1 and T2 are isomorphic,
there is no candidate tree to process further on, so the algo-
rithm stops. (d) Detected symmetry axis.

3.2. Simple embedding

Finding an appropriate embedding for each node of the har-
monic graph is not a trivial task: even if each extremal node
can be embedded onto the corresponding vertex on the mesh,
this is not always possible for internal nodes, since they
may have more than one corresponding vertex (Figure 7 (a)).
Moreover, it is often more relevant to embed an internal node
inside the model than on the surface. Before giving details
about how internal nodes will be embedded in R3, we should
explain how regular nodes (nodes with exactly two incident
edges) that will be inserted to the graph will be embedded.

Let u be a regular value of f (that is to say a non-critical
value), let f−1(u) be its level set, and let C be a connected
component of f−1(u). C is a simple closed curve made of
segments whose endpoints p1, p2, . . . , pk, pk+1 = p1 inter-
sect the edges of the mesh. We define the center of C as the
center of mass of these segments [LV99]:

center(C) =

k

∑
i=1
‖pi pi+1‖

pi + pi+1
2

k

∑
i=1
‖pi pi+1‖

(3)

We embed a regular node with value f (u) onto the center of
its associated connected component C. This choice is more
relevant that the center of mass of the points pi, since the
result is less dependent on the surface’s discretization level.

Now, here is the algorithm we propose in order to embed
an internal node n:

1. split each incident edge (n,ni) to n in two, by inserting a
new node n′i ;

2. assign the value f (n)+ ε or f (n)− ε to each n′i , depend-
ing whether f (n) < f (ni) or f (n) > f (ni) (ε should be a
small scalar value, lower than the lowest weight among
the graph’s edges);

3. since each node n′i is a regular node, embed it as ex-
plained before;

4. determine which nodes among these are on the symmetry
axis:

(a) (b)

Figure 7: (a) Some nodes may have more than one corre-
sponding vertex on the mesh. (b) Added regular nodes and
possible embedding for internal nodes with 3 incident edges.

• if there is none, embed n onto the center of mass of
the n′i’s embeddings;

• if there is one, embed n onto the embedding of this
node n′k;

• if there are two (three or more is not possible), choose
one of them, embed n onto its embedding and remove
the other node from the graph;

5. finally, freeze the new edges (n,n′i): this means that if one
node’s embedding is subsequently modified, the other
should be modified the same way.

Figure 7 (b) shows the possible embeddings for internal
nodes with 3 incident edges. Freezing edges has an impor-
tant meaning: some degrees of freedom are removed for
some joints of our animation skeleton, and freezing allows
us to mirror the effect of bones such as the clavicle or the
pelvis.

3.3. Joint hierarchy

Embedding the graph’s nodes in R3 is not sufficient to get an
applicable animation skeleton: we should also define a joint
hierarchy. This can easily be done using the detected sym-
metry axis on the harmonic graph: the base joint can corre-
spond to any node on this axis, then other joints recursively
come from it. Common base joint choices include the head,
that is to say the source joint, a node on the symmetry axis
with a mean value for f , or the pelvis, which is the last node
on the symmetry axis with at least three incident edges.

Once we have set up this hierarchy, we can use our embed-
ded and augmented harmonic graph, which we call harmonic
skeleton, as animation skeleton: nodes will be used as joints.
The direction of the symmetry axis (or more precisely, of
its embedding) can be used to set up the initial orientation of
each joint. Moreover, additional joints can be added in a very
simple way as regular nodes on the graph, with the embed-
ding described in section 3.2. The value for f corresponding
to a new joint, and hence its exact location, can be either set
up by the user, or computed as the mean value between the
two values of the edge’s nodes (this is our default choice), or
even computed so that the joint fits some geometrical feature

c© Association for Computing Machinery, Inc. 2007.

G. Aujay, F. Hétroy, F. Lazarus & C. Depraz / Harmonic Skeleton for Realistic Character Animation

(e.g. local minimum of the gaussian curvature, as proposed
by [TVD06]).

4. Adapted embedding for bipeds and quadrupeds

In this section, we explain how the previously computed
skeleton can be modified in order to better fit biped or
quadruped mammals. Equivalent heuristics can be devel-
oped for other kinds of characters. These heuristics rely on
semantic information about the model’s anatomy associated
to each joint of the skeleton, which can be recovered since
the source joint corresponds to the head of the character and
all skeleton extrema are known (see Figure 8 (a)). First, we
propose a heuristic to check if the skeleton corresponds to a
biped or a quadruped model.

4.1. Biped/quadruped discrimination

In the case of a biped or quadruped character, the computed
harmonic graph should be as described in Figure 8 (a): the
symmetry axis should have at least 2 nodes with at least 3
incident edges. The last of these nodes P matches the pelvis,
and the previous one S matches the shoulders (we can have
others, matching for example the ears). Since P and S have 3
or 4 incident edges, we know from section 3.2 that the ones
not on the symmetry axis have been frozen: let P1, P2, S1 and
S2 be their other endpoints; these nodes correspond to the be-
ginning of the leg bones (when the subtree corresponding to
the tail is isomorphic to the back legs, P1 and P2 are cho-
sen among the three children of P so that |SP.(PP1×PP2)|
is maximum). We can now define 3 unit vectors: the spine
direction Spine = SP

‖SP‖ , a unit vector NP normal to the trian-
gle PP1P2 and a unit vector NS normal to the triangle SS1S2.
Since edges PP1,PP2,SS1 and SS2 are frozen with f (P1) ≈
f (P2) ≈ f (P) and f (S1) ≈ f (S2) ≈ f (S), we say that the
model is a quadruped if |Spine.NP| ≈ 1 and |Spine.NS| ≈ 1,
and a biped if |Spine.NP| ≈ 0 and |Spine.NS| ≈ 0 (see Fig-
ure 8 (b) and (c)). In the other cases, we cannot conclude.

(a) (b) (c)

Figure 8: (a) Minimal harmonic skeleton for a biped or a
quadruped model. The symmetry axis is colored in purple
and frozen edges are colored in orange. (b,c) Spine, NP and
NS vectors for quadrupeds and bipeds.

Actually, this heuristic is well-adapted for most
quadrupeds, but not all. Indeed, vertebrate terrestrial

quadrupeds can be classified into two groups, according to
the orientation of their leg bones (see Figure 9): in the case
of amphibians these bones approximately lie in a transversal
plane (plane with constant altitude), while in the case of
most mammals they lie in a sagittal plane (orthogonal to
S1S2 and P1P2). While our test is adequate for “sagitally
oriented” quadrupeds, it can fail for amphibians, for which
the result can be the same than for bipeds: |Spine.NP| ≈ 0
and |Spine.NS| ≈ 0.

(a) (b)

Figure 9: (a) Schematic skeleton of an amphibian: the leg
bones are in a tranversal plane (z = cst). (b) Mammal case:
they are in a sagittal plane (x = cst).

4.2. Biped embedding

If the character has been detected as a biped, we propose a
special refinement of the harmonic skeleton. This refinement
starts with the addition of several nodes to the graph:

• the spine, that is to say the edge SP, is subdivided into 4;
• a new node N is inserted on the symmetry axis before S;
• a new node J is inserted before N, and a new edge JM is

added from J (M is a new extremum of the graph);
• each arm and each leg is subdivided into 3 edges;
• if there is a tail, it is subdivided into 4 edges.

The goal of this refinement is to match what would have
created an artist. The nodes added to each arm will match
elbows and wrists, while the nodes added to each leg will
match knees and ankles; N will match the base of the neck, J
the jaw and M the mouth. Notice that the source node and M
do not match any real joint: these are in fact useful to better
control the movement of the head and its size. We choose
not to add edges for the rib cage, as it is not usually modeled
for IK skeletons.

In order to shift some node embeddings and to embed the
newly inserted nodes, we first give a reference frame to the
model. This reference frame is defined by the previously in-
troduced unit vector Spine, the unit vector P1P2

‖P1P2‖ and the

unit vector Spine× P1P2
‖P1P2‖ , which gives the front-to-back (or

back-to-front) direction. We can then embed newly inserted
nodes, such as the nodes of the spine which can be slightly
moved backward. To mimick what an artist would do, we
have also chosen to unfreeze the SS1 and SS2 edges,and to
embed S1 and S2 ahead of the embedding of S, in order to
match clavicles. Regular nodes can be embedded either us-
ing a mean Euclidean position or a mean value for f w.r.t. the
embeddings of their edge’s endpoints, or fitting some geo-
metric criterion, such as proposed by [TVD06]. The last so-
lution can be particularly adapted for neck and wrists, which
match constrictions of the shape.

c© Association for Computing Machinery, Inc. 2007.

G. Aujay, F. Hétroy, F. Lazarus & C. Depraz / Harmonic Skeleton for Realistic Character Animation

4.3. Quadruped embedding

Automatic animation skeleton generation is much less de-
veloped for four-footed animals than for bipeds. In order
to refine the harmonic skeleton for parasagittally oriented
quadrupeds, we based our work on the reference animation
skeletons proposed by [RFDC05]. These IK skeletons were
constructed by hand, from anatomical references [Cal75].
We add the same nodes to the harmonic graph as for bipeds,
except that each front leg is subdivided into 5 edges, each
back leg into 4 edges, and instead of having 2 edges between
J and S (JN and NS), we have 5: the 4 added nodes will
match the first, the second, the fourth and the seventh (which
is the last) cervical vertebrae. We also subdivide the edge
starting from the source node in 3; the first inserted node J′

will match the jaw, while this time J will match the cranium.
As for bipeds, M does not match any real joint and is useful
to control the head’s size and its movement. It will be put on
top of the head of the character. We use the same reference
frame as for biped embedding; here is how some of the joints
are embedded: P is lifted up along the Spine× P1P2

‖P1P2‖ direc-
tion from the simple embedding position (the center of its
connected component for f−1(f (P))) in order to be close to
the back; nodes on SP are also lifted up, and so are S1, S2, P1
and P2; S is lifted up in order to match the pelvis’ height; the
first inserted nodes on each leg are moved along the −Spine
direction. We found that the best choice to embed the node
J was near the neck constriction (actually a bit closer to the
source joint); its value for f and exact location depends on
the neck length. Finally, a simple solution for J′ is along the
−Spine× P1P2

‖P1P2‖ direction from J, close to the chin.

5. Results and validation

Figures 2 and 10 to 12 show harmonic skeletons computed
with our method. In these cases extrema have been selected
by hand, because automatic computation of the extremal fea-
tures can be quite slow. Thus, the threshold t2 has not been
used (it has been set to zero). No fine tuning of t1 has been
necessary: for almost all models, setting t1 between 0.001
and 0.150 is sufficient. Except the selection of the extrema
and t1, the entire process is automatic; no post-processing
has been applied.

5.1. Biped and quadruped embeddings

Figure 11 shows the harmonic skeleton computed from a
biped model, compared with a standard handmade skeleton
(from Autodesk’s Maya software). We have not modeled the
rib cage, as explained before. As for the other models, the
symmetry axis is colored in purple and frozen edges are col-
ored in orange. Even though the graph is more complex than
the minimal harmonic graph for a biped (Figure 8 (a)) be-
cause we decided to model the fingers, the symmetry axis
has been correctly detected. Another biped skeleton is shown
on the right of the figure. We have chosen to embed extremal
nodes onto corresponding vertices on the mesh, but we could
have easily embedded them inside the model instead, using

a close but regular value for f and the definition (3) of the
center of a connected component.

Results on two quadruped models are shown on figures 2
and 12. The cat’s tail is not considered as part of the sym-
metry axis, since its corresponding subtree on the harmonic
graph is isomorphic to the back legs. Our algorithm provides
animation skeletons close to the model’s anatomy and to tra-
ditional IK skeletons. Nevertheless, some joints may need to
be slightly displaced for better animation, particularly in the
head. It is also noticeable that the very beginning of the tail
is actually included in a frozen edge; this is correct since it
corresponds to the first coccygeal vertebrae which are indeed
attached to the sacrum [Cal75].

Our harmonic skeletons have been used for animation, as
can be seen on Figure 1 and on the accompanying video.

5.2. Robustness

Figure 10 shows the robustness of the skeleton generation
w.r.t the pose, mesh deformation and source vertex location.

Two different poses of the same character generate the
same graph, with approximately the same values for f on
each node, as long as the model is not stretched from one
to the other. The reason is twofold: we are guaranteed that
the extremal nodes correspond to the selected or computed
extremal vertices, and f can be approximated as a distance
over the mesh to the source vertex. Then, the embedding is
most often the same since it does not depend on the leg ori-
entation, for instance: it depends mostly on the computed
reference frame, which is the same except if the back has
been bended. It can also depends on the surface’s local ge-
ometry, if we use constrictions to fix some joints such as the
neck and wrists.

If the pose deformation is not isometric, we cannot be sure
to get the same harmonic graph, from a theoretical point of
view. However, stretching or shortening one leg in a homo-
geneous way does not change neither the graph nor its em-
bedding, since for instance the ratio forearm length over arm
length is not modified.

Figure 10: Robustness of the skeleton generation w.r.t the
pose (left), mesh deformation (middle) and the source vertex
location (right). Compare to Figure 11.

Our skeleton computation is also very robust w.r.t the

c© Association for Computing Machinery, Inc. 2007.

G. Aujay, F. Hétroy, F. Lazarus & C. Depraz / Harmonic Skeleton for Realistic Character Animation

Figure 11: Comparison on a standard biped model, MayaHuman, between a standard IK skeleton (left) and our harmonic
skeleton (middle left). Middle right: hand close-up; right: harmonic skeleton for another biped model, MaleWB.

[Liu et al. 2003] [Lien et al. 2006] [Tierny et al. 2006] Our method Horse anatomy

Figure 12: Comparison on a horse model between several methods. Images are taken from the papers; the right image is taken
from Wikipedia.

source vertex location, as long as it is chosen on the head:
even if it is not on the character’s symmetry plane, the sym-
metry axis of the harmonic graph is recovered; then, since
the embedding we propose does not depend on the source
vertex location, it does not change.

5.3. Quantitative validation

To prove that our approach is useful, we have carried out a
quantitative validation of our results: since [RFDC05] intro-
duced parameters to define quadruped’s skeletons (back and
front leg height – or similarly spine tilt – and neck length,
normalized by the spine length), we compared their values
between our skeletons and IK skeletons, handmade from
anatomical reference. Results for 6 models are provided in
Table 1; in most cases our embedding of nodes S and J is
correct, resulting in similar values between harmonic skele-
tons and IK skeletons for front leg height and neck length.
The location of the pelvis is sometimes low in our harmonic
skeletons, which explains the greater difference for back leg
height.

5.4. Computation time

The Table 2 gives computation times for 5 models on a stan-
dard PC with a 2.4 GHz Pentium 4 processor. Even for a
dense mesh, our algorithm generates the skeleton in less than
1 minute. The memory requirement is also low: at most 350
MB for a model made of 300,000 faces, 1.5 MB for a model
with 15,000 faces (including the storage of the mesh). Most
of the time is spent on the harmonic function computation;

graph computation is then done in O(n logn) time for a mesh
with n faces [CMEH∗03], and embedding is done in nearly
linear time because we only compute ray/mesh intersections
for some joints in order to get their distance to the mesh, and
the number of joints does not depend on the mesh’s com-
plexity.

Mesh Back leg Front leg Neck
Harmo. IK Harmo. IK Harmo. IK

Cat 1.2 1.3 1.2 1.2 0.4 0.4
Cow 1.0 1.1 0.9 0.9 0.3 0.4
Dog 1.3 1.3 1.1 1.2 0.5 0.4
Elephant 1.4 1.6 1.4 1.4 0.3 0.3
Horse 1.3 1.7 1.4 1.6 0.7 1.0
Panther 1.0 1.1 0.9 1.0 0.4 0.5

Table 1: Parameter comparison between our harmonic
skeletons and hand-built IK skeletons.

Mesh Nb. faces Graph Embedding Total
Cat 2,566 0.085 0.108 0.193
MayaHuman 14,118 0.634 0.139 0.773
Octopus 33,058 1.393 0.061 1.454
Horse 96,966 6.268 3.525 9.793
MaleWB 296,272 30.816 5.230 36.046

Table 2: Computation time (in seconds) for some meshes.

6. Conclusion

In this paper we have presented a fully automatic method to
compute an animation skeleton from a 3D meshed model in

c© Association for Computing Machinery, Inc. 2007.

G. Aujay, F. Hétroy, F. Lazarus & C. Depraz / Harmonic Skeleton for Realistic Character Animation

a few seconds after the selection of an initial point. In the
case of most bipeds or quadrupeds, this skeleton fits the ani-
mation skeleton that would be hand-built by an expert start-
ing from anatomical boards, and is thus adapted for realistic
animation. The main idea is to construct the Reeb graph of
a harmonic function, which gives the overall morphological
structure of the model (especially its symmetry axis), then to
refine and embed it using anatomical information. There are
two main restrictions on the input mesh: it should be a trian-
gulated 2-manifold (with or without boundary), and, in order
to recover the symmetry axis of the shape’s morphology, it
should not have handles (otherwise the Reeb graph contains
cycles). Although the method is fully automatic, the user can
control the skeleton generation by tuning a few optional pa-
rameters. This tool has been designed both to help artists and
to allow non-experts to quickly generate skeletons which can
be used for realistic character animation. Computed skele-
tons can be edited and refined, for instance to add joints that
correspond to wings or to the trunk of an elephant.

Given this skeleton generation process, we see three
promising research directions. First, each vertex of the mesh
is related to the joints of the skeleton, since we have given
values for the harmonic function to the graph’s nodes, and
hence the skeleton’s joints; these relations may be used to
enhance skinning weights. Second, our semantic decompo-
sition of the graph may also be used to define heuristics that
give adapted skinning weights: weights may vary according
to the meaning of neighboring joints. It may also help for
automatic mesh segmentation into anatomically meaningful
regions. Finally, even if not embedded to match the model’s
anatomy, the harmonic graph may be useful for other appli-
cations (e.g. shape matching), since its construction is robust
and does not create unnecessary nodes.

Acknowledgments

The authors would like to thank Lionel Revéret for interest-
ing discussions at the beginning of this work. The horse and
MaleWB models are courtesy of Cyberware. The MayaHu-
man model is courtesy of Autodesk.

References

[BL99] BLOOMENTHAL J., LIM C.: Skeletal methods of shape
manipulation. In Shape Modeling International (1999).

[Blu67] BLUM H.: A transformation for extracting new descrip-
tors of shape. In Symposium on Models for the Perception of
Speech and Visual Form (1967), pp. 362–380.

[Cal75] CALDERON W.: Animal Painting and Anatomy. Dover,
1975.

[CMEH∗03] COLE-MCLAUGHLIN K., EDELSBRUNNER H.,
HARER J., NATARAJAN V., PASCUCCI V.: Loops in reeb graphs
of 2-manifolds. In Symposium on Computational Geometry
(2003), pp. 344–350.

[CSYB05] CORNEA N., SILVER D., YUAN X., BALASUBRA-
MANIAN R.: Computing hierarchical curve-skeletons of 3d ob-
jects. The Visual Computer 21, 11 (2005), 945–955.

[DeF99] DEFRAYSSEIX H.: An heuristic for graph symmetry de-
tection. In Symposium on Graph Drawing (1999), pp. 276–285.

[DEG∗99] DEMMEL J., EISENSTAT S., GILBERT J., LI X., LIU

J.: A supernodal approach to sparse partial pivoting. SIAM Jour-
nal on Matrix Analysis and Applications 20, 3 (1999), 720–755.

[DKG05] DONG S., KIRCHNER S., GARLAND M.: Harmonic
functions for quadrilateral remeshing of arbitrary manifolds.
Computer Aided Geometric Design, Special issue on Geometry
Processing 22, 5 (2005), 392–423.

[DS06] DEY T., SUN J.: Defining and computing curve-skeletons
with medial geodesic function. In Symposium on Geometry Pro-
cessing (2006), pp. 143–152.

[FK97] FOMENKO A., KUNII T.: Topological Modeling for Vi-
sualization. Springer-Verlag, 1997.

[GS01] GAGVANI N., SILVER D.: Animating volumetric models.
Graphical Models 63, 6 (2001), 443–458.

[HSKK01] HILAGA M., SHINAGAWA Y., KOMURA T., KUNII

T.: Topology matching for fully automatic similarity estimation
of 3d shapes. In SIGGRAPH (2001), pp. 203–212.

[KT03] KATZ S., TAL A.: Hierarchical mesh decomposition us-
ing fuzzy clustering and cuts. In SIGGRAPH (2003).

[LKA06] LIEN J., KEYSER J., , AMATO N.: Simultaneous shape
decomposition and skeletonization. In ACM Symposium on Solid
and Physical Modeling (2006), pp. 219–228.

[LV99] LAZARUS F., VERROUST A.: Level set diagrams of poly-
hedral objects. In ACM Symposium on Solid Modeling (1999).

[LWM∗03] LIU P., WU F., MA W., LIANG R., OUHYOUNG M.:
Automatic animation skeleton construction using repulsive force
field. In Pacific Graphics (2003), pp. 409–413.

[NGH04] NI X., GARLAND M., HART J.: Fair morse functions
for extracting the topological structure of a surface mesh. In SIG-
GRAPH (2004), pp. 613–622.

[Ree46] REEB G.: Sur les points singuliers d’une forme de pfaff
complètement intégrable ou d’une fonction numérique. Comptes-
Rendus de l’Académie des Sciences 222 (1946), 847–849.

[RFDC05] REVÉRET L., FAVREAU L., DEPRAZ C., CANI M.:
Morphable model of quadruped skeletons for animating 3d ani-
mals. In Symposium on Computer Animation (2005).

[SF01] STEINER D., FISCHER A.: Topology recognition of 3d
closed freeform objects based on topological graphs. In Pacific
Graphics (2001), pp. 82–88.

[SKK91] SHINAGAWA Y., KUNII T., KERGOSIEN Y.: Surface
coding based on morse theory. IEEE Computer Graphics and
Applications 11, 5 (1991), 66–78.

[SKS06] SIMARI P., KALOGERAKIS E., SINGH K.: Folding
meshes: Hierarchical mesh segmentation based on planar sym-
metry. In Symposium on Geometry Processing (2006).

[TVD06] TIERNY J., VANDEBORRE J., DAOUDI M.: 3d mesh
skeleton extraction using topological and geometrical analyses.
In Pacific Graphics (2006), pp. 409–413.

[WP02] WADE L., PARENT R.: Automated generation of control
skeletons for use in animation. The Visual Computer 18 (2002).

[ZMT05] ZHANG E., MISCHAIKOW K., TURK G.: Feature-
based surface parameterization and texture mapping. ACM
Transactions on Graphics 24, 1 (2005), 1–27.

c© Association for Computing Machinery, Inc. 2007.

