
EUROGRAPHICS 2008 / G. Drettakis and R. Scopigno
(Guest Editors)

Volume 27 (2008), Number 2

Real-time rendering and editing of vector-based terrains

Eric Bruneton and Fabrice Neyret

EVASION – LJK / Grenoble Universités – INRIA

Abstract

We present a method to populate very large terrains with very detailed features such as roads, rivers, lakes and

fields. These features can be interactively edited, and the landscape can be explored in real time at any altitude

from flight view to car view. We use vector descriptions of linear and areal features, with associated shaders to

specify their appearance (terrain color and material), their footprint (effect on terrain shape), and their associated

objects (bridges, hedges, etc.).

In order to encompass both very large terrains and very fine details we rely on a view dependent quadtree re-

finement scheme. New quads are generated when needed and cached on the GPU. For each quad we produce

on the GPU an appearance texture, a footprint texture, and some object meshes, based on the features vector

description and their associated shaders. Adaptive refinement, procedural vector features and a mipmap pyramid

provide three LOD mechanisms for small, medium and large scale quads. Our results and attached video show

high performance with high visual quality.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

Landscapes usually consist of precise features lying on top
of a very large terrain. Features such as rivers, roads, lakes
and fields could be considered as part of the ground. How-
ever simply including them in the raw terrain data gives im-
precise results, even at very high resolutions (see Figure 1),
because they have very precise shapes and boundaries, and
often locally constrain the terrain shape (roads and lakes
must be flat, rivers cannot flow uphill, etc.). Several appli-
cations such as Geographic Information Systems (GIS) pro-
vide them as vector data in separate layers. Hence the idea to

combine a digital elevation model (DEM) with vector data
to get precise feature boundaries and to enforce the previ-
ous constraints (with the additional possibility to cover the
terrain with objects that are not part of the ground, such as
bridges or hedges, generated from the same vector data). The
need for interactive editing tools then comes naturally, to fix
inconsistencies between data sources, to perform environ-
mental impact studies, or for world editors for games.

In this paper we propose a GPU-friendly algorithm for
the real-time quality rendering of such scenes, allowing their
real-time editing. Our method combines terrain elevation,

c© 2008 The Author(s)

Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and

350 Main Street, Malden, MA 02148, USA.



E. Bruneton & F. Neyret / Real-time rendering and editing of vector-based terrains

appearance and precise vector data such as rivers and roads
into a common data structure, based on a quadtree. Each
quad holds the local information about the terrain: elevation,
appearance and vector shapes, the latter being resolution in-
dependent. The elevation and appearance of each quad are
cached in textures on GPU and are produced on the fly dur-
ing exploration, by rasterizing the vector data at the appro-
priate resolution. This allows real-time rendering and edit-
ing of high resolution terrains. Rasterizing the vector data
into the elevation texture allows us to solve the problem of
conforming the terrain shape to the vector features (see Fig-
ure 1): roads remain flat and river beds are properly defined.
Our data structure elegantly captures data of very different
natures – satellite imagery, elevation data and vector data
from GIS – and enables efficient high-quality rendering of
such data on modern programmable GPUs. In addition, be-
cause all the data is organized in the same quadtree structure,
we can provide easy real-time editing of any graphical ele-
ment in the terrain. We only have to perform local updates
to the structure, hence ensuring interactivity.

Figure 1: Two Google Earth views. Despite the very high

resolution, roads are not flat (left), rivers can appear to flow

uphill (right), road markings and borders are blurred.

Our contributions are the following:

• a data structure to store dynamic vector data at several
LODs, that supports dense datasets (e.g., fields);
• a GPU friendly scheme to generate not only texture, but

also the shape of the terrain, using vector data;
• a method to incrementally update the vector data, includ-

ing procedural data, allowing real-time terrain editing.

2. Related work

Our method relies on adaptive terrain rendering, fusion of
geometrical data, and advanced shaders on GPU.

Terrain rendering Terrains can be provided using real data,
precomputed data, or generated procedurally on the fly (this
can also be used to amplify fixed data). Reviewing the exten-
sive research work on terrain generation and real-time terrain
rendering (ROAM [DWS∗97], Geometry Clipmaps [LH04],
C-BDAM [GMC∗06], etc.) is beyond the scope of this pa-
per. We use a classical view dependent quadtree refinement
scheme, with a continuous LOD mechanism similar to that
of the GPU adaptation of Geometry Clipmaps [AH05].

Combining terrain with secondary data Our goal is to
populate terrains with features such as roads or rivers. In
Geographic Information Systems (GIS), terrain data is of-
ten to be combined with other data (roads, buildings, etc.)
separated for semantic, precision or memory reasons. Hence
several methods have been proposed in the GIS commu-
nity to combine the display of vector data with 3D terrains.
Driving simulators also need similar techniques to draw
roads. These methods can be divided into three approaches:
overlay-geometry based, geometry based or texture based.

• The overlay-geometry based methods render 3D geome-
try on top of the terrain [WKW∗03,ARJ06]. The difficulty
is to keep these objects above the terrain, despite changes
in the terrain mesh due to LOD. [SK07] avoids this prob-
lem with a type of shadow volume technique.
• The geometry-based methods insert the vector data into

the terrain mesh itself. For instance, [WB01] and [PGJ95]
integrate roads into a terrain mesh. But they perform this
integration offline and do not deal with level of detail.
• The texture-based methods render the features as textures

that are then mapped onto the terrain [KD02,Szo06]. This
avoids the previous problems, but it requires a texture
LOD management so that features remain sharp despite
zooms. Our method is also inspired by this approach.

None of these methods but [PGJ95] deal with the modifi-
cation of the terrain shape under the constraints introduced
by the features. In addition, the interactive edition of these
features requires dynamic terrain update. Most terrain LOD
algorithms rely on some values precomputed from the ter-
rain in a bottom-up way (e.g., for error bounds), so local
modifications require complex updates. [HCP02] proposes
an extension to the ROAM algorithm to account for this.
This problem does not exist with the LOD mechanism of
Geometry Clipmaps, which is thus well suited to our needs.

Adding features through shaders Textures can be used to
account for details without adding more geometry, but for
very large landscapes available texture memory can quickly
be exhausted. Texture LOD management [TMJ98, LDN04]
helps fitting the GPU memory, but shifts the cost to CPU
memory and bus transfers. Procedural or semi-procedural
textures are a solution to this, since they can be generated
on the fly. [LN03] distribute and combine patterns to pop-
ulate a large terrain with a detailed virtual texture. How-
ever their method is adapted to scattered features and to
fields, not to long linear features such as road and rivers.
[TC04, RBW04, RNCL05, QMK06, TC05] introduce meth-
ods to represent vector data such as printed characters in tex-
tures. However they require a precomputation phase to en-
code vector data into textures (a few seconds for pinchmaps
[TC05]). In contrast, we simply adaptively refine spline
curves on the CPU and rasterize them into textures using
triangle strips. This allows us to generate vector-based tex-
tures in real time, with arbitrary shaders and attributes (u,v
coordinates for curves, elevation profiles, etc.).

c© 2008 The Author(s)

Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.



E. Bruneton & F. Neyret / Real-time rendering and editing of vector-based terrains

3. Overview

This section presents the overall organization of our system.
The input data consists in a terrain DEM and a vector de-
scription of the terrain features. Everything else is generated
on the fly, i.e., the terrain shape and appearance, and the ob-
jects on top of it, all constrained by the vector features.

The central data structure is a quadtree on the CPU, dy-
namically refined based on the viewer’s position (see Fig-
ure 15). Each quad contains the vector data appropriately
clipped and refined for this quad, and an elevation texture

that stores its shape. Each leaf in the current quadtree hierar-
chy, called a leaf quad, also contains an appearance texture

that stores the terrain color and material, and some object

meshes that represent the objects on top of it (trees, bridges,
etc.). The vector data is stored on CPU, while textures and
meshes are cached on GPU (see Figure 2). The terrain is ren-
dered by drawing a flat regular grid for each leaf quad, with
a vertex shader that uses the elevation texture to displace the
vertices, and a fragment shader that uses the appearance tex-
ture. The object meshes are then drawn on top of it.

Figure 2: Overall organization. Production of the appear-

ance and elevation textures of a quad (here B), and of its

objects (here trees along the road) from its vector data. Note

the repartition of data structures between CPU and GPU.

When the viewer moves, some new quads must be created
by subdividing existing quads, while others can be deleted.
We create a new quad as follows:

• we compute the vector data by clipping and refining the
vector data of the parent quad, with optional procedural
elements (see Section 4);
• we generate the appearance texture on the GPU, by draw-

ing the vector data into this texture, with the appearance
shaders (see Section 5.1);
• we generate a footprint texture describing terrain height

modifications similarly, and we blend it with the terrain
height to get the elevation texture (see Section 5.2);
• we generate or instantiate the object meshes from the vec-

tor data with the object shaders (see Section 5.3).

When the user edits the vector data we update the quadtree
from top to bottom. We update the vector data of each quad
by recomputing only the necessary parts (see Section 6). If
some changes have been made to a quad then we recompute
its appearance and elevation textures and its object meshes.
We support dense datasets by using a precomputed texture
mipmap pyramid (see Section 7).

4. Data structures

4.1. Vector data

We aim at representing linear features such as roads, rivers
or railways, and areal features such as lakes and fields of
various types, with very precise shapes and decorations. To
this end we use vector data, as in GIS applications, which al-
lows for high precision, easy edition and use of existing data.
More precisely we use spline networks: splines give smooth
features at any resolution, and the network gives their adja-

cency relations (also called topological relations), which are
necessary to draw specific road markings at crossings, for
instance (see Figure 3).

Figure 3: Data structures. Left: two layers (in blue and

green) with their graph made of nodes, curves and areas.

Right: the resulting appearance texture. Note that nodes with

3 or 4 adjacent curves (n2 and n1) result in different road

markings (1 or 4 stop lines).

Concretely, our vector data is made of several layers

(e.g., one layer for roads, another for rivers, etc.). Each layer
is a graph that interconnects nodes, curves, and areas, called
graph elements (see Figure 3):

• nodes are used for point features such as crossings and
ends. They are specified by a 2D position and have refer-
ences to their adjacent curves;
• curves are used for linear features such as roads and thin

rivers. They are specified by a 2D Bezier spline curve that
connects two nodes through a series of control points, a
width w and a footprint width w f (that includes roadsides,
river banks, etc.). A curve has references to its end nodes
and to the areas to which it belongs;
• areas are used for areal features such as large rivers, fields

or forests. They are specified by a list of references to
curves forming a loop (with possible holes), a footprint
width w f outside the surface, and an optional reference to

c© 2008 The Author(s)

Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.



E. Bruneton & F. Neyret / Real-time rendering and editing of vector-based terrains

an axial curve of width w bounding the surface (used to
define an elevation profile for the area – see Section 5.2).

4.2. Hierarchical structure

The CPU data structure is a dynamically refined quadtree.
Each quad contains the vector data corresponding to its ter-
rain part, computed on the fly by clipping and refinement.
Hence the root quad contains all the vector data (except for
large terrains – see Section 7). In the other quads the number
of elements decreases with depth, each element being more
and more refined. This structure brings several advantages:

• Using a quadtree is simpler than using a bintree or Ge-
ometry Clipmaps [LH04]. Indeed the L-shaped incremen-
tal updates of Geometry Clipmaps become a drawback
when the terrain is generated from vector data. And bin-
trees slightly complicate clipping and texture manage-
ment compared to quadtrees.
• Storing clipped data in each quad consumes memory but

allows us to efficiently generate the terrain. Indeed, the
textures of a quad q are generated by clipping the vec-
tor elements of its parent quad p (conservatively, i.e., we
just retain the Bezier arcs whose bounding box inter-
sects q, taking the width w f into account – see Figure 4),
and by drawing the result. Assuming the number of vec-
tor elements is proportional to the quad area A, clipping
and rendering are done in O(Ap) and O(Aq), i.e., O(Aq)
since Ap = 4Aq. This still poses scalability issues for large
quads (they are discussed in Section 7), but is much better
than using all vector elements to generate any quad.
• Refining curves improves the precision of conservative

clipping. And it allows us to draw the curves by using
their polyline approximation. Indeed we use the de Castel-
jau algorithm to refine each curve, after clipping, until its
distance to the polyline joining its control points is less
than one pixel in the appearance texture (see Figure 4).

Figure 4: Clipping and refinement. Left: clipping of Q, the

topleft subquad of P (Fig. 3). Curves are clipped conserva-

tively. New curves are added, in red, to close clipped areas.

Middle: refinement. Right: the stop line before the (clipped)

crossing is missed with n′1’s topology (1 adjacent curve). Us-

ing instead n1’s topology (4 adjacent curves) fixes this.

Ancestor elements Each clipped graph has its own adja-
cency relations, which may differ from those of its parent
graph. Since appearance depends on them (see Figure 3), us-
ing the adjacency relations of a clipped graph may produce

errors (see Figure 4). In order to have access to the correct
relations we store in each element a reference to its ances-

tor element, defined as the topmost element from which it
derives through clipping and refinement only (either an ele-
ment of the root quad, or a procedural element – see below).

4.3. Procedural graph elements

Some terrain features are constrained by others, e.g., bridges
must be placed where roads cross rivers. Others cannot be
represented with a single curve or area, e.g., a roundabout re-
quires several arc circle curves between the connected road
curves. These constrained and composed features are gener-
ally tedious to edit by hand. On the other hand they can often
be generated automatically from a higher level description.
We therefore provide a way to specify them procedurally.

Figure 5: Procedural graph elements. A graph (left) can be

procedurally modified (in red) to create automatically curves

for bridges (middle) or for roundabouts (right), for example.

This is done with an optional, arbitrary graph transfor-
mation step before the clipping and refinement step, during
a quad subdivision. This transformation can replace simple
crossings with roundabouts, generate bridge curves where
roads cross rivers, etc. (see Figure 5). It can also be used
for other purposes, such as adding procedural details. For
instance it can replace a curve with an area, to add details
to thin rivers when the viewer is close to them. It can also
simply load additional vector data from disk (for instance to
load thin curves only when they become visible).

In summary the creation of a new quad can be described
as follows (here for simplicity we ignore nodes, areas and
layers, and consider only procedural bridges):

Algorithm 4.1: SUBDIVIDE(p,q)

procedure SUBDIVIDE(c,q)
{c′}← BRIDGES(c)
return (∪c∈{c′}CLIPANDREFINE(c, BOUNDS(q)))

main

for each c ∈ CURVES(p)

do

{

CREATEDFROM(q)[c]← SUBDIVIDE(c,q)
ADD(q, CREATEDFROM(q)[c])

GENERATEELEVATION(q)
GENERATEAPPEARANCE(q)
GENERATEOBJECTS(q)

where BRIDGES returns for each road curve r one or more

c© 2008 The Author(s)

Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.



E. Bruneton & F. Neyret / Real-time rendering and editing of vector-based terrains

road and bridge curves r′1,b
′
1,r

′
2,b

′
2, . . . ,r

′
n (see Figure 5). It

does so only if p is the root quad (like many procedural trans-
formations, it does not make sense to apply it recursively at
each subdivision). CREATEDFROM is used for incremental
editing (see Section 6).

5. Texture and geometry producers

This section explains how we generate appearance and el-
evation textures, as well as object meshes, after the vector
data has been clipped, refined and procedurally modified.

5.1. Appearance textures

The appearance texture of a quad defines the color and ma-
terial of this terrain part. The basic idea for generating an
appearance texture on the GPU is to draw the vector features
into this texture using their associated appearance shaders
(we can also load a satellite photograph or mix both – see
Figure 14). For this, we draw 2D meshes based on the nodes,
curves and areas of the quad. Curves are drawn using sim-
ple triangle strips of width w f , constructed from the poly-
line joining the curve’s control points. Areas are drawn us-
ing a triangulated mesh generated from the contour and hole
curves, and a triangle strip of width w f constructed outside
along the surface border. Finally, nodes are drawn using tri-
angle strips covering the end parts of the adjacent curves (see
Figure 6).

Figure 6: Appearance and footprint texture generation.

Left: curves are drawn using a single strip. Areas are drawn

using an interior mesh (yellow) and a border strip (red).

Middle: Footprint generation. Right: b coefficients are com-

bined in GL_MAX mode to ensure continuity.

Each element is drawn using its associated appearance
shader, which depends on its type (road, river, lake, field,
etc.). These fragment shaders can use the 2D position on the
terrain, as well as the height and normal at this point (via
a lookup in the elevation texture, which is generated first).
For curves they can also use u,v coordinates (stored as ver-
tex attributes) defined as the curvilinear coordinate along the
curve, and the coordinate along its width. Finally they can

use other parameters associated with the element (base color,
road markings pattern, furrows direction for fields, etc.).

Curvilinear coordinates Consider a curve c clipped into
two curves c1 and c2. Using local u1 ∈ [0..l1] and u2 ∈ [0..l2]
coordinates on c1 and c2 would lead to a discontinuous u co-
ordinate on c, yielding potential visible discontinuities be-
tween quads, e.g., on road markings. It is therefore necessary
to compute u on unclipped curves, i.e., on ancestor curves
(see Section 4.2). For efficiency we compute u only when
necessary (e.g., when the viewer is close enough to see the
markings), and we cache the results for later use.

Uniform quads The appearance texture of a uniform quad,
i.e., a quad that is totally inside a single thick curve or a sin-
gle area, is trivial to produce (just draw an OpenGL quad
with the appearance shader). Then, instead of storing the
appearance texture, we can just use the appearance shader
when rendering the quad on screen. Doing so typically saves
50% of memory for close views, but requires more render-
ing time (since the appearance shader is called at each frame
instead of only once).

5.2. Elevation and footprint textures

In order to have smooth and flat roads, rivers or lakes, we
need to enforce the terrain height beneath them, with a
smooth transition between the enforced area and the terrain
(corresponding to roadsides, river banks, etc.). To ensure this
we define the terrain height as the interpolation between an
original height zo and an enforced height ze, using a blend-
ing coefficient b which varies from 1 inside the enforced
area to 0 outside. ze and b are specified with a z-profile z(u)
and a blending profile b(v) based on the (u,v) coordinates
of curves (see Figure 7). The interpolation is performed by
blending a footprint texture containing ze and b into an ele-

vation texture containing zo, with zm = bze +(1−b)zo.

Figure 7: Z-profiles and blending profiles are based on

the (u,v) coordinates of the strip. Top left inset: b(v) gives

smooth roadsides.

Z-profiles We want roads and rivers to have a smooth
z-profile, while the terrain height around them may have
higher frequencies. We also want to avoid rivers that flow
uphill. Z-profiles must also adapt when the vector data is

c© 2008 The Author(s)

Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.



E. Bruneton & F. Neyret / Real-time rendering and editing of vector-based terrains

edited. To this end we compute each z-profile from ter-
rain samples zo,i regularly spaced along the curves. We then
smooth them with a filter kernel w j, i.e., we compute z(u)
with z(ui) = zs,i ≡ ∑zo,i+ jw j. We enforce decreasing alti-
tudes for rivers by using z(ui) = min j≤i(zs, j). We also en-
force z values at crossings so that adjacent curves have the
same z at their junction. As for u coordinates, we cache these
values and for efficiency we compute them only when nec-
essary, on the ancestor curves (to avoid z-discontinuities).

Footprint texture This texture is generated by drawing the
vector data into it. We draw curves in a single step using a
fragment shader that produces both z(u) and b(v), based on
(u,v,z(u)) vertex attributes (see Figure 6). We draw areas
in three steps: we set b← 1 inside the area by drawing the
interior mesh, b← b(v) on the border by drawing the border
strip, and ze← z(u) in both regions by drawing a strip based
on the axial curve of width w (with a stencil mask set in
the previous steps). Terrain continuity requires continuous ze

and b channels. We ensure this while computing z-profiles
for ze, and by combining the continuous b values of each
curve and area with a max function (see Figure 6).

Elevation texture In order to generate continuous transi-
tions between quads of different levels, we store the terrain
height at two successive resolutions, and interpolate linearly
between the two during rendering, as in [LH04, AH05]. The
elevation texture therefore contains 3 heights per texel: the
original and modified height zo and zm, and the modified
height at half resolution zc. zo and zc are computed on the
GPU as in [AH05], by upsampling the zo component of the
parent elevation texture, and adding a correction to it.

Figure 8: Elevation texture antialiasing. Left to right: ge-

ometric aliasing (a) is removed by filtering zm values (b).

Using the width w to rasterize footprint curves yields bad

triangles at the border (c). Using w + 2
√

2δ instead solves

the problem (d), with δ the size of an elevation texture pixel.

Antialiasing The combined effect of the terrain slope, road
width, z-profile and blending profile might generate spatial
frequencies which cannot be represented at the current res-
olution, thus causing geometrical aliasing. To avoid this, we
filter zm values with a 3×3 pixel Gaussian filter in the eleva-
tion texture where the blending coefficient b is not null. This
eliminates almost all aliasing effects without loosing details
on the raw terrain (see Figure 8). We discard the footprint
of curves such that w < 2δ, where δ is the size of an eleva-
tion texture pixel (in meters), since they would not show up

due to the previous filtering. We add twice the diagonal of
a pixel

√
2δ to the width w to draw the remaining curves in

order to force triangles crossing the curve’s border to obey
the z-profile (see Figure 8).

5.3. Object meshes

Object meshes are used for objects that are not part of the
ground, such as bridges, hedges, buildings, etc. We gener-
ate or instantiate them from the vector data when a quad
is needed. For instance we generate bridge meshes along
bridge curves (one mesh per bridge), and we instantiate
copies of a reference tree mesh along road curves at regular
u intervals. For the same continuity reasons as in sections 5.1
and 5.2 this generation must be based on the ancestor curves,
not on clipped ones (otherwise a bridge curve clipped in two
parts would yield two bridges instead of one, for example).

6. Interactive editing

In many applications such as environmental impact studies
or outdoor scene design for games or other applications, the
user may want to edit the vector features. Using a 2D editor
and a separate 3D viewer would be unintuitive and inefficient
due to the lack of immediate feedback. We therefore want to
provide real-time vector editing tools working directly on
the 3D terrain view (see Figure 13). The difficult point here
is to update our data structures in real time. For scalability
reasons we need an algorithm whose cost is proportional to
the number of updated elements, not to the total number N

in the whole dataset.

Moving a control point can make a curve intersect a quad
that was previously not intersected, leading to new clipped
curves (and conversely – see R in Figure 9). It is there-
fore convenient to model all updates as sets of removed and
added elements. We can then update the quadtree in a top-
down way, from the root, with the following recursive pro-
cedure (we ignore nodes, areas and layers for simplicity):

Algorithm 6.1: UPDATE(p,{cr},{ca})

if not ISLEAF(p) and ({cr} 6= ∅ or {ca} 6= ∅)
then for i← 0 to 3

do







































































q← SUBQUAD(p, i)
{c′r},{c′a}← ∅,∅
for each c ∈ {cr}

do

{

{c′r}← {c′r}∪ CREATEDFROM(q)[c]
CREATEDFROM(q)[c]←∅

REMOVE(q,{c′r})
for each c ∈ {ca}

do

{

CREATEDFROM(q)[c]← SUBDIVIDE(c,q)
{c′a}← {c′a}∪ CREATEDFROM(q)[c]

ADD(q,{c′a})
UPDATE(q,{c′r},{c′a})

where {cr} and {ca} are curves that have been removed and

c© 2008 The Author(s)

Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.



E. Bruneton & F. Neyret / Real-time rendering and editing of vector-based terrains

added in quad p. The outer loop body deletes the curves
{c′r} in the subquad q that were created by clipping the
curves {cr}, and creates new clipped curves {c′a} for each
ca. It does so by using (and updating) the CREATEDFROM

c → {c′} hash table. The resulting complexity is propor-
tional to the number of updated elements, as desired. Note
that procedural elements are automatically updated as well
(see SUBDIVIDE(c,q) in Algorithm 4.1).

Figure 9: Incremental updates. A road is edited in P. Q

is P’s topright subquad, R is Q’s bottomleft subquad. Un-

changed, removed and added curves are in black, red and

green, respectively.

Once the vector data has been updated, we recompute
the curvilinear coordinates and the z-profiles of the ancestor
curves that have changed, and we recompute from scratch
the appearance and elevation textures and the object meshes
of quads whose graphs have changed (this last step is in
O(N) in the worst case when the quadtree is reduced to a
single quad, which rarely happens).

7. Scalability

The time to generate an appearance or footprint texture is
proportional to the vector data size in the quad, which is it-
self approximately proportional to the quad area. This time
can therefore become larger than the acceptable delay be-
tween two frames. The basic idea to solve this scalability
problem is to use precomputed appearance and elevation tex-
tures for the first L levels of the quadtree (from the root).
We then use vector data only for the other quads, and we
choose L based on the terrain size and the vector density
(assuming it is quite uniform). But this solution introduces
two new tasks: computing and updating the precomputed
textures, and managing and editing a vector data quadtree
without its first L levels.

We precompute the textures for the first L levels as fol-
lows. We compute for each quad at level L, and only them,
the corresponding clipped graphs, that we store on disk. We
then generate the textures at level L− 1 from these pre-
clipped graphs. Finally we compute the textures for levels
L− 2 to 0 as for a mipmap pyramid. We store all these tex-
tures on disk. After this precomputation phase, when the
vector data of a quad at level L is updated we recompute
the textures of its ancestor quads in the same way and we
update them on disk, as well as the updated clipped graphs.

The absence of vector data at the first L levels would yield

the absence of ancestors for curves and areas that cross sev-
eral quads at level L. However these ancestors are needed to
ensure continuity (see Sections 4.2, 5.1, 5.2 and 5.3). Hence
we use vector data at levels 0,L,L+1, . . . (see Figure 10). If
the vector data at level 0 does not fit in CPU memory it can
be loaded lazily, i.e., its elements can be loaded on first use,
and unloaded after use. The required memory is then pro-
portional to the maximum number of visible quads, which is
logarithmic in the terrain size.

The vector data is updated as before, starting from the
root level. We only need to replace the loop body in Algo-
rithm 6.1 with UPDATE(SUBQUAD(p, i),{cr},{ca}) for lev-
els less than L. The textures are then recomputed from the
vector data for levels ≥ L, and mipmapped in a bottomup
way for levels L−1 to 0 (see Figure 10).

Figure 10: Scalability. Storage and update of vector (V),

elevation (E) and appearance (A) data.

A similar scalability problem also exists for object meshes
(trees, bridges, etc.): the number of objects can become too
large to generate or render them in real time. Many strategies
have been proposed to solve this problem for mass 3D data
such as forests or cities. We consider it as out of the scope of
this paper, which is focused on textural data.

8. Implementation

This section presents the implementation choices we used,
in particular to get the results in the next section.

• We subdivide a quad if its distance to the viewer is less
than K times its size. Thus a texture pixel covers at most
p = ws/(2Kwa tan( 1

2 fov)) pixels on screen, where ws and
wa are the screen and appearance texture widths. We use
ws = 1024, wa = 192, fov = 80◦ and K = 2.8, which is
sufficient to hide texture popping (p = 1.1≈ 1).
• With K = 2.8 new quads tend to appear simultaneously,

e.g., 50 new quads can be requested for one frame, while
no quads were generated during the 100 previous frames.
This yields a strong temporal jittering. We greatly reduce
this effect with a prefetching technique based on the pre-
dicted trajectory of the viewer, i.e., we balance the com-
putations needed for a frame on the 25 previous frames.
• The quadtree stores on CPU the vector data for all quads,

either visible or not (we do not use lazy loading, since

c© 2008 The Author(s)

Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.



E. Bruneton & F. Neyret / Real-time rendering and editing of vector-based terrains

our dataset fits in memory). On GPU, we store appear-
ance textures only for leaf quads that are in the view frus-
tum and not uniform (see Section 5.1). We store elevation
textures only for internal and leaf quads that are in the
frustum. This frustum culling works well for applications
such as flight simulators. If the view can rotate quickly it
is of course possible to store textures also for quads out-
side the view frustum.
• We use procedural bridge and roundabout curves. Cur-

rently these graph transformations are implemented man-
ually in C++. Using a rule-based system to specify them
would probably be possible but we did not investigate this.
• Real terrains support several materials whose BRDFs may

differ a lot. The few systems that handle this use sepa-
rate meshes or multipass rendering using masks. The first
method is complicated, especially for real-time editing.
We therefore use the second method, which also provides
a correct filtering via the mipmapping of masks. We cur-
rently use only two materials: Lambert for the ground and
Fresnel for the water. This allows us to keep one pass, one
mesh and a single RGBm texture (3 channels for the color,
one for the "water material" mask). Using more materials
is possible with more texture channels.
• Appearance and elevation textures are stored either as

tiles in a big texture on GPU, or in a texture array (on
a GeForce 8800). We implemented both. Texture anti-
aliasing and anisotropic filtering work better with texture
arrays (no risk to mix samples that are adjacent in the tex-
ture cache but not on the terrain).
• Each appearance (resp. elevation) texture has a 192×192

(resp. 25×25) resolution. Our GPU caches can contain
500 appearance textures and 784 elevation textures. We
restrict the prefetching window and/or degrade the quality
of distant quads if needed (i.e., we use the texture of a
quad instead of the textures of its 4 subquads), so as to
never exceed the cache capacity.

9. Results

Our terrain data covers a 100× 100 km2 area in the Alps,
with a 5000× 5000 DEM, 940k nodes and control points,
600k curves and 190k areas (including 400k nodes, 580k
curves and 185k areas only for fields – see Figure 11). We
tested two scenarios: a flyover and a terrain editing session.
Both tests were conducted on an Intel Core 2 Duo 2.13 GHz
(3 GB) with a GeForce 8800 GTS. Images are rendered at
1024×768 resolution with 8X anisotropic filtering.

9.1. Flyover

To measure the performance at various altitudes and speeds
we use a flight path covering 13 km in 73 s, with a speed
varying from 2000 km/h at 5000 m above the ground to
60 km/h at 8 m and 90 km/h at 5 m. In order to get a smooth
animation we force the framerate to 60 fps, waiting between
frames if necessary. This gives a 16.6 ms delay to compute

Figure 11: Test data. A 100×100 km2 area in the Alps, with

a 5000×5000 DEM. The vector data is made of about 940k

nodes and control points, 600k curves and 190k areas (60%

of them are fields, not shown in wireframe view for clarity).

Source: Régie de Gestion des Données des Pays de Savoie.

each frame. We use it to generate the quads for this frame,
and to prefetch some quads for the next 25 frames. If we have
some time left we wait until the 16.6 ms are past (this time
could be used for other computations). If the computations
take more than 16.6 ms we adjust the position for the next
frame to maintain the desired apparent speed (this works be-
cause these frames are rare – 2% – and not contiguous).

Figure 12: Performance. Rendering time per frame during

a flyover (see accompanying video). The total time (in green)

includes the drawing time (in red) and the update time (dif-

ference between the two). The update time increases with the

number of generated quads per frame, which increases with

speed and proximity to the ground.

In this experiment (and with a mipmap pyramid for the
first L = 7 levels) the mean computation time per frame is 7.7
ms (hence leaving 8.9 ms for other computations), including
4 ms to draw the terrain, and 3.7 ms to update the data struc-

c© 2008 The Author(s)

Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

http://www.rgd73-74.fr/


E. Bruneton & F. Neyret / Real-time rendering and editing of vector-based terrains

tures (vector data clipping, footprint and appearance tile gen-
eration – see Figure 12). The update time per frame varies
from 0.6 to 25 ms for 99.8% of the frames (only 7 frames
take more than 25 ms). This is because the number of gen-
erated footprint (resp. appearance) textures per frame varies
from 0 to 9 (resp. 15) with an average of 1.49 (resp. 1.34),
and because we currently have no precise oracle to guess the
generation time for a given quad. Note that without prefetch-
ing the worst update time reaches 230 ms, with a maximum
of 57 generated textures for the worst frame. At most 708
and 482 elevation and appearance textures are needed for
the current frame. With the prefetched textures for the next
25 frames, this gives 781 and 500 textures (limited by the
cache capacity). The maximum quadtree depth is 17 levels.
This corresponds to a virtual 1.2 107× 1.2 107 = 1922.416

pixels appearance texture and 1.6 106× 1.6 106 = 252.416

pixels elevation texture!

9.2. Interactive editing

In this experiment we use L = 6, we do not use prefetching,
and we do not force any framerate (see Figure 13). We get in-
teractive to real-time frame rates, depending on the situation
(see accompanying video). Editing curves with associated
curvilinear coordinates, z-profiles or object meshes, such as
roads and rivers, costs more than editing other curves, such
as forest or city area curves, because more data needs to be
recomputed at each frame. Editing while looking down is
also more efficient than in horizontal views, because fewer
quads are visible and therefore fewer quads need to be re-
computed at each frame.

Figure 13: Interactive editing. Each layer can be edited sep-

arately by moving the green and blue points, with immediate

update. Here the rivers and lakes layer is edited.

10. Conclusion

We presented a method able to handle vector features on
very large landscapes, allowing for the real-time quality ren-
dering of terrains with complex appearance (as demonstrated

in the video): vector features appear at very high resolu-
tion, they can modify the terrain in order to enforce semantic
constraints, and they can be edited interactively. We demon-
strated various features: several kinds of roads, rivers, lakes,
fields, crossings, bridges... Our representation can handle
a mix of materials (ground and water), and support non-
texture objects such as 3D bridges or trees. For future work,
we would like to generalize the management of materials
and the filtering quality. In terms of features, we would like
to add more procedural controls for the aspect of surfaces, to
handle non-flat vegetation, and to allow animation (e.g. for
water surface).

Acknowledgments

This work was partially funded by the Natsim ANR ARA
project. We would like to thank Cedric Manzoni, for the
object meshes management and rendering implementation,
as well as Antoine Bouthors, Sylvain Lefebvre and Jamie
Wither for proofreading.

Figure 14: Results. Top: large scale view. Middle: proce-

dural bridges and roundabouts. Bottom: with our footprints

(right) rivers are flat even if the raw elevation data lacks pre-

cision – which is often the case (left). NB: here the texture is

a satellite photograph.

c© 2008 The Author(s)

Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.



E. Bruneton & F. Neyret / Real-time rendering and editing of vector-based terrains

Figure 15: Other results. Top: a different rendering style.

Bottom: a view (left) and the corresponding quadtree with

frustum culling (right).

References

[AH05] ASIRVATHAM A., HOPPE H.: GPU Gems 2. Ad-
dison Wesley, 2005, ch. Terrain rendering using GPU-
based geometry clipmaps.

[ARJ06] AGRAWAL A., RADHAKRISHNA M., JOSHI R.:
Geometry-based mapping and rendering of vector data
over LOD phototextured 3D terrain models. In Proceed-

ings of WSCG (2006).

[DWS∗97] DUCHAINEAU M. A., WOLINSKY M.,
SIGETI D. E., MILLER M. C., ALDRICH C., MINEEV-
WEINSTEIN M. B.: ROAMing terrain: real-time
optimally adapting meshes. In IEEE Visualization

(1997), pp. 81–88.

[GMC∗06] GOBBETTI E., MARTON F., CIGNONI P.,
DI BENEDETTO M., GANOVELLI F.: C-BDAM - com-
pressed batched dynamic adaptive meshes for terrain ren-
dering. Computer Graphics Forum 25, 3 (Sep 2006). Eu-
rographics 2006 conference proceedings.

[HCP02] HE Y., CREMER J., PAPELIS Y.: Real-Time
Extendible-Resolution Display of On-line Dynamic Ter-
rain. In Graphics Interface (May 2002), pp. 151–160.

[KD02] KERSTING O., DÖLLNER J.: Interactive 3D vi-
sualization of vector data in GIS. In ACM international

symposium on advances in geographic information sys-

tems (GIS) (2002), pp. 107–112.

[LDN04] LEFEBVRE S., DARBON J., NEYRET F.: Uni-

fied Texture Management for Arbitrary Meshes. Tech.
Rep. RR5210, INRIA, May 2004.
http://www-evasion.imag.fr/Publications/2004/LDN04.

[LH04] LOSASSO F., HOPPE H.: Geometry clipmaps: ter-
rain rendering using nested regular grids. In ACM SIG-

GRAPH (2004), pp. 769–776.

[LN03] LEFEBVRE S., NEYRET F.: Pattern based proce-
dural textures. In ACM-SIGGRAPH Symposium on Inter-

active 3D Graphics (I3D) (2003).

[PGJ95] POLIS M. F., GIFFORD S. J., JR. D. M. M.:
Automating the construction of large-scale virtual worlds.
Computer 28, 7 (1995), 57–65.

[QMK06] QIN Z., MCCOOL M. D., KAPLAN C. S.:
Real-time texture-mapped vector glyphs. In ACM-

SIGGRAPH Symposium on Interactive 3D graphics and

games (I3D) (2006), pp. 125–132.

[RBW04] RAMANARAYANAN G., BALA K., WALTER

B.: Feature-based textures. Eurographics Symposium on

Rendering (2004), 65–73.

[RNCL05] RAY N., NEIGER T., CAVIN X., LEVY B.:
Vector texture maps. In Tech Report (2005).
http://alice.loria.fr/publications/papers/2005/VTM/vtm.pdf.

[SK07] SCHNEIDER M., KLEIN R.: Efficient and accu-
rate rendering of vector data on virtual landscapes. In
Proceedings of WSCG (2007).

[Szo06] SZOFRAN A.: Global terrain technology for flight
simulation. In Game Developers Conference (2006).

[TC04] TUMBLIN J., CHOUDHURY P.: Bixels: Picture
samples with sharp embedded boundaries. In Rendering

Techniques (2004), Keller A., Jensen H. W., (Eds.), Euro-
graphics Association, pp. 255–264.

[TC05] TARINI M., CIGNONI P.: Pinchmaps: textures
with customizable discontinuities. Computer Graphics

Forum 24, 3 (2005), 557–568.

[TMJ98] TANNER C. C., MIGDAL C. J., JONES M. T.:
The clipmap: A virtual mipmap. In SIGGRAPH (1998),
pp. 151–158.

[WB01] WEBER A., BENNER J.: Interactive generation
of digital terrain models using multiple data sources. In
First International Symposium on Digital Earth Moving

(DEM) (2001), Springer-Verlag, pp. 60–64.

[WKW∗03] WARTELL Z., KANG E., WASILEWSKI T.,
RIBARSKY W., FAUST N.: Rendering vector data over
global, multi-resolution 3D terrain. In Eurographic sym-

posium on Data visualisation (VISSYM) (2003), pp. 213–
222.

c© 2008 The Author(s)

Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.


